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Abstract
In order to identify and understand mechanistically the cortical circuitry of sensory information
processing estimates are needed of synaptic input fields that drive neurons. From intracellular in vivo
recordings one would like to estimate net synaptic conductance time courses for excitation and
inhibition, gE(t) and gI(t), during time-varying stimulus presentations. However, the intrinsic
conductance transients associated with neuronal spiking can confound such estimates, and thereby
jeopardize functional interpretations. Here, using a conductance-based pyramidal neuron model we
illustrate errors in estimates when the influence of spike generating conductances are not reduced or
avoided. A typical estimation procedure involves approximating the current-voltage relation at each
time point during repeated stimuli. The repeated presentations are done in a few sets, each with a
different steady bias current. From the trial-averaged smoothed membrane potential one estimates
total membrane conductance and then dissects out estimates for gE(t) and gI(t). Simulations show
that estimates obtained during phases without spikes are good but those obtained from phases with
spiking should be viewed with skeptism. For the simulations, we consider two different synaptic
input scenarios, each corresponding to computational network models of orientation tuning in visual
cortex. One input scenario mimics a push-pull arrangement for gE(t) and gI(t) and idealized as
specified smooth time courses. The other is taken directly from a large-scale network simulation of
stochastically spiking neurons in a slab of cortex with recurrent excitation and inhibition. For both,
we show that spike-generating conductances cause serious errors in the estimates of gE and gI. In
some phases for the push-pull examples even the polarity of gI is mis-estimated, indicating significant
increase when gI is actually decreased. Our primary message is to be cautious about forming
interpretations based on estimates developed during spiking phases.
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1 Introduction
Primary goals of sensory neurophysiologists are to understand the dynamics of information
processing and representation in various brain areas. What are the mechanisms (circuitry,
synaptic and intrinsic cellular properties) that underlie sensory processing and that can account
for the firing patterns of neurons? What are the relative contributions of feedforward and
recurrent input, of the excitatory and inhibitory synaptic fields? What data are needed to
develop and assess theories that can provide insights on mechanisms? We take a case-study
approach here, the orientation tuning of visual cortex, and ask about the analysis of data that
can give us reliable estimates of dynamic synaptic fields.

There are different theories about the wiring architecture of the primary visual cortex, mainly
differing by the sensitivity to spatial phase in the coupling between cortical neurons. If we
assume that the coupling is phase insensitive – see for instance the model studied in
(McLaughlin et al., 2001;Wielaard et al., 2001) of a network of integrate-and-fire neurons in
area 4Cα of V1– and we present a drifting grating stimulus, then, after phase averaging, both
the inhibitory and the excitatory cortico-cortical conductances are almost constant over one
cycle of the stimulus. On the other hand, a spatial phase selective coupling –see for instance
the model built in (Troyer et al., 1998)– could produce an antagonistic temporal push-pull
between excitatory and inhibitory cortico-cortical conductances.

To assess the sensitivity to spatial phase and possibly to distinguish two such mechanisms one
relies on estimates of synaptic conductances, excitatory and inhibitory, that drive the neurons.
Experiments that provide intracellular recordings, membrane potential time courses, of cortical
cells are crucial in this regard. Several recent studies (Borg-Graham et al., 1998;Hirsch et al.,
1998; Anderson et al., 2000; Anderson et al., 2001) are achieving this feat.

Recent theoretical studies (Rudolph and Destexhe, 2003;Rudolph et al., 2004) have shown
how to estimate synaptic conductances in the presence of noise. In these approaches, as well
as in (Borg-Graham et al., 1998), the estimates are obtained from subthreshold membrane
potential recordings, thereby cautiously avoiding contamination by intrinsic conductances.

However, the presence of spikes is not always avoidable. In visual cortex, for example,
experiments with drifting grating stimulation often evoke spiking activity in the cells, which
cannot be easily prevented (say by hyperpolarizing a cell) or removed from the data.
Sometimes, in experiments, one tries to remove this contamination of intrinsic conductances
by filtering the membrane potential and, in some sense, clipping the spikes. For instance, in
(Anderson et al., 2000) data analyzed with this procedure is interpreted as experimental
evidence of the push-pull arrangement, thus supporting the phase selective coupling
hypothesis. These conclusions are achieved by estimating the synaptic conductances through
linear fittings of filtered membrane potentials, some of which show clear spiking activity.
Mathematically speaking, the linear fittings are equivalent to the approximation that assumes
averaged membrane potential depends linearly on the applied current. This approximation is
only valid if the neuron is not spiking, as theoretical bifurcation diagrams can show (illustrated
below in Fig. 5).

In order to introduce some of the issues we outline the procedure. The main concern is how to
accurately estimate the synaptic conductance gsyn and the synaptic reversal potential Vsyn. A
suitable procedure uses different steady current injections, denoted by Iapp, to sample a portion
of the cell’s current-voltage relation, < v > vs Iapp (where < v > is the short-time-averaged
voltage). When gsyn is dominant, the Iapp− < v > curve would become linear and gsyn could
be estimated using linear regression. By Ohm’s law, 1/gsyn would be the slope of the regression
line. However, as seen in Fig. 1, the dominance of gsyn is not true when the cell is spiking.
Accordingly, one could inject negative enough Iapp current to prevent the cell from firing and
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then do the estimations of gsyn and Vsyn. This is the case shown in the upper panels of Fig. 4.
In contrast, the lower panels show the same estimation but using applied currents that do not
prevent the cell from firing. It can be appreciated, then, that the estimation of the total
conductance during phases of spiking is far from the value of gsyn.

