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The regulation of pulmonary vascular tone
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1 The ability to manipulate pharmacologically pulmonary vascular tone
independent of effects on systemic blood vessels is a desirable objective.
Elucidation of the biochemical mechanisms underlying hypoxia-induced
pulmonary vasoconstriction (HPV) may permit preferential targeting of the
pulmonary circulation.

2 Here we review our studies of the role of locally synthesized candidate
vasoactive factors in HPV. In addition, we present data demonstrating an
attenuated pressor response to hypoxia in the pulmonary circulation of
Fischer 344 rats compared with the Wistar-Kyoto (WKY) rat strain.

3 We propose that a systematic genome-wide search using the HPV phenotype
and a panel of highly informative microsatellite markers will elucidate the
genetic loci underlying the difference in susceptibility to HPV in these two rat
strains and provide a valuable and novel insight into the factors that determine
the HPV response.
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The clinical problem optimal. There are obvious practical difficulties with the
chronic infusion of compounds and there are concerns
about the toxicity of chronic nitric oxide administration.The normal adult pulmonary circulation is a low-

pressure, low-resistance system with little or no resting Clearly, the treatment of pulmonary hypertension would
benefit from a more comprehensive range of drugs thatvascular tone. Pulmonary artery pressure may be

increased, however, in a number of clinical situations, target selectively the pulmonary circulation.
such as in patients with chronic hypoxic lung disease or
a left-to-right intracardiac shunt, and, less frequently, as
a primary event. In the long-term, pulmonary hyperten-
sion leads to right ventricular hypertrophy, heart failure Hypoxia-induced pulmonary vasoconstriction (HPV )
and premature death.

The current treatment of pulmonary hypertension is Oxygen tension is a major regulator of pulmonary
vascular tone. Ventilation of lungs with an hypoxicunsatisfactory [1, 2]. Oxygen is an effective pulmonary

vasodilator in pulmonary hypertension secondary to gaseous mixture (i.e. decreasing PO2 from ~130 to
30–40 mmHg) leads to acute pulmonary vasoconstric-chronic obstructive lung disease [3] and has been

reported to be beneficial in other forms of pulmonary tion, most pronounced in precapillary arterioles [9].
Constriction is also observed in isolated pulmonaryhypertension [4, 5], but it is inconvenient to administer,

relatively expensive and has to be given for at least 12 h arteries (the degree of vasoconstriction correlating
inversely with diminishing vessel size) [10–12] andper day. A number of more conventional vasodilators

have been examined, but the doses required to reduce isolated pulmonary vascular smooth muscle cells [11]
perfused at low oxygen tension (~40 mmHg).the elevated pulmonary artery pressure are usually

so high that they are associated with symptomatic In contrast, systemic vessels in the intact rat [13],
mesenteric resistance vessels perfused in situ [14] andand unacceptable falls in systemic blood pressure.

Prostacyclin [6] and adenosine [7] infused directly in an organ bath [10, 12] and systemic vascular smooth
muscle cells in culture [11] relax when exposed tointo the pulmonary artery and inhaled nitric oxide [8]

show some selectivity for the pulmonary circulation by comparable hypoxic conditions. Sustained contraction
can be produced in isolated systemic vessels in responsevirtue of the short half-life of the active compound in

the systemic circulation, but none of these therapies is to severe hypoxia/anoxia, but the pathophysiological
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significance of this is unclear. Thus the sustained to predominate in large pulmonary arteries and in veins,
and ETB in small pulmonary arteries [18]. Nonetheless,vasoconstrictor response to moderate hypoxia is a

property of pulmonary vessels and the contractile cells continuous treatment with BQ123 (an ETA antagonist)
as well as bosentan (a mixed ETA and ETB antagonist)therein that distinguishes them from vessels in the

systemic circulation. It follows that elucidation of the has been reported to attenuate the rise in pulmonary
artery pressure and structural remodelling produced bybiochemical basis of HPV may reveal processes that

can be exploited for the selective pharmacological chronic hypoxia in the rat [19, 20]. Moreover, one
report suggests that blockade of ETA receptors inhibitsmanipulation of pulmonary vascular tone.
completely the acute pressor response to normobaric
hypoxia (10%O2) in the pulmonary circulation of
conscious rats [21]. This is an important observation
but needs to be repeated with other ETA receptorCandidate vasoactive factors and HPV
antagonists and in other experimental preparations
before the definitive role of endothelin in HPV isLittle is known about the mechanisms mediating HPV.

