
Transcription factor expression in lipopolysaccharide-
activated peripheral-blood-derived mononuclear cells
Jared C. Roach*†, Kelly D. Smith*‡, Katie L. Strobe*, Stephanie M. Nissen*, Christian D. Haudenschild§, Daixing Zhou§,
Thomas J. Vasicek¶, G. A. Held�, Gustavo A. Stolovitzky�, Leroy E. Hood*†, and Alan Aderem*

*Institute for Systems Biology, 1441 North 34th Street, Seattle, WA 98103; ‡Department of Pathology, University of Washington, Seattle, WA 98195;
§Illumina, 25861 Industrial Boulevard, Hayward, CA 94545; ¶Medtronic, 710 Medtronic Parkway, Minneapolis, MN 55432; and �IBM Computational
Biology Center, P.O. Box 218, Yorktown Heights, NY 10598

Contributed by Leroy E. Hood, August 21, 2007 (sent for review January 7, 2007)

Transcription factors play a key role in integrating and modulating
biological information. In this study, we comprehensively measured
the changing abundances of mRNAs over a time course of activation
of human peripheral-blood-derived mononuclear cells (‘‘macro-
phages’’) with lipopolysaccharide. Global and dynamic analysis of
transcription factors in response to a physiological stimulus has yet to
be achieved in a human system, and our efforts significantly
advanced this goal. We used multiple global high-throughput tech-
nologies for measuring mRNA levels, including massively parallel
signature sequencing and GeneChip microarrays. We identified 92 of
1,288 known human transcription factors as having significantly
measurable changes during our 24-h time course. At least 42 of these
changes were previously unidentified in this system. Our data dem-
onstrate that some transcription factors operate in a functional range
below 10 transcripts per cell, whereas others operate in a range three
orders of magnitude greater. The highly reproducible response of
many mRNAs indicates feedback control. A broad range of activation
kinetics was observed; thus, combinatorial regulation by small sub-
sets of transcription factors would permit almost any timing input to
cis-regulatory elements controlling gene transcription.

gene expression microarray � massively parallel signature sequencing �
systems biology � transcript enumeration

Systems biology has advanced our understanding of regulatory
networks in unicellular and multicellular organisms (1–3).

Developing methodologies for identifying and understanding the
dynamics of the expression of all of the genes operating in a human
system is a priority for systems biology. Human systems are
exceptionally difficult because of their complexity and experimental
constraints. A paradigm for understanding nuclear regulation is to
(i) identify all transcription factors (TFs) involved in regulating a
system, (ii) identify their targets based on computational predic-
tions of binding to TF binding sites as well as perturbations in
expression of target genes, and (iii) incorporate this knowledge into
a predictive network model with genes as nodes and binding
interactions as edges (4, 5). This approach works well when there
is substantial preexisting knowledge enabling the execution of this
paradigm. However, in humans, the majority of binding sites and
targets for most TFs in most cell conditions are not known and
cannot be predicted with confidence. Therefore, the development
of a comprehensive model of nuclear regulation in most human
tissues, including stimulated macrophages, remains beyond the
reach of current research efforts. What is required now to achieve
these comprehensive models is hard work. For most systems of
interest, multiple studies will be required. These studies will require
separate publication to ensure adequate documentation of the
methodology and analysis, to allow separate groups to make distinct
contributions, to allow different facets of a system to be explored in
depth, to facilitate data deposition, and to ensure that dissemina-
tion of some results are not delayed while publications are held for
other results to mature.

In this report, we describe one strategy for the comprehensive
identification and dynamic analysis of the mRNA components in a

system. In this model system, we activated peripheral-blood-derived
mononuclear cells, which can be loosely termed ‘‘macrophages,’’
with lipopolysaccharide (LPS). We focused on the precise mea-
surement of mRNA concentrations. There is currently no high-
throughput technology that can precisely and sensitively measure all
mRNAs in a system, although such technologies are likely to be
available in the near future. To demonstrate the potential utility of
such technologies, and to motivate their development and encour-
age their use, we produced data from a combination of two distinct
current generation technologies and extensive hand curation that
we believe will approximate the comprehensiveness and sensitivity
of anticipated transcriptome technologies. An example of such a
technology would be transcript enumeration based on unbiased
sampling and sequencing of millions of transcripts (e.g., Solexa
expression profiling; Illumina, San Diego, CA).