This is the simplest illustration of how and how not to estimate gsyn and Vsyn. Apart from the
problems reported above and illustrated by Fig. 4, there are other relevant factors:

• In general, both excitatory (gE ) and inhibitory (gI ) synaptic conductances are present.
Thus four quantities are to be estimated: gE, gI, VE and VI. Since we can usually extract
only information on two quantities (gsyn and Vsyn), we must assume values for VE and
VI to obtain gE and gI.

• The conductances gE and gI are time-varying, fluctuating around slowly varying
means, as modulated by the drifting grating.

• The Iapp range may overlap both the non-firing and the firing regime for different
times, and so the Iapp− < v > relationship will not be linear.

• Firing is stochastic and therefore the problem of how to properly average and smooth
the membrane potential arises. See (Rudolph and Destexhe, 2003;Rudolph et al.,
2004) for an estimation of the conductances from a noisy hyperpolarized membrane
potential using Ornstein-Uhlenbeck processes and Fokker-Planck equations.

Here, we evaluate the accuracy of conductance estimates. We consider a conductance-based
model of a pyramidal cell together with two different input scenarios of excitatory/inhibitory
conductances (see Methods): a smooth and idealized push-pull arrangement of excitation and
inhibition (smooth conductance input) and a stochastic arrangement obtained from a
computational network (stochastic conductance input).

In the Results section, we analyze the usual procedure of linear estimation of conductances
and give a mathematical explanation of the errors in the estimations obtained in this way. These
problems appear clearly when applying the procedure to the spiking cell model subjected either
to the smooth conductance input or to the stochastic conductance input. In both cases, when
the cell model is spiking the disagreement between the estimated conductances and the actual
prescribed ones is apparent.

2 Methods
Our computational experiments are carried out with a model for a single cortical neuron and
two prescribed synaptic drives: the first (which we call smooth conductance input), made up
by mimicking smooth time courses of the synaptic excitatory and inhibitory conductances
(related to one possible wiring architecture in primary visual cortex); the other synaptic drive
(which we call the stochastic conductance input), is obtained from the activity of a
computational network of about 16 000 neurons, see (Tao et al., 2004). Our cell model serves
as ”reporter cell”, that behaves as a specific cell of the network responding to the network-
generated synaptic field, reminding us of an in silico version of the dynamic clamp technique.
The network itself takes into account stochastic effects and so, the synaptic input that our cell
receives is noisy.

For the purpose of this paper, the main features can be observed in both prescribed synaptic
input scenarios, somewhat more transparently in the case of the smooth conductance input.
However, the time course variability of conductances in the stochastic conductance input
shows features which are associated with less idealized situations.
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2.1 Adapted pyramidal cell model
We will use a Hodgkin-Huxley type model (HH model) which describes the activity of a cortical
pyramidal cell. We adapt a simplification of Traub’s model, borrowing the values for the
characteristic conductances from (Wang, 1998). Compared to Wang’s two-compartment
model in (Wang, 1998) our version includes the soma compartment only; we have removed
the dynamic equation for the calcium concentration and brought the gating variable m to its
steady-state, m = m∞(v). The resulting model contains both a sodium and a potassium current,
which drive the membrane potential during spiking.

The current-balance equation for the membrane potential, v = v(t), is:

Cm
dv
dt = − IL − INa − IK − Isyn + Iapp. (1)

Equation (1) contains the synaptic current (Isyn) and a constant applied current (Iapp), controlled
by three parameters: the two (excitatory and inhibitory) synaptic conductances and the intensity
of Iapp. The ionic currents in (1) are given by:

{IL = gL (v − VL ),

INa = gNa m∞
3(v) h (v − VNa),

IK = gK n 4 (v − VK).

The gating variables h and n satisfy the usual type of differential equation:

dw
dt = φ αw(v) (1 − w) − βw(v) w = φ

w∞(v) − w
τw(v) , (2)

where w represents either h or n. In general, w∞(v) =
αw(v)

αw(v) + βw(v)  and

τw(v) = 1
αw(v) + βw(v) , where:

αh (v) = 0.07 exp ( − (v + 50) / 10), βh (v) = 1
1 + exp ( − 0.1 (v + 20)) ,

αn(v) = − 0.01 v + 34
exp ( − 0.1 (v + 34)) − 1 , βn(v) = 0.125 exp ( − (v + 44) / 25),

αm(v) = − 0.1 v + 33
exp ( − 0.1 (v + 33)) − 1 , βm(v) = 4 exp ( − (v + 58) / 12).

The biophysical parameters that we fix throughout and the units are the following:

Conductances gL = 0.1, gN a = 45, gK = 18 mS/cm2

Reversal potentials VL = −65, VN a = 55, VK = −80, VE≈ 0, VI≈ −80 mV
Capacitance Cm = 1 μF/cm2

Non-dimensional constant φ = 4
Applied currents μA/cm2

2.2 Synaptic drive
The computational model that we have described above will be driven by synaptic inputs of
type Isyn = gE (v − VE ) + gI (v − VI ), where gE = gE (t) and gI = gI (t) represent, respectively,
the sum of all excitatory and inhibitory conductances received by our neuron model.
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We present results using the two different types of prescribed time courses (gE (t), gI (t)): the
smooth conductance input and the stochastic conductance input. We describe them next.

