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Abstract
The recent re-introduction of the two dimensional Fourier transformation (2D-FT) has allows for the
transformation of arbitrarily sampled time domain signals. In this respect, radial sampling, where
two incremented time dimensions (t1 and t2) are sampled such that t1 = τ cos α and t2 = τ sin α, is
especially appealing because of the relatively small leakage artifacts that occur upon Fourier
transformation. Unfortunately radially sampled time domain data results in a fundamental artifact in
the frequency domain manifested as a ridge of intensity extending through the peak positions
perpendicular to +/− the radial sampling angle. Successful removal of the ridge artifacts using existing
algorithms requires absorptive line shapes. Here we present two procedures for retrospective phase
correction of arbitrarily sampled data.
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1. Introduction
The high probability of degenerate frequencies in NMR spectra of complex biopolymers such
as proteins presented a great barrier to detailed analysis. The combination of multidimensional
NMR spectroscopy and high magnetic field strengths has overcome the resulting resonance
assignment problem for proteins less than 50 kDa. Furthermore, recent advances in NMR
instrumentation have largely removed sensitivity as a limiting parameter for protein samples
in the millimolar concentration range. As a consequence, the orthogonal linear sampling
requirements of conventional multidimensional NMR spectroscopy have required longer
acquisition times than potentially needed with respect to signal-to-noise. A number of
approaches have been introduced to escape the linear sequential sampling requirements of the
standard fast Fourier transform usually employed to deal with processing of the time domain
NMR signal [1]. Many of the new approaches find their roots in the so-called accordion
spectroscopy introduced by Bodenhausen & Ernst over two decades ago where two or more
incremented time domains are linked [2].
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Recently the two dimensional Fourier transformation (2D-FT) has been re-introduced to
transform arbitrarily sampled time domain signals [3-5]. In principle the 2D-FT allows the use
of non-linear time domain sampling. In this respect, the so-called radial sampling protocol,
where two incremented time dimensions (t1 and t2) are sampled such that t1 = τ cos α and t2 =
τ sin α, is especially appealing because of the absence the aliasing artifacts of random sampling
that occur upon Fourier transformation. However, transformation of radially sampled time
domain data results in a fundamental artifact manifested as a ridge of intensity extending
through the peak positions perpendicular to +/− the radial sampling angle. A number of
algorithms have been introduced to remove these ridges[6-8] but, as we will emphasize below,
successful removal of the ridge artifacts requires absorptive line shapes. Unfortunately, no
general procedure for phasing radially sampled NMR data has been presented. Indeed, the
emphasis thus far has been on the collection of time domain data that is free of phase distortion
or error. Obviously a procedure for retrospective phase correction of radially sampled data is
a distinct advantage. Here we present two methods capable of phase correcting arbitrarily
sampled NMR data as a solution to this problem.

2. Theory
The discrete 2D –FT can be described as [3-5,9]:

S(ω1, ω2) = ∑
t1=0

t1max
∑

t2=0

t2max
exp( − iω1t1)exp( − jω2t2) f (t1, t2)g(t1, t2)w(t1, t2) (1)

Where i and j are quarternion numbers; t1, t2 are the incremented times, ω1 and ω2 comprise
the frequency pair being determined, f(t1,t2) = exp(−iΩ1t1)exp(−jΩ2t2) is the data being
transformed, Ω1 and Ω2 are the chemical shifts for time domain t1 and t2 respectively, w
(t1,t2) is a weighting factor to account for the unequally spaced sampling of the time domain
and is typically applied as a two dimensional apodization function, and g(t1,t2) describes the
lifetime of the signal, which we will subsequently ignore. In the case of radial sampling t1 =
τ cos α and t2 = τ sin α where τ is the incremented time and α is the sampling angle.