Macrophages provide a model for the study of mammalian
signaling pathways. Many aspects of their behavior in cell culture
are similar to their in vivo behavior. Toll-like receptors recognize
ligands characteristic of pathogen activity such as LPS (6). The
activation of macrophages by LPS through Toll-like receptor 4 is a
model for perturbing regulatory networks in cells; our work is part
of a general effort to study the nature of information transfer in
mammalian intracellular networks (7, 8). Our data permit insight
into the information encoded by TF mRNA concentrations that is
subsequently transduced into other forms of information. Changes
in mRNA concentration after a stimulus may indicate the impor-
tance of that transcript in two manners (9, 10): (i) the change in
concentration may directly transfer information as part of the
response pathway, and (ii) the change in concentration may be an
indirect consequence of the response of a product of that transcript,
such as to replenish a consumed protein.

We used two distinct high-throughput methodologies for
dynamic mRNA analysis: a transcript enumeration methodol-
ogy, massively parallel signature sequencing (MPSS), and a
microarray hybridization methodology, GeneChips (Af-
fymetrix, Santa Clara, CA) (11). Better coverage for gene
identification is obtained because each technology has unique
systematic errors, often not present in the other technology.
MPSS permits the mean number of transcripts per cell to be
approximated from transcripts per million (tpm) by knowing
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the approximate total number of transcripts per cell. Macro-
phages have �320,000 transcripts per cell (12).

The primary purpose of this report was to provide a building
block for the systems biology paradigm of understanding
macrophage nuclear regulation by providing a list of TFs that
are almost certainly key nodes in intracellular information
processing. Our aim was to capture all such TFs, but the
following factors were missed: (i) TFs without changes in
expression across our sampled time points and (ii) TFs not
adequately assayed by the combination of technologies used.
Despite these limitations, we almost doubled the number of
TFs known to be involved in macrophage activation from 50 to
92. The core decision to be made for each TF is Boolean: to
either recommend or not recommend inclusion of a TF in a
predictive network model for macrophage function. We as-
serted that this decision in human systems is currently best
done by using a combination of (i) automated algorithms for
managing and analysis of high-throughput data and (ii) expert
curation applied to each decision in the context of current
accumulated knowledge of the system. The use of subjective
expert analysis has been the standard for single-gene studies
for many decades; it will be a long time, if ever, before such
analysis is obsolete. Automated algorithms produce signifi-
cance statistics and ranking for each gene for each technology
and increasingly can usefully combine these statistics. Expert
curation permits careful analysis of raw data and biological
context for each gene. To derive maximum utility from the
time available for expert curation, we chose to focus in this
study exclusively on TFs. This choice is motivated by the
important role TFs play in information transduction. For many
genes, we anticipated an unprecedented sensitivity with our
strategy, because the maximum sensitivity of either Affymetrix
or MPSS technology alone could be estimated to be approx-
imately one transcript per cell.

Results
List of Human TFs. To identify important TFs, we first generated a
comprehensive list of all TFs. The resulting list, selected from the
25,204 entries in Entrez Gene as of 2004, included 1,288 genes with
enough evidence to be considered ‘‘known’’ TFs; the results are
summarized online (as file Compilation�of�Mammalian�
Transcription�Factors; www.systemsbiology-immunity.org). This
list represents a snapshot of current knowledge (13). The impor-
tance to the community of a reference list of TFs is illustrated by
the independent parallel development of such lists (14).