2.2.1 The smooth conductance input, a model of phase selective coupling—The
smooth conductance input tries to mimic the excitatory and inhibitory conductances obtained
after assuming a phase selective coupling in the visual cortex, which leads to a push-pull
temporal relation between excitatory and inhibitory cortico-cortical conductances. On the other
hand, the LGN impinges on the cortical cells over half of the cycle (in an excitatory way). We
have represented this fact by specifying the LGN input conductance to trace a downward
(negative curvature) parabola in the first half of the cycle. The pushes and pulls of the synaptic
conductances have been mimicked using parabolas with different amplitudes. To simulate the
effect of different orientations of the drifting grating stimuli, we have introduced a parameter
to modulate excitation through both the LGN input and the cortico-cortical excitation by
increasing the amplitude of the above mentioned downward parabola. The inhibition has the
same temporal profile for all values of this parameter. Typical (gE (t), gI (t)) temporal profiles
and the respective responses of the cell (1) are given in Fig. 2. The same inputs are used in Fig
6. One can imagine that the smooth time courses of gE (t) and gI (t) are due to an average across
the afferent population.

2.2.2 Conductances from a spiking network (stochastic conductance input)—In
order to have a more realistic situation, inducing sparse spikes rather than repetitive firing (thus
contrasting with the smooth conductance input) and, also, to observe the influence of
stochasticity, we use the conductances profiles from a computational network model of V1
with 1282 integrate-and-fire neurons (Tao et al., 2004;McLaughlin et al., 2001;Wielaard et al.,
2001). In particular, we have chosen one cell, representative of the cells of the layer 4Cα of
the primary visual cortex. We call it the reference cell.

Once the reference cell of the network is selected, its conductance time courses are inherited
by the reporter cell that we are simulating, that is: we drive the cell modeled by equation (1)
with the “actual” (gE (t), gI (t)) of the reference cell. In other words, if we consider the HH
model and the conductances received, say, by a complex excitatory cell of the network, we are
studying how a “typical” complex HH-like excitatory cell would behave in the network-
generated synaptic field. This reporter cell does not send impulses to the others; it is thought
of as purely postsynaptic in the network.

For the reference cell in (Tao et al., 2004), we collect the conductance time courses after
presenting different drifting gratings at 8 Hz. After a simulation of the network, we extract the
time courses of both the excitatory and the inhibitory conductances that the cell receives under
each stimulation and use them to drive our HH model reporter cell.

In Fig. 3 we show some temporal profiles of synaptic conductances that we inject to our
computational neuron, along with the resulting membrane potentials. For the sake of brevity,
only the preferred and the orthogonal to preferred drifting gratings are presented. The time
interval is [0, 125] ms because the procedure we apply to the data implies an average over 8
cycles (since the stimulus comes from a 8 Hz drifting grating).

2Moreover, numerical software such as xppaut, see (Ermentrout, 2002), and analytical tools in dynamical systems theory typically favor
the computation of bifurcation diagrams in terms of the mean voltage (a continuous variable) versus the applied current rather than in
terms of the median-based filtered potentials (non-continuous variable) versus Iapp.

Guillamon et al. Page 5

J Physiol Paris. Author manuscript; available in PMC 2007 October 26.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



2.3 Numerical methods
All the computations are carried out using a 4th order Runge-Kutta method with a fixed step
size Δt = 0.05 (ms). In Appendix A we also describe the smoothing techniques that have been
used.

3 Results
This section is divided into three parts. We first illustrate the response of the pyramidal cell
model given by (1) for different synaptic drives, constant as well as the two time-varying drives
described in Section 2.2; secondly, we describe and analyze the typical methodology for
obtaining the estimates of the conductances; and, finally, we examine these computed estimates
under the two different dynamic synaptic drives. The strategy consists of considering known
conductance profiles to stimulate a neuron and, afterwards, re-estimate these conductances to
evaluate the errors.

3.1 Conductances time courses: synaptic and intrinsic. Confounding factors in estimation
When estimating synaptic conductances, one needs them to be dominant. However, as the time
courses of conductances in Fig. 1 show, when the cell is spiking, the ionic conductances can
be transiently very large. A direct estimation of the synaptic conductances from intracellular
measurements, thus, seems inaccessible.

Realistic input conductances received by a cell are not as simple as those of Fig. 1. Next, in
Figs. 2 and 3, we show the responses to two types of synaptic drive scenarios (smooth
conductance input, stochastic conductance input) that we will use to test the linear estimation
technique. In Fig. 2, for the smooth conductance input, we see increased firing during the phase
of excitation as the amplitude of gE (t) increased (top row to bottom row) the amplitude. In this
case the slowly and smoothly varying conductances lead to continuous variations in
instantaneous firing rate. Note the anti-phase behavior of gI (t). For the case of stochastic
conductance input, in Fig. 3, the response is shown under stimulation by two different drifting
gratings (preferred and orthogonal to preferred). In this case only a few spikes per cycle, even
for the preferred orientation, are generated; the membrane potential fluctuations resemble those
as seen in experiments.

3.2 Applying the methodology for estimation of synaptic conductances to a neuron model
As explained in the Introduction, in recent works experimental researchers have coped with
the problem of estimating the synaptic conductances in primary visual cortex, see (Borg-
Graham et al., 1998) and (Anderson et al., 2000), for instance, as relevant information to unveil
the wiring architecture of V1. At times, spiking is unavoidable and can lead to important
misinterpretations of the data. We illustrate this point in computational models and suggest
how to reduce the problems.