In accordance with standard Fourier transform quadrature theory, if the carrier frequency is set
in the middle of the spectral ranges, eight pieces of data must be collected in order to determine
the sign of the frequency components for a three-dimensional spectrum. Typically the proton
dimension is processed separately; therefore we will only deal with the indirect evolution terms
here. This simplification leaves four terms that are modulated by a mixture of cosine and sine
as presented below.

f CC(t1, t2) = cos(t1Ω1)cos(t2Ω2) (2a)

f CS(t1, t2) = cos(t1Ω1)sin(t2Ω2) (2b)

f SC(t1, t2) = sin(t1Ω1)cos(t2Ω2) (2c)

f SS(t1, t2) = sin(t1Ω1)sin(t2Ω2) (2d)

Four real Fourier transformations can be used to process the four data sets, which we term the
cos-cos Fourier transform (CC-FT), the cos-sin Fourier transform (CS-FT), the sin-cos Fourier
transform (SC-FT) and the sin-sin Fourier transform (SS-FT). The CC-FT is used to transform
the cos-cos modulated data set (Eq. [2a]), the CS-FT to transform the cos-sin modulated data
set (Eq. [2b]), and so on. For example, the CC-FT becomes:

SCC(ω1, ω2) = ∑
t1=0

t1max
∑

t2=0

t2max
cos(t1ω1)cos(t2ω2) f (t1, t2)w(t1, t2) (3)
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The three remaining transformations are similarly defined [3,9].

In order to select the appropriate quadrature image the four resulting spectra, Scc(ω1, ω2),
Scs(ω1, ω2), Ssc(ω1, ω2) and Sss(ω1, ω2) are summed, canceling the quadrature images and
artifact peaks.

SRR(ω1, ω2) = SCC(ω1, ω2) + SCS(ω1, ω2) + SSC(ω1, ω2) + SSS(ω1, ω2) (4)

To demonstrate the four Fourier transforms and summing procedure, we use four computer
generated radially sampled time domain data sets modulated by a mixture of cos and sin as
dictated by Eq. [2a-d] with one peak. The peak position for the data sets was set at (−300 Hz,
75 Hz) and the sampling angle set to 45 degrees. The linewidth was adjusted to 10 Hz by
multiplying the data sets by an exponential decay. The data sets were Fourier transformed with
their respective transform as outlined by Eq. [3]. Sixteen peaks are visible in the Scc(ω1, ω2)
spectrum. Four peaks are the quadrature images at ± 300, ±75 Hz and the twelve arise from
intersection of the ridge artifact appearing at ±400, 0; ± 200, 0; 0, ±300; 0, ±150, ±100, ±225.
The other three spectra Scs(ω1, ω2), Ssc(ω1, ω2) and Sss(ω1, ω2) have the same four quadrature
image peaks with varying signs. The variation in signs causes the artifact patterns to change.
In the case where two negative ridges intersect a negative artifact peak is present, when two
ridges of varying sign intersect no peak is present. When all four spectra are summed the
variations in sign of the quadrature and artifact peaks cause them to cancel resulting in a
spectrum with just the authentic peaks remaining (Fig. 1).

In addition to the authentic peaks, ridges also extend from the peak at the sampling angle in
the SRR(ω1, ω2) spectrum. Most often one wishes to remove the ridges and in the case where
signal to noise is not limiting the lower value (LV) algorithm is preferred[6]. Here multiple
data sets are collected at various sampling angles and the data is Fourier transformed
independently. Subsequent to the transforms the intensities of multiple SRR(ω1, ω2) spectra are
compared point-wise and the smallest magnitude value at each point is kept in a separate
spectrum. If a sufficient number of angle data sets are collected a final spectrum free of ridges
is generated.

Providing the data is free of phase error, the above Fourier transform method combined with
the lower value algorithm works quickly and accurately to generate a ridge-free frequency
spectrum. However, this approach is severely limited by its inability to deal with phase distorted
data. If a phase error is present the lowest value algorithm will delete authentic peaks. This
occurs because the lineshape of dispersive peaks causes the intensity to be zero inside the
linewidth of the peak. The zero values are different for each sampling angle, therefore when
multiple angles are compared by the LV algorithm the peak will be eliminated.

