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Abstract
Visualization by electron microscopy has provided many insights into the composition, quaternary
structure, and mechanism of macromolecular assemblies. By preserving samples in stain or vitreous
ice it is possible to image them as discrete particles, and from these images generate three-dimensional
structures. This ‘single-particle’ approach suffers from two major shortcomings; it requires an initial
model to reconstitute 2D data into a 3D volume, and it often fails when faced with conformational
variability. Random conical tilt (RCT) and orthogonal tilt (OTR) are methods developed to overcome
these problems, but the data collection required, particularly for vitreous ice specimens, is difficult
and tedious. In this paper we present an automated approach to RCT/OTR data collection that
removes the burden of manual collection and offers higher quality and throughput than is otherwise
possible. We show example datasets collected under stain and cryo conditions and provide statistics
related to the efficiency and robustness of the process. Furthermore, we describe the new algorithms
that make this method possible, which include new calibrations, improved targeting and feature-
based tracking.
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Introduction
The Initial Model Problem

Single particle reconstruction is a technique used to create three-dimensional structures of
samples that have been preserved in stain or vitreous ice. When a sample has been prepared
properly and is examined using a transmission electron microscope (TEM) the result is an
image containing particles of unknown orientations distributed across the field-of-view. The
primary challenge of a single-particle reconstruction is to determine the orientation of these
particles relative to one another so that they may be transformed properly into a three-
dimensional volume. Due to the low signal-to-noise ratio in the raw images, having an initial
model is an invaluable tool in determining particle orientations. By comparing each particle
with projections generated from the initial model, a good first guess of the orientations can be
used to bootstrap iterative refinement. For some samples a suitable starting model is known a-
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priori from previous structural work, but for many samples lack of an initial model may become
a formidable roadblock to structural investigation. The requirement of a starting model to create
a first approximate structure from new data is termed the initial model problem, and is the
Catch-22 of structural EM work. An excellent overview and detailed description of single
particle methods is given by Joachim Frank in his book, (Frank, 2006).

Another large problem commonly faced by investigators using single-particle methods is the
presence of conformational variability in their samples (Orlova and Saibil, 2004).
Conformational variability greatly complicates single-particle analysis since particles must not
only be assigned correct orientations, but they must also be sorted by their conformational
state. Given the poor quality of raw data, this is an extremely difficult task, and as a result the
most common solution is to simply ignore the problem. Sometimes this works, for example
when one conformational state is dominant and drives the reconstruction, but when it doesn’t,
the results can be reduced resolution, structural artifacts and failure to converge to a final
structure. ‘Standard’ single-particle data is collected with the sample oriented perpendicular
to the microscope’s optical axis; an arrangement referred to as 0° tilt. Based on this observation,
approaches that attempt to solve the initial model problem can be classified into two groups-
those that perform specialized post-processing on 0° data, and those that use data collected at
tilts other than 0°.

The post-processing approach attempts to determine particle orientations by exploiting a
characteristic present in the data called ‘common-lines’. Theoretically, the Fourier transform
of any two projections contain one-dimensional lines, termed common lines, whose profiles
match exactly (barring the effects of noise). By finding these common lines the angular
relationship between particles can be established so that they may be recombined to create a
three-dimensional volume. The use of two-dimensional classification, averaging, and common
lines to create an initial three-dimensional structure is termed angular reconstitution (Van Heel,
1987), and is an elegant approach that is often difficult to implement in practice. Angular
reconstitution is reliant on the correct classification of particles; and the common lines, which
are theoretically perfect matches, are frequently far from perfect in reality and do not
differentiate the handedness of structures.

The second approach to overcome the initial model problem is to collect a second tilted image
for every image originally collected. Since the particles in these image pairs are related by a
known rotation this provides an additional constraint that can be used to roughly determine the
particle orientations. In cases of conformational variability this also allows the creation of
multiple starting models that can be used to sort conformational states and perform multiple
reconstructions. The original method proposed by Michael Radermacher (Radermacher,
1988) suggested that one collect an image at as high a tilt as possible (for example 60°) and a
second image of the same view at 0° tilt. This method of data collection was termed random
conical tilt (RCT) and was devised to deal with particles that adopted preferred orientations
and required tilted data to generate a three-dimensional structure. The drawback of RCT is that
image pairs are not collected orthogonal to one another resulting in cone-shaped pieces of
missing data referred to as ‘missing cones’. These missing cones generate artifacts in the
structures that can confuse and complicate correct interpretation. A recently proposed
amendment to the RCT method was to take images at a 90° angular difference to remove the
missing cones in the collected data (Leschziner and Nogales, 2006). While it is impossible to
tilt the stage from 0° to 90° in the microscope, it is possible to tilt from +45° to -45°, in effect
achieving orthogonal coverage as long as the particles do not show a preferred orientation at
0°. This method was termed orthogonal tilt reconstruction (OTR) combining the data collection
schema with the act of reconstruction. For the purposes of this paper OTR refers only to the
automation of orthogonal data collection and not the processing required to reconstruct this
data.
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In theory RCT or OTR provide tools for reconstructing a 3D map of any sample, including
those lacking initial models or exhibiting conformational variability. The critical factors in
RCT/OTR data acquisition are the speed at which image pairs can be acquired, the overlap
between the image pairs, and the quality of the acquired images in terms of the defocus, dose,
drift and charging. The combination of these factors is what determines the overall throughput
(or perhaps more accurately, output) of these methods. In practice, the use of RCT/OTR has
remained somewhat marginal due partly to the difficulty of satisfying these requirements. This
includes the burden of performing and maintaining microscope calibrations critical for efficient
data collection; the constant correction of sample movements caused by specimen tilting and
drifting; and the onerous bookkeeping required to correctly pair tilted images. Maintaining
accuracy and consistency is further complicated since corrections are often made away from
actual imaging areas to reduce sample dose.