3.2.1 Linear procedure to estimate the synaptic conductances and the effective
reversal potential—The standard estimation procedure (filtering plus linear regression) can
be described through the following steps: (1) Stimulation of cells through drifting gratings (in
experiments) or input conductances (in numerical simulations). As a consequence, the cell’s
membrane potential, v(t), is recorded (in experiments, intracellularly). The time of recording
is chosen to be a multiple (M) of the drifting period; (2) Use of a low-pass filter to clip the
spikes and smooth the membrane potential; (3) Average the membrane potential over the M
cycles; we call vfilt(t) the final outcome. Observe that vfilt is defined over 1 cycle; (4) Estimation
of the total synaptic conductance and the effective reversal potential; (5) Estimation of the
excitatory and the inhibitory synaptic conductances.
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Step 1 is exclusively experimental and step 3 does not require further explanation. A discussion
about filtering (i.e, step 2) is given in Appendix A. Thus, we will focus here on the details
involved in the two remaining steps, 4 and 5.

The procedure to estimate the total conductance consists of applying several (N) injected
currents Iapp

( j) , where j = 1, …, N, and smoothing the resulting membrane potentials, v(j)(t). After
that, if the stimulus is periodic in time, an average over the M cycles is required to obtain what
we will call v filt

( j) (t). Hence, for each t, we have a set of pairs ( Iapp
( j) , v filt

( j) (t)).

In this paper, we will always consider Iapp
( j) = − 1 + ( j − 1) / 10μA / cm2, for j = 1, …, 21,

that is, Iapp ∈ {−1, −0.9, −0.8, …, 0.9, 1} μA/cm2. We choose this interval to be realistic; this
choice is justified in Appendix B. For each current, we have filtered the membrane potential
over 1 second. For the stochastic conductance input, the stimulus comes from a drifting grating
at 8 Hz and so, we will average over the 8 cycles (step 3). For a preview of the result after this
last average, see Fig. 7. For the smooth conductance input, since it does not contain
stochasticity, a single cycle stimulus is presented and so we do not need to average after
smoothing.

The estimation procedure is motivated as follows. If the solutions of the system of differential
equations ((1)-(2)h,n) are close to the steady state (a critical point representing a hyperpolarized
state), then the activity of the ionic channels is negligible and also, &vdot; ≈ 0. Hence, from
(1) we would have

0 ≈ − gL (v − VL ) − gE(v − VE) − gI (v − VI ) + Iapp,

and so

v(t) ≈ Veff(t) +
Iapp

gsyn(t) , (3)

where

Veff(t) =
gE(t)VE + gI (t)V I + gL VL

gsyn(t) and gsyn(t) = gE(t) + gI (t) + gL . (4)

Then, thinking of (3) as v(t) = v(t; Iapp) ≈ Veff(t) + 1
gsyn(t) Iapp, we realize that gsyn(t)

corresponds approximately to the inverse of the slope of v(t; Iapp) and Veff (t) to the intercept
v(t; 0), see Fig. 4 (panels B and D) for an illustration. Hence, we can have an indirect measure
of the total synaptic conductance, gsyn,estim(t) := gsyn(t), and the effective reversal potential,
Veff (t), by linearly fitting at each point in time the relation between the injected current and
the membrane potential.

Once gsyn(t) is estimated, still neglecting possible spiking conductances, the excitatory (gE
(t)) and inhibitory (gI (t)) synaptic conductances can be estimated from equations in (4) –
assuming that values for VE, VI and gL are known.

Figure 4 shows a simple application of the procedure to obtain gsyn(t) for a fixed t. The upper
panels (A, B) show a case of accurate estimations (the cell model is not spiking at all), while
the lower ones (C, D) illustrate inaccurate estimations due to the presence of spikes for some
of the Iapp values.
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So far, the basis of the method and its first handicaps (see Fig. 4-D) have been presented; now,
we are going to analyze its validity in more detail.

3.2.2 Analysis of the procedure—The method obviously works well when the synaptic
activity is exclusively driving the system because, then, (3) holds. However, when the cell is
spiking or close to spike initiation or when only the potassium channels are open (thus
hyperpolarizing), the presence of intrinsic conductances invalidates (3) and the linear relation
between v and Iapp is broken. As an attempt to avoid this problem, intracellular spiking voltage
recordings are often filtered (obtaining vfilt(t) according to step 2 above mentioned) in order to
clip the spikes and get rid of intrinsic conductances. However, our claim is that, even with this
filtering, there is in general not a linear relation between vfilt(t) and Iapp.

Because of the stochasticity of the signal, both in the experiments and in some of our
simulations, a median-based filtering is used (see Appendix A for more information).1

For theoretical analysis of potential diffculties, we consider the mean voltage (< v >) as a third
filter (only used in Fig. 5). For fixed conductance inputs (gE (t) = gE,0, gI (t) = gI,0), we have
performed a comparison between the data filtered with a median-based filter and those filtered
with a mean-based one. Both provide very similar Iapp− vfilt curves. Thus, the Iapp− < v >
curves constitute a solid basis for our theoretical arguments. 2

Figure 5 displays a typical Iapp− < v > relationship for the model cell ((1)-(2)h,n). It shows that
even with a good estimation of the average membrane potential (< v >) through filtering, the
conductance would not be well estimated: observe that the slope of the solid line in panel D is
not the same before and after the spike initiation point.