In order to circumvent this shortcoming, the current strategy is to optimize data collection to
reduce phase distortions. Nevertheless, non-ideal spectrometer performance and inherent
limitations of pulse sequences often preclude the collection of time domain data free of phase
error. Because of the effective convolution of phase error across the various incremented time
domains traditional approaches to phase correction are not applicable for radially collected
data. As we will illustrate below, the presence of phase distortions severely degrade the quality
of the resulting spectrum.

To solve this problem we have developed two novel phase correction methods. The first method
presents a correction that is applied in the frequency domain by generating absorptive and
dispersive components with the 2D-FT. The second method applies corrections by adding
constants to the 2D-FT, essentially applying a correction in the time domain.
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The phase corrections in the frequency domain are applied by utilizing properties of the discrete
Fourier transform to generate absorptive and dispersive components. Namely an absorptive
spectrum is generated by applying a real cos Fourier transform to cos modulated data and a
dispersive spectrum is generated if a real sin Fourier transform is applied to the same cos
modulated data.

In the case of the 2D Fourier transform we can generate four spectra: real-real, absorptive with
respect to both the ω1 and ω2, frequency domains, real-imaginary, absorptive with respect to
the ω1 and dispersive with respect to ω2, and so on. The process for generating these
components is summarized in Table 1. For example, the pure absorption spectrum, SRR(ω1,
ω2), is generated by transforming the four data components with the matching Fourier
transforms. That is, the cos-cos modulated data is transformed with the CC-FT, the sin-cos
modulated data set is transformed with the SC-FT, the cos-sin with the CS-FT and the sin-sin
with the SS-FT. The four resulting spectra are summed producing the SRR(ω1, ω2) spectrum.
Similar procedures lead to the remaining three necessary spectra: SRI(ω1, ω2), SIR(ω1, ω2) and
SII(ω1, ω2).

The four resulting spectra are shown in Fig. 2 for the one peak generated data set with a sample
angle of 45°. From initial inspection it might appear that these 4 spectra are sufficient to allow
for phasing the two dimensional spectrum. This is not the case. The signs of the phase correction
relative to the +α and –α ridges are opposite and requires that the +α and –α components be
isolated and phased separately.

The +α and –α real and imaginary components are generated by taking combinations of
SRR(ω1, ω2), SRI(ω1, ω2), SIR(ω1, ω2) and SII(ω1, ω2) as shown below.

R−α = SRR(ω1, ω2) + SII (ω1, ω2) (5a)

I −α = SIR(ω1, ω2) − SRI (ω1, ω2) (5b)

R +α = SRR(ω1, ω2) − SII (ω1, ω2) (6a)

I +α = SIR(ω1, ω2) + SRI (ω1, ω2) (6b)

The ±α real and imaginary components are illustrated in Fig. 3.

With the real and imaginary components of +α and –α separated the two phased spectra can
finally be generated and subsequently summed to produce a phase corrected spectrum, i.e.

S +α(ω1, ω2) = R +α cos(ϕ0
t1 +ϕ0

t2 +ϕ1
t1 2(ω1 − ω1

pivot)
sw1

− ϕ1
t2 2(ω2 − ω2

pivot)
sw2 )

+I +α sin(ϕ0
t1 +ϕ0

t2 +ϕ1
t1 2(ω1 − ω1

pivot)
sw1

− ϕ1
t2 2(ω2 − ω2

pivot)
sw2 ) (7a)

S−α(ω1, ω2) = R−α cos(ϕ0
t2 − ϕ0

t1 +ϕ1
t1 2(ω1 − ω1

pivot)
sw1

+ϕ1
t2 2(ω2 − ω2

pivot)
sw2 )