Multiple High-Throughput Datasets. We isolated human peripheral-
blood-derived monocytes and stimulated them with LPS over a 24-h
time course (time points: basal, 2, 4, 8, and 24 h). We assayed TF
expression with two independent technologies: MPSS and Gene-
Chips (11, 15). Affymetrix data are available in the Gene Expres-
sion Omnibus (GEO) database, www.ncbi.nlm.nih.gov/geo (acces-
sion no. GSE5504); full annotated data are also available (as the file
MPSS�data; www.systemsbiology-immunity.org/datadownload.
php). Analysis of our combined data in the context of external
information (e.g., tissue specific expression datasets) increased our
ability to rank genes by biological significance. For reporting TFs,
we selected a cutoff based on the false discovery rate that would
have been present in the absence of expert curation of our raw data
(see Materials and Methods); in short, we ranked the genes in order
of increasing uncurated P values and then applied expert curation
to each gene in the list until 10 consecutive genes were deemed not
to belong. We sought to identify TFs with mRNA expression levels
that have a measurably significant change between at least two time
points during the LPS stimulation time course and, subsequently, to
infer that these were likely involved in information transduction.
We also observed TFs with a constant level of expression signifi-
cantly above zero. In addition to the TFs that we identified as having

significantly changing mRNA concentration, the TFs with constant
mRNA level may also transduce information. Before our study, we
compiled a list of TFs that could be considered to be known
previously to be involved in macrophage activation; the results are
summarized online (in subsection Biological Knowledge of Each
TF of the file Ancillary�data of our online data; www.
systemsbiology-immunity.org/datadownload.php). To summarize
the online material, �50 TFs were known previously to be involved.
In our present study, we identified all of these previously known TFs
and then added �50, thus bringing the total to �100. Our statistical
analysis suggests that few additional genes in this system will be
found by further transcriptional analysis.

We confirmed the significance of change in mRNA levels for 15
TFs from our final list with real-time PCR (www.systemsbiology-
immunity.org/datadownload.php): MYBL2, SPI1, MSC, STAT1,
THRA, MXD1, HHEX, KLF16, MXI1, JUNB, IRF7, IRF3, AHR,
ATF3, and ETS1. We selected IRF3, KLF16, HHEX, MXI1, and
MYBL2 because they are at the limit of sensitivity of our technique.
We selected KLF16, MSC, MXI1, and THRA because they had not
been identified previously in this system. IRF7 and MSC were
selected as positive controls because they are strongly and clearly
regulated significantly at a high level. ATF3 was selected to evaluate
changes at a moderate level. SPI1 and MXD1 were selected because
the dynamic profiles in our MPSS and Affymetrix data differed. All
15 were confirmed as having a significantly measurable mRNA
change. The likelihood of this result would be �95% if we had a
false discovery rate of 0.1% and 50% if we had a false discovery rate
of 4.5%. Our false-negative rate is hard to estimate, although we
found all genes known in the literature to have expression changes
in the LPS stimulation system in the time scale considered. False
negatives would most likely result from biases present in both
technologies. Currently, the major sources of error in high-
throughput technologies lie within bioinformatics pipelines. Such
errors include genes with improperly annotated polyadenylation
sites and tags or array identifiers assigned to the wrong source.

Examples of Extreme Sensitivity. The expression levels seen span
from one transcript per cell to thousands of transcripts per cell.
As measured by MPSS, seven significantly changing TFs had
maximum expression of �12 tpm (approximately 4 transcripts
per cell): KLF4, HHEX, MXI1, ETS1, HIVEP2, DBP, and
CDCA7L. MPSS is known to underreport KLF4 tag counts
because of a technology-specific bias (the combination of tet-
ramers TTTA in the four-stepper and TCAA in the two-stepper
frames); therefore, KLF4 is not an example of extreme sensi-
tivity. HHEX and MXI1 both with a peak of 6 tpm (approxi-
mately two transcripts per cell) were the two cases of highest
sensitivity in our analysis (and are not predicted to have under-
reported MPSS tetramer combinations). Our sensitivity is not
universal and is less for some genes than others. Unrecognized
biases in the technologies might account for some of these data.