According to the Iapp− < v > relationship shown in Fig. 5, we observe that if the cell is not
spiking for any injected current, then the ( Iapp

( j) , v(j)) values fit to a straight line, whose slope
accurately estimates the inverse of the total synaptic conductance, see panel B in Fig. 5. On
the other hand, if the cell is spiking for some injected current, then the ( Iapp

( j) , v(j)) values lie
on a non-linear curve (the solid curve in panel D).

Apart from the nonlinear nature of the Iapp− < v > curve, panel D in Fig. 5 also displays another
contaminating factor. The dotted points in panel D come from the values of the actual gE and
gI curves at t = 51 ms in Fig. 7, middle column. For Iapp ≤ I *, where I * ≈ −0.3 μA/cm2, the
stimulus does not elicit spikes for these values of gE and gI ; it can be observed that the dots
where Iapp ≤ I * are perfectly located on the theoretical curve. However, when Iapp is big enough
and spikes are elicited close to t = 51 ms, then the filtered values (dots) disagree with the
theoretical predictions. This fact indicates that, for stochastic conductance inputs, there is an
extra source for the contamination of conductances.

Summarizing, we claim that the method is only valid for those values situated in the non-
spiking zone for all the injected currents because the approximation in formula (3) is not valid
in the other regimes. In particular, the conclusions drawn from linear estimations of filtered
spiking intracellular recordings are not valid. The problems reported here persist under
different types of filterings, under background conditions (not shown here) and kinds of
synaptic inputs, as will be further seen in the simulations of Section 3.3. Before describing
these results, we present more detailed information about the sources of inaccurate estimates.

1In more idealized cases, such as our smooth conductance input, other filters can achieve smoother outputs, like the Gaussian filtering
in Fig. 6 (see Appendix A and Figure 8 for the comparison between filtering modes).
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3.2.3 Sources of overestimation and underestimation—In Fig. 5-D, a case in which
for some Iapp values between −1 and 1 the cell is spiking, we have noticed that the fitted line
would have quite a different slope from 1/gsyn. In particular, the values of the voltage for
Iapp> I * lie below the theoretical curve. Then, the slope is lower and one will overestimate
the total conductance. This is the most typical case of inaccurate estimation in “realistic”
neurons (because it is related to the presence of isolated spikes), and explains why later (Fig.
7) we will encounter such overestimations.

The other case of overestimation arises in smoother input profiles like the smooth conductance
input. Here, one frequently observes that although linear fittings are decent the inverse of the
fitted slope is far from the total synaptic conductance. This occurs, for example, when all the
injected currents induce spikes which are contained in a small enough interval of Iapp-values
(see for instance the center of the spiking regions of the estimations in Fig. 6; middle panel of
rows C, D and E). In this case all the ( Iapp

( j) , v(j)) points lie close to some small region on the
curved part of the < v > − Iapp curve, away from the onset of repetitive spiking. There, the
slope is smaller than that of the non-spiking region (see panel D in Fig. 5 for the theoretical
prediction) and so, leads to an overestimate of the inverse of its slope.

Of course, in the region on the steepest part of the Iapp− < v > curve, the total conductance
would be underestimated, but this is not so frequent and, when it happens, the filtering process
has also a strong influence. The clearest examples are in Fig. 6, just on the limits of the spiking
domains. Here we are filtering a single membrane potential for the smooth conductance
input and, when we are close to the region of spiking onset, we use points that sample action-
potentials to filter non-spiking points and vice versa. This fact can give, for non-spiking points
close to the spike initiation, some mean values larger than the predicted ones, thus inflating
the slope of the fitted line and so underestimating the inverse of the slope.

3.3 Estimating synaptic conductances for simulated orientation-tuned responses of cortical
(V1) neuron model to drifting grating

In this section, we show several simulations using equation (1) with the two types of
conductance inputs described in Subsection 2.2. Up to this point, we have analyzed the local
problems that can arise. Here, we want to focus on the “macroscopic” effects through examples.

The relative roles of inhibition and excitation are key to understanding the wiring architecture
of the cortex. In recent years, some experimental data on intracellular v(t) have been used to
estimate the time courses of (gE (t), gI (t)). We will simulate the response of the neuron model
to the two idealized inputs. As suggested in Section 3.2.2, our results will show that the
methodology can lead to considerable mis-estimates, and thereby a loss of support for some
interpretations. The two types of inputs (smooth conductance input and stochastic conductance
input) should be thought of as net input to a cortex cell that includes both thalamic and
intracortical interactions. In both cases, the thalamus sends excitation to our cortical cell model
in half of the period. In the case of the smooth conductance input, the period is 1000 ms, while
for the stochastic conductance input it is 125 ms (in fact, the simulation runs for 1000 ms, but
we average over 8 cycles to reduce stochasticity).

In Figs. 6 and 7 we present the results in a compact way, where the panels are organized as
follows. Each column corresponds to a different presentation of stimulus (each stimulus
producing a different level of excitation on the cell). The first row (A), in Fig. 6 is the response
elicited by the cell and, in Fig. 7, it is a histogram of the number of spikes; the second row (B),
shows the measure of the smoothed and averaged membrane potential for Iapp = 0 compared
to the estimated effective reversal potential from (3); the third row (C), contains a panel with
the prescribed total synaptic conductance, gsyn = gE + gI + gl and the total conductance estimated
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from (3), gsyn,estim; finally, in the fourth and fifth rows (D, E) we compare (respectively) the
prescribed excitatory and inhibitory conductances with the ones estimated from (4).