+I −α sin(ϕ0
t2 − ϕ0

t1 +ϕ1
t1 2(ω1 − ω1

pivot)
sw1

+ϕ1
t2 2(ω2 − ω2

pivot)
sw2 ) (7b)
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Where ϕ0
t1, ϕ0

t2, ϕ1
t1 and ϕ1

t2 are the t1 and t2 zero and first order corrections. Also note that
a factor of two was included in the first order terms to make setting the first order correction
independent of the zero order terms. For example, if the pivot is set in the middle of the spectrum
and one adds a half dwell to the incremented time period ±90° phase corrections are needed at
the edges of the spectrum. Traditionally the zero and first order phase corrections are set to
90°,−180°. By including the factor of two the phases can be set to 0°,−90°. Therefore only one
parameter needs to be adjusted if only a first order phase correction needs to be applied.

To generate a final spectrum, the S+α and S−α are summed (Eq. [8]).

S(ω1, ω2) = S +α(ω1, ω2) + S−α(ω1, ω2)) (8)

Alternatively, the S+α and S−α can be used separately in the lower value-back projection
algorithm [7]. This would give an advantage over summing the spectra because more
combinations would be available for comparison.

Practically, the zero and first order phase corrections are empirically determined from either
an indirectly detected plane of the 3d spectrum with a single peak, so the analysis isn't confused
by artifacts, or from the 0° and 90° tilt angle spectra. For the single peak case, four spectra are
first generated, as outlined in Table 1. Next, the sum and difference spectra are generated as
in Eqs. [5] and [6]. Finally, the four phase corrections are applied as outlined in Eq. [7]. Here
the phases are searched for by varying each phase term until an absorptive spectrum is
produced. Else the phase corrections can be determined independently from the 0° and 90°
sample angle planes. The 0° and 90° sample angles allow the phase corrections to be isolated
for either t1 or t2 respectively. In these spectra only one indirect time domain is evolved.
Therefore traditional phasing techniques are applicable so the phase corrections can be
determined by employing a Hilbert transform to generate the dispersive components [10]. After
the phase corrections are determined from the 0° and 90° sample angle planes, they are applied
to all angles using Eq. [7].

When only zero order corrections are needed it is equally feasible to determine them from a
one peak plane or from the 0° and 90° tilt angle spectra. However when any first order correction
needs to be applied, it is much easier to determine the phase corrections from the 0° and 90°
sample angle spectra. The isolation of the t1 and t2 phase correction components by the 0° and
90° sample angle spectra significantly simplify the problem. It is also important to note when
first order corrections are applied the ridges do not phase with the peaks. This occurs because
of the frequency dependence of the first order correction. Therefore the ridges will in phase
proximal to the peak but dispersive as they move further away. Although this might sound
problematic, robust schemes are available to remove the ridges if the peaks are properly phased.

Phase corrections can also be applied in the in the time domain by adding constants to the 2D-
FT (Eq. [9]).

S(ω1, ω2) = ∑
t1=0

t1
max

∑
t2=0

t2
max

exp( − iω1(t1 +ϕ1
t1) +ϕ0

t1)exp( − jω2(t2 +ϕ1
t2) +ϕ0

t2) f (t1, t2)w(t1, t2) (9)

Here, ϕ0
t1, ϕ1

t1, ϕ0
t2 and ϕ1

t2 are the zero and first order phase corrections for the incremented
time domains t1 and t2, respectively. This method directly extends from the definition of phase
error in time domain data,
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f CC(t1, t2) = cos((t1 +ϕ1
t1)Ω1 +ϕ0

t1)cos((t2 +ϕ1
t2)Ω2 +ϕ0

t2) (10)

and properties of the discrete Fourier transform. Namely a nonzero Fourier series coefficient
is determined if the function generated by the Fourier transform matches the data function. We
have simply extended this concept to include phase corrections so the function generated by
the Fourier transform better matches the experimental data. In turn, an absorptive lineshape is
generated upon transformation.