One hypothesis that has been studied extensively is that established.
The nitric oxide precursor -arginine and analogueshypoxia alters the balance in activity between locally-

produced vasoconstrictors and vasodilators. In the of this amino acid have been used by several groups to
explore the role of nitric oxide in HPV [22–24]. Theresearch for humoral mediators many vasoactive sub-

stances have been considered as candidates. We have is a compelling body of evidence that nitric oxide can
modulate HPV. Infusions of N-monomethyl--argininefocused our attention on two potent vasoconstrictors,

endothelin and angiotensin II, and two vasodilators, to inhibit nitric oxide synthesis increase basal pulmonary
vascular tone and enhance the pressor response tonitric oxide and the recently identified novel peptide,

adrenomedullin. hypoxia; conversely, concomitant infusion of -arginine
reduces HPV (Figure 1a and b). Continuous adminis-Our studies have employed the isolated perfused rat

lung. Briefly, rats are anaesthetized and the trachea tration of NO by inhalation has been shown to reduce
the rise in pulmonary artery pressure and vascularcannulated. The lungs are left in situ and ventilated with

5%CO2 in air at a constant rate (32 breaths min−1) to
a maximum end-expiratory pressure of 4 mmHg, giving
a tidal volume of 5–7 ml. The right ventricle and left
atrium are cannulated. Blood from donor (in-house
Wistar) control rats is heparinised and used to perfuse the
lungs via the pulmonary artery (PA); blood is returned
to a reservoir via a left atrial cannula. PA pressure is
measured via an indwelling pressure transducer. The
perfusion blood flow rate is kept constant at 18 ml
min−1, giving a PA pressure comparable with that
measured in vivo (~15 mmHg). Acute alveolar hypoxia
is produced by changing the ventilation gas to a 2%O2,5%CO2, 93%N2 mixture. Since the perfusion rate is
held constant, the rise in PA pressure reflects an increase
in vascular tone–HPV.

Angiotensin II levels are reported to increase transi-
ently on exposure to hypoxia [15]. Bolus administration
of the peptide (0.1–10 mg) produces dose-dependent
elevations in pulmonary artery pressure in the isolated
perfused rat lung. This effect is blocked by angiotensin
type 1 (AT1, e.g. losartan) but not AT2 (e.g. PD123319)
receptor antagonists. Competitive radioligand binding
studies using isolated lung membranes have confirmed
that AT1 is the major angiotensin II receptor subtype
present in the rat lung and the density of angiotensin II
binding sites increases in response to prolonged normo-
baric hypoxia (10%O2). However, neither AT1 nor AT2receptor antagonists influence the pressor response to
acute hypoxia in the isolated lung preparation.

We and others have found that lung endothelin-1 Time (min)
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levels are elevated two- to threefold in the first 24 to
Figure 1 Rise in pulmonary artery pressure (Ppa) in the

48 h after exposure to hypoxia [16]. Both endothelin isolated perfused rat lung during ventilation with 2%O2type A (ETA) and ETB receptors are present in rat lung (solid bars) and the effect of (a) bolus dministration of N-
and expression of the ETA ( but not ETB) subtype has monomethyl--arginine (-NMMA; reservoir concentration
been found to increase during short-term (48 h) exposure 30 m) , (b) bolus administration of -arginine (reservoir

concentration 1 m) and (c) adrenomedullin (AM; 2 nmol).to hypoxia (10%O2) [17]. ETA receptors are thought
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remodelling associated with chronic exposure to hypoxia at 12 weeks of age. Basal pulmonary artery and systemic
blood pressure were similar in the two strains. There[25]. However, the role of suppression of nitric oxide

production in the mediation of HPV is still uncertain. was, however, a marked difference between F344 and
WKY rats in the pulmonary vascular response toSpecifically, hypoxia has been reported to inhibit nitric