3.3.1 Smooth conductance input: specified smooth time courses, with gE and
gI in push-pull antagonism The smooth conductance input has been modelled to mimic
the antagonism between excitatory and inhibitory cortico-cortical inputs. It is not intended to
be realistic, but a paradigm for this antagonism. The conductance inputs in this case separate
clearly a spiking domain and a non-spiking one. This allows to better distinguish the different
quality of the estimations, as we have discussed in Subsection 3.2.

In Fig. 6, we can clearly appreciate that when the synaptic currents dominate the activity of
the cell (e.g., t ≳ 500 ms for the last column) the estimations are correct. On the other hand,
the estimations fail when in spiking regimes (although sometimes the linear fittings are well
correlated). The estimates of gE (t) (row D) can be in error by factors of 2–4. The mis-estimates
of gI (t) during spiking are more severe, failing to even correctly indicate the polarity in gI
swings. According to the estimated time course, gI is peaking and comparable to gE during the
spiking phase when actually gI is dipping then. Finally, in the transition between spiking and
non-spiking (e.g., close to t = 500 ms in row E third column), a kind of underestimate
(undershooting) is observed; here, the correlation of the linear fitting is very poor.

3.3.2 Stochastic conductance input: stochastic inputs from network
simulation In Fig. 7 we present the estimations of conductances and effective reversal
potential for the stochastic conductance input to our cell. We have used the median filter with
a 5 ms window and then averaged over the eight cycles (125 ms each cycle).

The inaccuracies indicated in Subsection 3.2 are evident: the estimations of conductances are
pretty good when the membrane potential remains under threshold, but fail in the neighborhood
of a spike. This fact can be better appreciated in the second column of Fig. 7, corresponding
to a drifting grating at preferred orientation that induces a strong response. The correlation
between the spiking regions and the inaccurate estimates is very clear in the second column
between 20 and 60 ms, where the estimated gE and gI can be 15–20 times larger than the actual
values (note, the estimated time courses have been clipped for plotting purposes).

4 Discussion
In this paper we have revisited the methods for the estimation of conductances and have
obtained a clear conclusion: the estimation of conductances is only reliable if based upon
intracellular measurements when intrinsic (spike-generating) currents are negligibly small.
Frequently in the literature, the validity of these methods of estimation is based upon a
comparison of the estimated effective reversal potential and the actual filtered potential; that
is, the agreement of these two potentials is taken to indicate that the estimates of the
conductances will be accurate. However, our analysis further shows that, in fact, this does not
follow. As shown in row B of Figs. 6 and 7, one frequently has agreement between the estimated
reversal potential and the actual filtered potential, and yet no accuracy in the estimates of the
conductances.

To understand this, notice that in (3) we are estimating Veff directly, while gsyn is estimated
through its inverse. Then, if we have an absolute error ε in the estimation of Veff, the relative
error (the proper measure because our plots have the scale determined by their magnitudes)
will be ε/Veff approximately. Since |Veff| is typically around 60--70 mV, the relative error is
reduced with respect to the absolute error between 1 and 2 orders of magnitude. On the other
hand, if we have the same error in estimating 1/gT, then the absolute error in estimating gT is
of the order of ε  gT

2. When the conductances are high (as they are in visual cortex under high

Guillamon et al. Page 10

J Physiol Paris. Author manuscript; available in PMC 2007 October 26.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



contrast stimulation), the error is amplified. Quantitative measures of these errors in the
numerical simulations have confirmed a good performance for the estimation of Veff (less than
5% error) and dramatic errors (more than 100% in the presence of intrinsic conductances) for
the estimation of the gsyn, gE and gI (see again Fig. 6 and 7 and Subsection 3.3).

Accurate estimates of the excitatory and inhibitory conductances can provide significant
information about the wiring architecture of the cortex. For example, in (Anderson et al., 2000)
these methods are used to estimate the excitatory and inhibitory conductances, and the results
are interpreted as supporting antagonism between excitation and inhibition which, in turn, is
interpreted as supporting a phase selective wiring architecture. However, careful inspection of
their data in Figure 16 of (Anderson, et al., 2000) shows that this antagonism is only present
when the neuron is spiking, that is where the estimates are inaccurate. On the other hand, in
regions when the neuron is not spiking, (where the estimation method is expected to be
accurate) the same data shows an elevation of both the excitatory and inhibitory conductances
- an elevation which is consistent with a phase insensitive wiring architecture. In conclusion,
we think that an interpretation of the measurements done in (Anderson et al., 2000), when
correctly restricted to non-spiking regimes, confirms some of the predictions derived from the
phase insensitive assumption rather than those derived from the hypothesis of spatial phase
selective coupling.

Accurate robust measurements of the excitatory and inhibitory conductances would greatly
enhance our understanding of cortical architecture, mechanisms, and function. Thus, it would
be important to extend these estimation methods to regions where the current-voltage relation
is nonlinear - regions with spiking, with significant intrinsic currents, with significant
stochasticity, with ionic currents, and/or with the presence of other potential sources of
nonlinearity such as dendritic activity or distance effects. Stochasticity is treated by the methods
of Destexhe, Rudolph and collaborators (Rudolph and Destexhe, 2003;Rudolph, et al., 2004).
But extensions to nonlinear regions in the presence of significant ionic currents remain open.
A good starting point could begin from specific neuronal models, analyzed with bifurcation
methods from dynamical systems theory.

Finally, we would like to highlight the most important messages from this paper:
• Estimations obtained from intracellular measurements by filtering the signal and

performing linear regressions of the Iapp− vfilt relationships should be carried out only
in non-spiking situations.