Most TFs Are Not Transcriptionally Modulated in Macrophages. Evo-
lutionary and complexity theory predicts that most (i.e., �50% and
perhaps �90%) TFs are not involved in transducing information in
any given specialized cellular state (16). This prediction rests on the
hypothesis that many, but not all, TFs will have specific functions
applicable to only a few cell types or conditions. When TFs with no
expression were included (i.e., those that stayed at 0 tpm across the
entire time course), there were 1,220 TFs with no significantly
measurable MPSS change between any of our conditions. For
example, the most highly expressed TF, YBX1, averaging 3,500
tpm, showed no significant change by our analysis. The next most
abundant unchanging TF mRNAs were those of ZNF90, ZNF114,
and EDF1, each with �450 tpm. The only TFs with higher average
expression were CREG1, ATF3, JUNB, and SPI1, all with signif-
icant changes (Fig. 1).
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TFs Active in Macrophages. Based on our analysis, a total of 92 TFs
change significantly between at least two time points in our
system; 43 of these have never been suspected to be involved in
macrophage activation. Of these 92 TFs, 52 are induced, 31 are
repressed, and 8 oscillated.

Timing of TF Expression. TF effects can be mediated and modu-
lated by diverse molecular mechanisms. The quality and quantity
of information transduced cannot always be inferred from
examination of expression levels alone. In particular, the peak
action of a TF can occur before the peak expression level. For
example, the target gene of a TF might reach its maximal
transcription rate when the concentration of that TF message is
only 10% of its eventual maximum. This would occur if binding
of a target promoter were saturated. Therefore, it is useful to
classify TFs by the timing at which they first show a significant
change. An advantage of this classification is that it reduces the
dimensionality of the data (Fig. 2).

Of the TFs that changed significantly, change tended to be
apparent early. Most (52 of 92) showed significant change by 2 h
(Fig. 3). There was a sharp drop in the number of TFs that first
showed significant change at subsequent time points (Fig. 4). This
early ‘‘spike’’ followed by little additional TF recruitment suggests
that these macrophages were approaching a new state of TF
expression by 24 h after stimulation (Fig. 2). Of the 92 TFs that
showed a significant change during our time course, 50 TFs would
have shown a significant change if only the basal and 24-h time

points were considered. Thus, many of the changing TFs remained
in their altered transcriptional state for at least 24 h.

The dynamic profiles of each TF can be classified by a few gross
shapes: ‘‘peak,’’ ‘‘trough,’’ ‘‘up,’’ ‘‘down,’’ and ‘‘multiple inflections’’
(Figs. 3 and 4). Of those with straightforward classifications, there
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Fig. 1. Absolute expression levels of TFs that significantly change during macrophage activation. This graph is organized under the simplifying assumption that
all TFs are either ‘‘induced’’ or ‘‘repressed.’’ To transform sometimes more complex expression time courses for this formalization, we retained only the lowest
and highest expression level for each 24-h time course. If the lowest value preceded the highest, the TF was classified as induced; otherwise, the TF was classified
as repressed. For some dynamics (e.g., oscillatory), this display of maxima and minima is a considerable simplification; Figs. 3 and 4 provide complete time courses.
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well represented in the group of TFs that are induced from trace to high levels. Induced genes (above the dashed line) outnumber repressed genes (below the
dashed line). To avoid clutter, not all points are labeled.

0 2 4 6 8 10 12 14 16 18 20 22 24
0

10

20

30

40

50

60

Hours of LPS Stimulation

N
um

be
r 

of
 T

F
s 

fir
st

 r
ev

ea
le

d
 b

y 
si

gn
ifi

ca
nt

 e
xp

re
ss

io
n 

ch
an

ge
s

Fig. 2. Most TFs that are going to change do so relatively early, indicating
that much of the cellular regulatory logic occurs in the first few hours follow-
ing stimulation. The origin is included arbitrarily for reference. This represen-
tation is intended to emphasize the spike in onset of TF expression change.
However, many of the TFs that first show significant change at early time
points remain significantly changed at later time points (Figs. 3 and 4).
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were 30 peak shapes, and 9 trough shapes, 23 were up, 17 were
down, and 4 showed multiple inflections. Our goal in assigning
dynamic shapes to TFs was to provide gross insight but not to define
a formally rigorous classification; such a classification would require
more time points to better exclude missed inflection points.