As above the phase corrections are determined empirically from either a plane with one peak
or from the 0° and 90° sample angle spectra. Once the phase corrections are determined the
data is retransformed with the appropriate corrections applied to Eq. [9].

It is important to point out that phasing in the time domain has not previously been presented
because of inherent limitations of the fast Fourier transform (FFT) algorithm [11]. This can
most easily be explained by first inspecting the discrete one dimensional Fourier transform
(Eq. [11]).

S(ω) = ∑
t=0

tmax
exp( − iωt) f (t) (11)

From inspection it is clear that N2 operations are required to compute S(ω). This is obviously
undesirable if a large number of data points are collected. However, if an extension of the Yates
algorithm is applied, the N2 operations can be reduced to N log2 N operations [11]. This is
accomplished by iteratively dividing the data to smaller and smaller groups until N groups of
size 1 are present. At this point the 1 data point groups can be Fourier transformed and combined
in the manner presented by Cooley and Tukey [11].

Properties of the one point Fourier transform are essential to this algorithm. In particular, the
Fourier transform of one data point is itself independent of frequency. This is true because t=0
and therefore exp(−iωt) = 1 However, if phase corrections are incorporated, t is no longer equal
to zero and the Fourier transform is no longer frequency independent and the FFT algorithm
is no longer applicable.

3. Results
This procedure is illustrated in Fig. 4 using a standard HNCO [12] modified for radial sampling,
such that t1 = t1 cos(α) and t2 = t1 (sw1/sw2) sin(α), on a 1mM 1:1 complex between calcium-
saturated calmodulin and a peptide corresponding to the calmodulin binding domain of
phosphodiesterase 1A. In order to demonstrate the ability to apply a first order phase correction
the experiment was setup with a half dwell added to both the t1 and t2 increments. Accordingly,
the spectra required first order corrections of −90° for both the t1 (ω1) and t2 (ω2) dimensions.
Additionally the spectrum required a zero order correction of 36° in the t1 dimension.

4. Discussion & Conclusions
The need to have properly phased multidimensional frequency space data is essential to the
general application of radial sampling and the 2D-FT. As demonstrated by the HNCO spectrum
with no phase correction shown in Fig. 4a, when a lower magnitude comparison is performed
for a data set without phase correction authentic peaks will incorrectly be removed. In many
cases, phase error cannot be avoided and explicit phase correction will be required. We have
devised two approaches to the phasing of such data, either by manipulation in the frequency
domain or in the time domain. The choice of method, time or frequency phase correction, is
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dependent upon the application at hand. For example, phasing in the frequency domain will
be important upon the advent of a fast 2D-FT algorithm. Whereas, phasing in the time domain
will easily be implemented in higher dimensional Fourier transforms. In a similar vein, it is
useful to note that the same general approach can be used in the retrospective phase correction
of data obtained by projection reconstruction methods [6].

