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Statistics is an important tool in pharmacological research that is used to summarize (descriptive statistics) experimental data in
terms of central tendency (mean or median) and variance (standard deviation, standard error of the mean, confidence interval
or range) but more importantly it enables us to conduct hypothesis testing. This is of particular importance when attempting
to determine whether the pharmacological effect of one drug is superior to another which clearly has implications for drug
development and getting that next paper published in a respectable journal! Therefore, it is essential for pharmacologists to
have an understanding of the uses and abuses of statistics. With this in mind, the British Journal of Pharmacology has
commissioned a number of review articles to highlight the uses of statistics in experimental design and analysis.

British Journal of Pharmacology (2007) 152, 291–293; doi:10.1038/sj.bjp.0707371; published online 9 July 2007

Keywords: ANOVA; Student’s t-test; type I error; Null hypothesis; experimental design

Pharmacology routinely employs statistics to help summar-

ize data and, more importantly, to test hypotheses. This is a

relatively simple matter when one is only interested in

testing the Null hypothesis that two sample means are equal

(H0; m1¼ m2). However, this type of experimental design and

hence analysis does have a number of limitations. For

example, one never simply investigates the effect of one

dose of drug in vivo, and furthermore, it would not be

sensible to have a control group for every drug dose group.

Financial considerations notwithstanding, it is unethical to

use large numbers of animals if a more appropriate experi-

mental design can be implemented. Indeed, one can

potentially reduce the number of animals used in an

experiment by employing a better experimental design that,

while a little more complex (for instance using factorial

designs) has the advantage of answering more than one

scientific question.

If you are confused about the most appropriate statistics

for your experiment, you could simply talk to a statistician.

However, it is clear that statisticians and pharmacologists

often speak a different language. The statistician deals with

uncertainties and calculates the probability of a particular

event simply occurring by chance, and that is before you try

and grasp the mathematics. In general, pharmacologists like

to deal with certainties, for example, acetylcholine causes

contraction of smooth muscle. Statisticians will test the Null

hypothesis that sample means are equal, on the other hand,

a pharmacologist’s starting premise is that drug X will

increase blood pressure, so in effect, we want to test the

Null hypothesis that sample means will be different. While

these examples are frivolous, it is clear that we need to have a

grasp of statistics to allow us to determine whether drug X is

better than drug Y, for increasing blood pressure.

Unfortunately, the use of a subjective test like the ‘obvious

test’ is not acceptable to journals and, therefore, we need to

calculate the probability that the difference between drugs X

and Y, the treatment effect, is greater than experimental

error, and hence, the need for statistics.

Better experimental design is one potential benefit from

learning the language of statistics. A stark reminder comes

from an analysis of the relevance of investigating drug

treatments in animal models as a precursor to investigational

studies in man (Perel et al., 2007). The conclusion drawn

from this study was that animal experiments were biased or

did not correctly model human disease and therefore were of

little utility. However, there are some misconceptions

concerning animal models and what they tell us about

human disease. The majority of scientists do not set out to

undertake clinical trials in animals per se. Rather, we test the

hypothesis that drug treatment may or may not alter a

biological response, which mimics some feature of the

disease process we are studying. The so-called ‘clinical trials’

in animals are for all intent and purposes, proof of concept

studies, which might give one confidence to proceed with

the particular drug target of interest in man. Nevertheless,

what this article and others (Festing, 2003) reveal is that

experimental design could be vastly improved in order to

reduce bias and the probability of obtaining a false positive

or making misleading claims concerning the effectiveness of

a particular treatment (that is, a type I error) in proof of

concept studies. Therefore, it is vitally important that we
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consider better experimental designs and analysis. This should

not be difficult because we can adopt methods currently

employed by our clinical colleagues who publish trial data. We

should be adopting blinding strategies and randomization

techniques when designing experiments and, of course,

stating this fact in the Methods section of our MS. Further-

more, we should consider the use of factorial designs for many

of our experiments for several very good reasons. Firstly, we are

constrained to reduce the number of animals we use in

experiments on ethical grounds. Hence, a factorial design is

one such strategy that can be adopted to effectively reduce the

total size of an experiment. For example, if we intend to

examine the effect of different drugs or drug doses on a

particular response in vivo, we only need a vehicle control

group, not a control group for each drug or dose of drug.