Consistency of Expression Data. The normalized MPSS and Af-
fymetrix profiles overlie each other almost exactly for 53 of the
92 TFs. The samples for each data set were independent
biological samples from blood samples from different sets of
unrelated individuals, acquired and processed months apart.
Therefore, the concordance of many of the profiles, derived
from different technologies, technical replicates, and biological
samples, is striking and suggests that some of these genes are
under tight regulation not only as to the timing of their expres-
sion peak but also as to their exact expression level at each time
point. Such genes include ELF4, KLF4, IRF2, MYC, NFKB1,
XBP1, GTF2B, and ARID5A. The remaining 39 profiles are
either defined by data from only one of the two technologies or
are discordant between the two technologies (Figs. 3 and 4).

Discussion
Previously �49 TFs were known to be involved in macrophage
signaling. This estimate is based on very generous criteria: the

actual number found by a macrophage expert performing a
literature search would be less; we inferred inclusion for some
TFs in this list from previously existing online array datasets. We
have approximately doubled the number of previously identified
TFs in the macrophage response to LPS to �100. We use the
‘‘approximate’’ qualifier (i) because this figure depends on
whether or not cofactors and basal TFs are included, (ii) to
account for uncertainties in the definition of TF and cofactor,
and (iii) to allow for statistical uncertainty in the data analysis.
We manually examined the data in the context of legacy data and
the literature for all 1,288 known TF genes (�5% of all known
genes) with the exception of genes for which all transcript
variants (i) showed no significant change in either MPSS or
Affymetrix assays across our time course, (ii) had no prior
expectation from the literature of being involved in macrophage
activation, and (iii) did not have an average expression level
exceeding 50 tpm in our MPSS data. This process resulted in a
Boolean decision to include the TF in our list of genes relevant
to the systems biology of macrophage activation. There is no
single P value associated with each of these decisions. Rather,
each decision is based potentially on disparate data from dif-
ferent sources and is justified by a discussion specific to each
gene (www.systemsbiology-immunity.org/datadownload.php),
much as would be found in the discussion section of a journal
article that focused on a single gene. In this context, the most
important criteria were the set of P values for the significance of
changes in mRNA concentrations between pairs of conditions as
measured by our two technologies.

A ‘‘Parts List’’ for Systems Biology. Significant differences in expres-
sion measurements between two cellular states imply that a TF is

Fig. 3. Shape of TF expression changes in stimulated macrophages with
measurements normalized to the value of the highest time point. TFs showing
a first significant time point at 2 h are shown. Black, MPSS tpm; gray, Af-
fymetrix signal. Abscissa time points (not to scale) are basal and 2, 4, 8, and 24 h
after addition of LPS. Raw values and statistics are recorded in the online
material.

Fig. 4. Shape of TF expression changes in stimulated macrophages with
measurements normalized to the value of the highest time point. TFs showing
a first significant time point of 4, 8, or 24 h are shown. Black, MPSS tpm; gray,
Affymetrix signal. Abscissa time points (not to scale) are basal and 2, 4, 8, and
24 h after addition of LPS. Raw values and statistics are recorded in the online
material.
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an important part of the regulatory network driving or effectuating
that state transition. However, significant expression changes are
not required for significant information transduction; many TFs
effectuate state changes in cells through changes in protein mod-
ification or localization (e.g., steroid hormone receptors). Before
our study, 49 TFs were known to have significant mRNA changes;
we confirmed these data (Fig. 1; notes provided by the curator for
each gene are archived at www.innateimmunity-systemsbiology.
org). All TFs with known expression changes in macrophage
activation in the literature were found by our analysis except for
those that could not be detected by our experimental design. For
example, EGR1, ID2, JUN, and SP2, which peak before our earliest
time point at 2 h went undetected by our technique, as did RELA,
which does not have significant mRNA expression changes.