• When the cells are spiking, one can can expect errors on average that exceed 100%
(see for instance Fig. 6, rows C, D and E). Moreover, even the polarity of the inhibitory
conductance time course can be mis-estimated (see row E in Fig. 6).

• To be able to estimate conductances from spiking measurements, a challenging
problem is to determine the best (nonlinear) fit for the Iapp−vfilt curves. Stochasticity,
as shown in Fig 5-D, can further reshape this nonlinear Iapp− vfilt curve.
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Appendix A: Filtering
(See Fig. 8 to illustrate this discussion)

A good filter for real data (or realistic data, like those for the stochastic conductance input) is
the median among neighboring values of the membrane potential, as used in (Jagadeesh et al.,
1997). The number of values we use in computing the median will depend on the availability
of data in experimental records (recording time step) and on the integration step in
computational simulations (for the sake of simplicity, we assume that the filtering is performed
using constant time steps and Δt denotes the distance between neighboring time points.). As
in (Anderson et al., 2000) and (Jagadeesh et al., 1997), we can filter vm(t*) with

vmed(t∗) : = median{vm(t∗+ kΔt); k = − 10, … , 10Δt = 0.25ms}, (5)

which means a median in a 5 ms window around the filtered point. This filter clips an isolated
spike because the spike duration is about 1/5 of such a window and this ensures that the median
will not be a depolarizing value but a value closer to the baseline membrane potential.
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Nevertheless, if the spikes are not isolated or bursting is present, the nice properties of the
median filter are lost. In our simulations, this fact mainly happens for the smooth conductance
input, and is the reason to consider also Gaussian filters. For periodic spiking, however, when
Δt is a multiple of the interspike interval (ISI), the peaks of the potential cannot be removed.
Even if the sampling period and interspike interval are not commensurate the filtered potential
can still be jittery. This happens in some of the plots of Fig. 6, and we have not been able to
remove the jittering. Perhaps, using a variable filter would solve the problem but this is not
such a crucial point and we do not pursue such refinements here.

For the Gaussian filtering, we have used:

vGauss(t∗) = 1
σ π Σ

k=−l

l
e−(kΔt)2/σ2

(6)

The choices of σ and l are related: the smaller σ, the smaller l. In our simulations, after l was
fixed (width of the window), then σ was chosen heuristically.

Finally, we would like to point out that another natural filter to avoid the above problems could
be the averaged potential, < v > (t), defined as the interspike average. It is easy to apply for
inputs that give regular spiking (like that of the smooth conductance input) but useless for
noisier activities like those of the stochastic conductance input.

Appendix B. Normalization of currents
The choice of the injected currents that we apply to our cells (Iapp between −1 and 1) is also
important. We adapt our injected currents to those used in (Anderson et al., 2000). In Fig 4 of
(Anderson et al., 2000), the authors determine the linear regressions apparently using only 3
currents. For Cell 8, the currents (in pA) are given by (Anderson, personal communication):

{ − 300, − 260, − 200, − 140, − 100, − 60, 0, 120}.

From Table 1 in (Anderson et al., 2000) the cell’s membrane time constant is τm = 17.3 ms. If
Cm = 1 μF/cm2 we compute the leakage conductance as:

gL =
Cm
τm

= 0.057803 mS / cm2,

Since the input resistance is Rm = 56 MΩ (Table 1) we approximate the effective membrane
area:

Acell ≈
1

glRm
= 0.0003089286 cm2,

We use this factor to convert current units from absolute to per unit area as in our equation (1).
In μA/cm2, then, the set of values used in for regression in (Anderson et al., 2000) is:

{ − 0.971, − 0.842, − 0.647, − 0.453, − 0.324, − 0.194, 0, 0.388}.