Factorial designs and hence analysis of variance will increase

the power to detect differences between means (that is, to

reject the Null hypothesis that treatment means are similar)

because the degrees of freedom for the pooled error Sum of

Squares term, will be greater and the error variance term

relatively smaller, than the values obtained by application of a

two sample Student’s t-test between control and treatment

groups (Wallenstein et al., 1980; Festing, 2003). Third, the

location of the difference between treatment means following

a significant F ratio can then be addressed with either a

planned comparison test (Armstrong et al., 2000) or the more

widely used post hoc analysis (Wallenstein et al., 1980;

Armstrong et al., 2000), which enables the experimenter to

ask several questions in one experiment. There are numerous

post hoc tests available and all take into account the probability

of making a type I error (false rejection of the Null hypothesis).

Type I errors are usually made when multiple Student’s t-tests

are employed without making any correction for the number

of Null hypotheses being tested. In fact, such data sets should

be analysed using analysis of variance followed by the

appropriate post hoc test (Wallenstein et al., 1980).

Bearing this in mind, it is therefore timely that the British

Journal of Pharmacology has commissioned a series of articles,

which give invaluable advice for pharmacologists regarding

uses and abuses of statistics, the first of which appears in this

issue of the journal. In the first two articles of this series, Lew

(2007a, b) provides important examples, which demonstrate

how presentation of data in certain guises can be potentially

misleading, the importance of using data transformation to

normalize variance across treatment groups and how to

employ analysis of variance for data analysis. An assumption

of the analysis of variance is that the variance terms are

homogenous, but often data sets collected in an experiment

may give rise to non-homogenous variance across treatment

groups, which invalidates an assumption of these parametric

tests and can give rise to type I errors. Therefore, transforma-

tion of data is often usefully employed in this context and

there are a number of different types of transformation

readily available (Wallenstein et al., 1980). Of course, there

will be examples where data sets do not conform to a

Gaussian distribution and it is not always possible to

transform data. In these cases, non-parametric tests need to

be utilized and will be described in later articles.

Lew (2007b) also gives an example of how good experi-

mental design can be used to give the experimenter the best

possible chances of rejecting the Null hypothesis. In this

example, the advantages of using ‘repeated measures’ over

single factor analysis of variance are discussed. This type of

analysis lends itself to experimental designs that involve the

repeated measurement within the same ‘experimental unit’

(that is, person, rat or cells from the same individual). The

advantage of such designs is their greater power to reject the

Null hypothesis and avoiding type II errors (failure to reject a

Null hypothesis). A major source of experimental error in

this type of design is the variability between ‘experimental

units’ (such as genetic differences between subjects), which

is removed from the calculation of the error variance term

and, consequently, the chances of obtaining a significant F

ratio is improved (Lew, 2007b). There are some assumptions

for this type of analysis, which are not always met and

therefore there is a tendency for type I errors to arise, but

there are ways of getting around this problem with more

conservative tests (Wallenstein et al., 1980). Alternatively,

depending on the nature of the serial measurement (time,

concentration), one could calculate a summary statistic of

the data in each individual, for example, the area under the

time or concentration curve, EC50, or peak response, and

then use an appropriate statistical test to compare whether

treatment means are different (Matthews et al., 1990).

Unfortunately, one often sees pairwise comparisons between

dose or concentration levels between a control and treated

group. This is highly erroneous and must be avoided because

the comparisons are not always independent and therefore

invalidate one of the assumptions of the Student’s t-test,

which states that each comparison must be independent. For

example, if the means of three treatment groups were A, B

and C, then the following two statements A¼B and B4C

can be described as two independent comparisons and it

must therefore follow that A4C; however, this comparison

is not independent. In this case, it would be far better to

obtain a summary statistic of the serial measurement, as

described above, and then compare the treatment means

with an appropriate parametric test (Matthews et al., 1990).

Statistics can be very helpful in formulating experimental

design and drawing appropriate inferences from the col-

lected data. If we employ better design and analysis, we will

reduce the risk of making misleading claims and provide

greater confidence that our proof of concept studies may

translate into man. This of course assumes that we have

chosen the correct drug target in the first instance and this

will only be known from human clinical trials. While

statistics can tell us whether we should accept or reject the

Null hypothesis, the overriding question that we must ask

ourselves, in the case of rejecting the Null hypothesis, is

whether the magnitude of this difference has any biological

relevance? For this, we need our pharmacological hat.
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