Our work offers a comprehensive view of all TFs operating in a
mammalian system responding to a perturbing signal. Therefore, it
may offer insights general to the understanding of nuclear regula-
tion in many mammalian systems. We have elucidated the number
of TFs operating in a system. This number, 92, is likely to be a lower
bound because we strove to avoid false positives at the possible cost
of an increased number of false negatives, most of which were likely
due to genes that were currently unknown or not annotated as TFs.
We estimate an upper bound to be considerably less than 200
because we believe current annotation gaps plus our technological
false-negative rate would not inflate our number beyond this limit.
For the purposes of text mining, the alphabetical list of 92 TFs
determined by expression analysis to be important to information
transduction in macrophages is: AHR, ARID5A, ARID5B, ATF3,
ATF4, ATF5, BATF2, BAZ1A, BCL3, BIN1, CBFB, CDCA7L,
CEBPA, CEBPB, CEBPG, CITED2, COBRA1, CREG1, DBP,
DCP1A, EGR2, ELF4, EPAS1, ETS1, ETS2, ETV3, FOS, FOSL2,
HESX1, HHEX, HIVEP2, IFI16, IRF1, IRF2, IRF2BP2, IRF3,
IRF4, IRF5, IRF7, IRF8, ISGF3G, JUNB, KLF13, KLF16, KLF4,
KLF6, KLF7, LMO2, LYL1, MAFB, MAFF, MAX, MAZ,
MLLT6, MSC, MTF1, MXD1, MXI1, MYBL2, MYC, MYCPBP,
NFATC1, NFATC3, NFE2L2, NFKB1, NFKB2, NMI, NR4A3,
PBX3, PML, PRDM1, RB1, REL, RELB, RUNX3, SERTAD2,
SP110, SP3, SPI1, SPOCD1, STAT1, STAT2, STAT4, STAT5A,
TCF4, TCF7L2, TFEC, TGIF, THRA, TRIM25, XBP1, ZFP36L2.
For the purpose of text mining, a simplified list of TFs identified
primarily from analysis of Affymetrix data are: AHR, BCL3, ETS2,
MAFB, MAFF, MTF1, REL. For the purpose of text mining, a
simplified list of TFs identified primarily from analysis of MPSS
data are: ETV3, IRF4, IRF8, JUNB, KLF16, MAZ, MYBL2,
THRA.

Within 2 h of LPS stimulation, our results demonstrate that the
nuclear regulation response in macrophages became very complex.
Most TFs that were going to change their transcription at any point
in the activation process had already done so by 2 h. The number
of never-before-recruited TFs dropped considerably with each time
point. By 24 h, almost no new TFs were being recruited. We predict
that the 50 TFs that sustain their significant change (either up or
down) would include those necessary for maintaining differentiated
states such as LPS tolerance, whereas the other TFs (typically
showing a peak or trough) would be responsible primarily for either
converting to a differentiated state or effectuating transient re-
sponses such as cytokine release. Many of the active TFs in the
system were under exquisite control. They showed the same relative
amplitude and timing of transcriptional response in distinct biolog-
ical samples, drawn from separate individuals years apart, measured
with distinct technologies. These genes are most likely under the
influence of multiple levels of feedback regulation that are robust
to environmental and allelic variation. The concentrations of the
active TFs span several orders of magnitudes. There is no clear
prototypical operational range for the concentration of a TF. Some
TFs exert influence by changing their concentration from zero to a
few transcripts per cell, whereas others alter their concentration
between levels of hundreds to thousands of transcripts per cell. The

dynamic profiles (mRNA concentrations as a function of time) of
the TFs are diverse. Profiles have distinct times for maxima and
minima and relative ordering of these points. This implies that if a
cell were to use these as inputs to a signal generator, it could
produce almost any signal by mixing them combinatorially.