oxide synthase activity in tissues other than the lung hypoxia. Experiments using the isolated perfused lung
preparation demonstrated that the rise in mean pulmon-and so does not appear to provide the biochemical basis

for the differential effects of low oxygen tension on ary artery pressure during successive hypoxic challenges
(ventilation with 2%O2 which produces a PaO2~systemic and pulmonary vessels. Moreover, while some

groups have evidence for impaired nitric oxide pro- 30 mmHg) was two-fold greater in the WKY lung
compared with the F344 lung (Figure 2), with noduction in the lungs of rats [26] kept in a chronic

hypoxic environment, we and others have found that overlap in the response between the two strains. Chronic
exposure of both rat strains to 10%O2 in a normobaricsynthesis is preserved or possible increased [23, 24].

We have confirmed that the lung is an important site chamber for 14 days (PaO2~40 mmHg) showed that
the differential response is maintained (Figure 3). Oneof synthesis of adrenomedullin by northern blot analysis.

In addition, radioligand binding studies show that lung possibility we have considered is that the normal F344
strain has fewer or less muscularized pulmonary arteri-exhibits a high density of binding sites for the peptide

compared with other tissues [27]. Using the isolated oles. However, this is not supported by our histological
perfused lung we have shown that administration of
adrenomedullin produces dose-dependent reductions in
pulmonary artery pressure during acute hypoxia and
reduces the pressor response to a subsequent hypoxic
challenge (Figure 1c). Adrenomedullin levels (mRNA
and peptide) in lungs from rats exposed to normobaric
hypoxia (10% O2) for periods up to 7 days do not differ
from those of rats allowed to breathe normal air but we
have measured a significant 73% increase in the density
of [125I]-adrenomedullin binding sites (with no change
in dissociation constant) in chronically hypoxic rat lung
[28]. At present no specific receptor antagonists are
available to examine the effect of inhibition of adrenome-
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Figure 2 The pulmonary vascular response to acute hypoxiaOther investigators have pursued the hypothesis that
in WKY (open bars) and F344 (closed bars) rats. Studiesthe contractile response to hypoxia is an intrinsic
were conducted in the isolated perfused lung preparation.property of pulmonary vascular smooth muscle cells
The ventilation gaseous mixture was changed to 2%O2 for aand caused by a direct effect of the stimulus on these period of 8 min to produce hypoxic vasoconstriction (HPV)cells. In support of this there is evidence that hypoxia on four successive occasions; the interval between hypoxic

can regulate K+ channels [29], decrease oxidative challenges was 10 min. There was no difference in baseline
phosphorylation [30] and alter the production of pulmonary artery pressure between the two rat strains. The
reactive oxygen species that regulate transmembrane rise in pulmonary artery pressure above baseline was
Ca2+ flux [31]. It remains to be established whether recorded for each hypoxic challenge. The data are

mean±s.e.mean. n=8 each group. *P<0.05 vs WKY.any of these observations can account for differences in
the response to hypoxia between pulmonary and
systemic vascular smooth muscle.

Genetic differences in response to hypoxia

Rat strains have been reported to differ in their
susceptibility to the cardiopulmonary effects of hypoxia.
The Hilltop strain of male Sprague–Dawley rat develops
severe pulmonary hypertension and right ventricular
hypertrophy during 30 to 40 days exposure to hypoxia
while the Madison strain of Sprague–Dawley rats tol-
erate these conditions with a significantly less marked
cardiopulmonary response [32, 33]. Similarly, an atten-
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uated response to hypoxia has also been recorded in
Figure 3 Pulmonary artery pressure of normal 12 week

Fischer 344 (F344) rats compared with the Sprague– WKY (open bars) and F344 (closed bars) rats and of a
Dawley strain [34]. separate group of rats kept in a normobaric, hypoxic

Recent studies in our laboratory have compared the chamber (FiO2 10%) for 14 days. There was no difference in
HPV response in F344 rats with that in Wistar-Kyoto systemic blood pressure before or after the hypoxic challenge.

n=6 each group. *P<0.05 vs WKY.(WKY) rats and outbred Wistars. Animals were studied
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