5. Methods
NMR data was collected on a ∼ 1mM 1:1 complex between calcium-saturated calmodulin and
a peptide corresponding to the calmodulin binding domain of the phosphodiesterase at 35° C
on a Varian INOVA 600 MHz spectrometer, equipped with a triple-resonance cryogenic probe.
The CaM-PDE complex was prepared in 10 mM imidazole pH 6.5, 6mM CaCl2, 100mM KCl
and 0.04% azide. Ten sample angles were collected from 0° to 90° degrees in 10° degree
increments. Each spectrum was derived from data sets composed of 384 FIDs, four quadrature
components at 96 increments. Each FID contained 1024 complex points and was the average
of eight scans. The spectral width was set to 14 ppm in the proton dimension. The spectral
widths for the indirect dimensions were chosen to assure no peaks were folded and set to 40
and 12 ppm in the nitrogen and carbon dimensions, respectively. The ten angle spectra were
processed independently and compared using a lower magnitude algorithm to remove the ridge
artifacts. All processing and comparisons were done using an in-house program.
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Fig 1.
An example of how quadrature images are resolved for radially sampled data processed with
a single step two-dimensional Fourier transform. The data was computer generated with
spectral parameters similar to that found in a radial sampled HNCO experiment. Four data sets
(A-D) were generated according to Eqs. [7a,b] and [8]. The sweep widths were set to 2000 and
1500 Hz for the t1 (carbon) and t2 (nitrogen) dimensions respectively. One peak was simulated
at −300, 75 hertz with a linewidth of 10 Hz. Radial sampling was realized by incrementing the
time in the first dimension as t1 = (n/sw1) cos α and the second dimension as t2 = (n/sw2) sin
α. The four data sets were processed with their matching Fourier transform, for example the
cos-cos modulated data set was processed with the CC-FT, A. sin-cos with the SC-FT, B. cos-
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sin with the CS-FT, C. and sin-sin with the SS-FT. Inset E shows the sum of A-D, resolving
the appropriate quadrature image.
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Fig 2.
An example of how the 2D-FT can be used to generate absorptive and dispersive spectra with
respect to t1 (ω1) and t2 (ω2). Inset A shows the real-real spectra, SRR(ω1, ω2)), generated when
the matching Fourier transform is used, i.e. CC-FT for cos-cos modulated data. Inset B shows
the imaginary-real spectra, SIR(ω1, ω2)), generated by not matching the FT with respect t1
(ω1) while matching it with respect to t2 (ω2), i.e. SC-FT for cos-cos modulated data. Insets C
and D show the other two spectra that can be generated SRI(ω1, ω2) and SII(ω1, ω2),
respectively. Table 1 outlines the complete procedure. The data was generated in the same way
as in Fig. 1 and plotted to view only the area centered on the peak at −300,75 Hz.
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Fig 3.
An example of the pure ±α real and imaginary component spectra used for phase correction in
the frequency domain. Insets A and B show the real and imaginary +α spectra, while insets C
and D show the real and imaginary –α spectra. Combinations of the +α and –α components are
generated independently and subsequently summed to produce a phased spectrum.
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Fig 4.
Comparison of the same indirect dimension plane for a spectrum processed with no phase
correction (Panel A) and with phase correction (Panel B). The phase corrected spectrum shows
all peaks at the correct frequencies with the appropriate intensities. The spectrum with no phase
correction is missing numerous peaks, as emphasized by the overlaid 1D spectra. Ten sample
angle data sets were collected on a 1:1 complex between calcium-saturated calmodulin and a
peptide corresponding to the calmodulin binding domain of phosphodiesterase using a HNCO
modified for radial sampling. The individual sampling angles were processed separately and
compared using an in-house implementation of the lower-value algorithm.
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Table 1
Creation of pure real and imaginary components

RR RI IR II

fCC(t1,t2)
→

CCFT
SCC

RR(ω1, ω2) →
CSFT

SCC
RI (ω1, ω2)∗ − 1 →

SCFT
SCC

IR (ω1, ω2) →
SSFT

SCC
II (ω1, ω2)∗ − 1

fCS(t1,t2)
→

CSFT
SCS

RR(ω1, ω2) →
CCFT

SCS
RI (ω1, ω2)∗ − 1 →

SSFT
SCS

IR (ω1, ω2)∗ − 1 →
SCFT

SCS
II (ω1, ω2)

fSC(t1,t2)
→

SCFT
SSC

RR(ω1, ω2) →
SSFT

SSC
RI (ω1, ω2) →

CCFT
SSC

IR (ω1, ω2) →
CSFT

SSC
II (ω1, ω2)

fSS(t1,t2)
→

SSFT
SSS

RR(ω1, ω2) →
SCFT

SSS
RI (ω1, ω2) →

CSFT
SSS

IR(ω1, ω2)∗ − 1 →
CCFT

SSS
II (ω1, ω2)∗ − 1

Σ SRR(ω1,ω2)) SRI(ω1,ω2)) SIR(ω1,ω2)) SII(ω1,ω2))
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