A recent study incorporated mouse macrophage TFs in network
analysis (17, 18). The authors chose four TFs to discuss: ATF3,
ETS2, IRF1, and NFE2L2 (also known as NRF2). All four of these
were among the 92 identified by our study. In the study we report
here, we chose to defer inferring a network, much as one might
defer assembling a jigsaw puzzle missing many of its pieces.
Although we may have identified most of the key TF nodes, little
is known about these nodes. Interactions of most of these TFs
cannot be reliably inferred. An urgent need now is to experimen-
tally determine binding sites of the majority of TFs transducing
information in macrophages. Approaches should include experi-
mental determination of binding-site matrices (enabling computa-
tional approaches) and direct determination of TF target genes with
techniques such as chromatin immunoprecipitation. A primary
result and conclusion of our study is the identification of the need
for these future experiments and of the TFs that should be the
primary subjects of these experiments.

We specifically embarked on one such follow-up study. At the
beginning of this project, ATF3 was included in the list of genes
known to be involved in macrophage activation (19), but only 10
target genes were known. Only three of these are expressed by
macrophages: ATF3 (autoregulation), ASNS, and MMP2. None of
these three interactions was present in curated databases; each had
to be inferred from literature searches. Therefore, from a systems
perspective, there was essentially no prior knowledge of ATF3 in
relation to macrophage activation. This was and remains true for
most of the TFs that we identified in the present work. From
analysis of the dynamic profile of ATF3 in this study coupled with
a parallel study in a murine model system, we developed a hypoth-
esis that ATF3 might be an important global regulator of macro-
phage activation. Its high absolute level of expression (Fig. 1) was
suggestive that it might be a pervasive global regulator that operated
on many genes, with a weak affinity for promoter elements neces-
sitating not only the high level of expression but also cooperative
regulation with other TFs. As an aside, we also hypothesized that
TFs with low levels of expression such as KLF4 and HESX1 would
also play important roles but were more likely to bind more strongly
to a more restricted set of target genes. For ATF3, hypothesis-
driven follow-up experiments in the mouse involved fine-scale time
courses, additional stimuli, genetic perturbations, and chip-to-chip
TF–DNA binding analysis. They resulted in confirmation of the
important cooperative role of ATF3 in macrophage activation and
expanded the list of ATF3 targets (19).

We have achieved one milestone along the path to the realization
of systems biology in humans. We obtained a comprehensive
overview of the dynamics of expressed transcripts after stimulation
of macrophages with LPS. Combining the strengths of two com-
plementary high-throughput technologies, our analysis reached a
sensitivity of close to one transcript per cell with a dynamic range
spanning five orders of magnitude. Our approach is applicable to
other mammalian cells and tissues.

Materials and Methods
Curation of List of TFs. Information in Entrez Gene, Online Men-
delian Inheritance in Man, PubMed, GeneOntology, coupled with
PFAM protein domain content analysis with HMMER was ana-
lyzed to produce a list of human TFs. Inclusion was necessarily
subjective for two reasons: (i) the definition of TF is imprecise, and
(ii) there is not enough information available for many genes to be
certain of their function. Selection was guided by the following
definition of TF: ‘‘a protein that is part of a complex at the time that
complex binds to DNA with the effect of modifying transcription.’’
We included cofactors in our definition. To be considered, a gene
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had to have an Entrez Gene entry. The list of TFs selected from the
25,204 entries in Entrez Gene with assigned sequences includes
1,288 genes with enough evidence to be considered ‘‘known’’ TFs;
of these, 564 have a maximum expression in our data of at least 6
tpm, and thus could be considered a candidate list of TFs present
in macrophages. A value of 6 tpm represents approximately three
transcripts per cell. We use the cutoff of 6 tpm because it is the
maximum expression level of HHEX, which has the smallest
maximum expression level of all of the TFs that we determined to
have significantly changing expression levels.