However, as can be appreciated in Fig. 3 of (Anderson et al., 2000), these currents from −300
pA to 140 pA assure that their Cell 8 is sometimes spiking. Estimates for some synaptic
conductances come from the mixed regime and therefore are susceptible to the inaccuracies
that our paper addresses.
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Figure 1.
The membrane potential of a neuron model evolves rhythmically during 100 ms. Between the
10th and the 60th millisecond, an excitatory current of type Isyn = gsyn(v − Vsyn), with gsyn =
0.05 mS/cm2 and Vsyn = 0 mV, is injected. Panel A shows the response of the cell during a 20
ms window (the inset shows a 100 ms period). For the same time interval, in panel B, we show
the total ionic conductance, gion, the average of the ionic conductances, < gion>, the total
synaptic conductance, gsyn, and the leakage conductance, gl. Clearly the dominance of gsyn is
broken significantly when the cell is spiking.
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Figure 2.
Responses of model (1) for three different levels of excitation (decreasing from the top to the
bottom) in the smooth conductance input. These levels of excitation try to simulate the effect
of different drifting grating’s orientations.
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Figure 3.
(A) The conductances received by a selected cell of the stochastic conductance input under a
drifting grating at the preferred orientation of this selected cell. (B) Response of the HH
model cell to the stimulus plotted in A. (C) Input conductances from a drifting grating,
orthogonal to the preferred orientation. (D) Response of the HH model cell to the stimulus
plotted in C. These input conductances are the same used in Fig. 7.
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Figure 4.
We use a computational model of a cell with gsyn = 0.15 mS/cm2 to test the procedures for
estimating gsyn. The curves in the left panels (A, C) are the filtered membrane potentials of a
neuron model; that is, after applying each current, we use a median-based filter, as in (Anderson
et al., 2000), to obtain a smooth membrane potential that contains only small transients instead
of the large spikes (we denote this smoothed potential by Vfilt). The crosses on the right panels
(B, D) show the three values of the filtered membrane potential, Vfilt, obtained from the three
injected currents shown in the respective left panels (A, C). The sloped line in the right panels
(B, D) is a linear fit of the three values. In the upper panels (A, B), we apply injected currents
that prevent the cell from firing and we obtain a good estimation of gsyn (the inverse of the
slope is close to 1/0.15 ≈ 7). Contrary to the upper panels (A, B), in the lower panels (C, D)
the injected currents do not prevent firing. Despite the filtering of the cell’s voltage, the
estimations are far from satisfactory (for reference, the solid line on the righthand lower corner
of D has the correct slope 1/0.15).
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Figure 5.
In A and C, we show theoretical Iapp− < v > relationships for equation (1). They have been
obtained after fixing, respectively, two representative pair of values (gE, gI )i, i = 1, 2. Both
pairs occur in specific moments of our simulations using the stochastic conductance input;
bifurcation diagrams are computed using the AUTO feature of the package XPPAUT, see
(Ermentrout, 2002). The filtering is the median of 21 values in a 5 ms window around the value.
Observe that the Iapp− < v > relationship is very close to linear when Iapp is small enough (and
so the neuron is not spiking). This linearity is clearly lost above the Iapp value where repetitive
spiking emerges (filled circle). This fact can be better appreciated in panels B and D, which
are zooms of the small boxes in A and C, respectively. Panels B and D are restricted to a
physiologically plausible interval Iapp ∈ [−1, 1], the one where we have performed the
computations of Figs. 6 and 7. Each value of the dotted curve in B (analogously, in D) is the
filtered value of the membrane potential at the moment when (gE, gI ) = (gE, gI )1 (resp., (gE,
gI )2). The fact that these values have been recorded during a simulation in which (gE, gI ) is
not constant (values in panel B correspond to t = 20 ms in the right column of Fig.7 and values
in panel D correspond to t = 51 ms in the middle column of Fig.7), means that the filtered
values vfilt(t) do not capture the nonlinear conductance features of the spiking neuron: in D,
the slope of the best linear fit of the dotted curve is far from the actual one (in fact the estimations
of gE and gI have errors of 50% and 90%, respectively). The dotted curve would adapt to the
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theoretical curve if (gE, gI ) was constant. Instead, in B, we appreciate that the linear fitting
works well since the cell does not spike for any of the Iapp values.
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Figure 6.
Estimation of effective reversal potential and conductances for background and for two
different levels of stimulation: for the smooth conductance input under model (1). The
simulation is carried out over a 1 second cycle. The filtering is a Gaussian one (see Appendix
A and Fig. 8) that performs a better smoothing in the case of regular firing patterns. The first
column shows the cell model’s background behavior. The second and third columns correspond
to different levels of excitation (see Fig. 2 to see the specified conductance profiles, which
coincide with the green curves in rows D and E here). (Row A) Response of the cell under the
different situations. (Row B) Estimated reversal potential compared to the response in A
filtered; the estimation is fairly good, as we predict. (Rows C, D and E) Estimated conductances
(total synaptic, excitatory and inhibitory) compared to the actual (specified) ones; the
estimations fail when the cell is spiking. Legend: v(t): membrane potential; Veff (t): estimated
membrane potential; vfilt(t): filtered actual membrane potential; gsyn,estim(t): estimated total
synaptic conductance; gsyn(t) = gE (t) + gI (t) + gl: actual total synaptic conductance;
gE,estim(t): estimated excitatory synaptic conductance; gE (t): actual excitatory synaptic
conductance; gI,estim(t): estimated inhibitory synaptic conductance; gI (t): actual inhibitory
synaptic conductance.
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Figure 7.
Estimation of effective reversal potential and conductances for background and two different
drifting gratings applied to the stochastic conductance input on model (1). We average over
the 8 cycles of 125 ms, given by the temporal frequency (8 Hz) of the drifting grating. The
filtering is the median of 21 values in a 5 ms window around the value; this filtering is more
effcient than the Gaussian one when the spikes are sparse. The first column shows the cell
model’s background behavior. The second and third columns correspond to preferred and
orthogonal to preferred drifting gratings, respectively (see Fig. 3 to see the conductance profiles
injected). (Row A) Histogram of the model’s spike response (in bins of 5 ms.) under the
different situations. (Row B) Estimated reversal potential compared to the response in A
filtered; the estimation is fairly good, as we predict. (Rows C, D and E) Estimated conductances
(total synaptic, excitatory and inhibitory) compared to the actual ones (injected); the
estimations fail when the cell is spiking. The estimated conductances are clipped in amplitude
in order to allow visual comparison on these plots; their peak values (in mS/cm2) are: max
gsyn,estim≈ 8.83, max gE,estim≈2.79, max gI,estim ≈ 5.94. See caption of Fig. 6 for the legends.
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Figure 8.
Median and Gaussian low-pass filters for the HH model. In the first row, we show how the
median filter applied to realistic data like stochastic conductance input chops better the spikes
and requires less computations. In the last two rows, we show filterings for smooth prescribed
stimulus like those of smooth conductance input (second row, 1000 ms interval; third row,
zoom of a 160 ms interval). Here we see how the Gaussian filter can avoid the jittering whereas
the median filter cannot (even with larger filtering windows not shown here).
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