Cells and RNA. Adherent monocytes were isolated from peripheral
blood mononuclear cells collected from five healthy humans for
MPSS studies and three healthy humans (distinct from the MPSS
donors) for the Affymetrix studies and cultured for 10 days in RPMI
medium 1640 (20% FBS/L-glutamine/20 mM Hepes/penicillin/
streptomycin/50 ng/ml macrophage colony-stimulating factor) to
generate peripheral-blood-derived mononuclear cells. Peripheral-
blood-derived mononuclear cells were stimulated with 100 ng/ml
LPS (Salmonella minnesota R595 ultrapure LPS; List Biological
Laboratories, Campbell, CA) and sampled at time points 0 (i.e.,
before stimulation), 2, 4, 8, and 24 h. For each of these time points,
total RNA was isolated with TRIzol (Invitrogen, Carlsbad, CA).
Because of the expense of MPSS, but to maintain our ability to
detect significant changes between conditions, RNA from the five
donors was pooled for each time point. This was done in duplicate
sets of five for the basal and 4-h time points and a single set for the
other time points. PolyA RNA was isolated with a MicroPoly
(A-)Pure kit (Ambion, Austin, TX). Supernatants were tested to
confirm appropriate induction of cytokines (TNF, IL-6, and IL-12),
and an aliquot of total RNA was tested by using real-time PCR to
ensure appropriate induction of selected genes. For Affymetrix
samples, the macrophages from each of the three donors were
stimulated with 100 ng/ml LPS for 0, 2, 4, 8, or 24 h. For each of
these samples and time points, total RNA was isolated with TRIzol
and probes were prepared by using the Affymetrix protocol. We
estimated 320,000 transcripts per cell: the average yield was 1.58 �g
of polyA mRNA from five million cells per preparation, assuming
an 1800-bp average transcript length. Analysis of our MPSS data
verified that transcripts specific for nonmacrophage blood cells
were not present in the RNA.

Signature Cloning and MPSS. Signature Cloning and MPSS were
performed according to standard protocols (11). Raw data were
reported as tpm for each bead that produced at least 17 bp of
sequence. Initially, all mRNA and EST sequences annotated to an
Entrez Gene in the National Center for Biotechnology Information
database were scanned for all possible GATC sites, retaining in the
pipeline those signatures most likely to appear in MPSS analysis

(e.g., those immediately 5� to a predicted polyA). The impact of
polymorphism was largely absorbed by the use of UniGene data for
each National Center for Biotechnology Information (NCBI) gene
identified (20). Further manual curation was performed as
necessary.

Affymetrix. mRNA was prepared and two samples for each
condition were analyzed on HG-U133 Plus2 GeneChips.

Statistics. The tpm for genes was calculated as the sum of a set of
signatures representing that gene. This set may contain signatures
representing different gene products. However, the P value as-
signed to a gene is determined only from a single signature: that
with the highest mean tpm (almost always the most 3� signature in
a gene). MPSS statistics were computed as described (21). Af-
fymetrix statistical analysis was per Ideker et al. (22). In an initial
screening, genes were ranked by the most significant P value
produced by either methodology. The most significant and all TFs
with disagreements between the methodologies were examined by
expert curation (in subsection ‘‘Supplemental Comments on the
Evaluation of Genes’’ of the file Ancillary�data of our online data;
www.innateimmunity-systemsbiology.org). This examination in-
cluded consideration of Affymetrix probe-level data, manual map-
ping of tags to genes, time-course profile, signal-to-noise ratios,
tissue expression profile (23), and the literature. The inclusion of a
given TF might be made solely on the basis of exceptionally strong
evidence in the literature even in the absence of a significant P value
for a particular technology. Alternatively, inclusion of a given gene
might be made solely on the basis of our newly acquired data. The
sensitivity and specificity of our strategy varies across genes and
depends on many factors, including the sequence of the MPSS tags,
the efficiency of hybridization of the Affymetrix ProbeSet, the
quality of the bioinformatics mappings for information associated
with the gene, and the knowledge in legacy databases and the
literature. A threshold for choosing the genes to report in Fig. 1 was
set as the rank at which 10 consecutive TFs sorted by increasing P
value were deemed not to belong following curation. This threshold
was determined by the perceived marginal value of allocating
additional hours of expert curation for decreasing return.

Real-Time PCR. TFs were selected for verification from the high end
of the dynamic range (e.g., JUNB), the low end of the dynamic
range (e.g., HHEX), and from those that were discrepant between
MPSS and Affymetrix measurements (e.g., SPI1). Assays were read
on an MX3005P system (Stratagene, La Jolla, CA).
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