When collecting tilted pairs of images a decision must be made whether to tilt the stage after
each image acquisition, or whether to collect many images at one tilt before returning to collect
the same field of views at a second tilt. For human operators it is much easier to tilt between
every image since this simplifies the task of correcting instrument conditions and organizing
image pairs. Conversely, it is very difficult for humans to accurately track previously imaged
areas during tilting unless they are centered on distinctive landmarks. This makes the task of
collecting multiple images at each tilt manually a visually challenging and inaccurate process.
Furthermore, tilting can cause specimen drift, sample movement, and focus changes that delay
image acquisition until drift is reduced to tolerable levels, the defocus is corrected, and the
field of view is re-centered. In vitreous ice specimens, in fact, there may be such an increased
overhead from tilting excessively that it becomes impractical to do so between every image
pair.

Finally, there are factors that affect the quality of tilted images that are difficult to control
without trial and error. Specimen charging is an effect commonly seen when samples preserved
in vitreous ice are imaged at high tilt (Brink et al., 1998). It causes portions of images, especially
over vitreous ice, to appear as if they are moving under the influence of the beam and can be
mistaken for specimen drift. It is not usually seen at 0° because when the electron beam is
perpendicular to the sample charging causes small defocus changes rather than image
movements. An example of an image exhibiting charging can be seen in Figure 4A compared
to its uncharged tilted pair in 4B. Part of the difficulty in providing a uniform and predictable
solution to charging is the large number of factors that influence its magnitude. It is therefore
greatly beneficial to have the ability to adapt settings, such as pre-exposure, on the fly in
response to current imaging conditions, making the use of a CCD for data collection critical.

Automated EM Data Collection
Automated TEM data collection can increase the number of images acquired, improve the
consistency and quality of images, and provide an abstraction to microscope control that makes
the technique more accessible to novice users. Over the past several years a number of
automated data acquisition packages have been developed such as GRACE (Oostergetel et al.,
1998), Leginon I (Potter et al., 1999), AutoEM (Zhang et al., 2003), AutoEMation (Lei and
Frank, 2005), TOM (Nickell et al., 2005), and our own software package Leginon II(Suloway
et al., 2005), which we have now extended to include acquisition of tilted image pairs and
sequences. Leginon consists of a series of python programs, called ‘nodes’, that are connected
together in ‘applications’ to perform the task of operating the microscope, finding targets,
focusing, compensating for drift, acquiring images, etc. The most commonly used Leginon
application is the multi-scale imaging (MSI) application, which uses different magnification
levels to successively evaluate regions of interest until a final magnification is reached. This

Yoshioka et al. Page 3

J Struct Biol. Author manuscript; available in PMC 2008 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



addresses the vast scale differences that make it unfeasible and extremely inefficient to
automatically image an entire sample area at high magnification.

Using Leginon it is now possible for someone with relatively little training to oversee their
data collection remotely and collect large datasets by running in single, continuous stretches
that would tax the endurance of a human operator controlling the microscope manually (Stagg
et al., 2006). Additional advantages of automated data collection include the possibility of
extending EM maps to higher resolution, as well as the ability to deal with structurally
uncharacterized samples or those exhibiting conformational variability.

Feature Based Image Processing
An important part of any undertaking to automate RCT or OTR data collection requires the
efficient and accurate tracking of targets during stage tilting. Due to its various advantages we
decided to utilize a feature-based correlation approach for tracking rather than a cross-
correlation based one. Cross correlation, a method used commonly in the EM field for tracking
tilt changes during tomographic data collection (Zheng et al., 2007b), works well with noisy
images, but requires accurate foreknowledge of the image transformations caused by tilting.
Previous work automating random conical tilt (Zheng et al., 2007a) has used cross-correlation
to track tilting in a manner similar to the automated collection of tomography datasets.

Feature based techniques have become quite popular in the field of computer vision and are
used for object recognition (Obdrzálek and Matas, 2005), stereo matching (Matas et al.,
2002), automated panorama stitching (Brown and Lowe), and many other tasks. The term
‘feature’ refers to things such as edges, corners and blobs, and often corresponds with things
a human might identify as interesting by eye. Various feature detection techniques exist with
different propensities for the kinds of features they find and their ability to provide different
levels of invariance (Mikolajczyk et al.). Examples include the Harris corner detector (Harris
and Stephens), the Difference of Gaussian (DoG) detector (Lowe, 2004) and the Maximally
Stable Extremal Region (MSER) detector (Matas et al., 2002) which can provide invariance
to rotation, rotation and scale, and affine transformation respectively. Feature-based correlation
works by using the features found in two images to determine the relationship between them,
in a manner that is similar to how a human might intuitively perform such a task. The human
brain is in fact so good at this, that at very small angles, such as the spacing between eyes, it
continuously (and quite accurately) creates three-dimensional conceptualizations of the world
before us.

A correlation technique based on features can be implemented so that it does not require
foreknowledge of the geometric transformations between images, and can maintain accuracy
in complicated imaging circumstances. The downside is that feature-based methods typically
have poorer performance in low-signal-to-noise environments; a realm in which whole image
techniques such as cross-correlation dominate. Fortunately the targeting images used in
automated EM data collection are usually down-sampled, acquired at low magnification, and
high defocus. These factors create images where the signal-to-noise ratio is very high and well
within the realm of a feature-based approach.

In this paper we present an automated approach to RCT and OTR data collection built within
the Leginon framework. To demonstrate the efficiency and robustness of the technique we
have collected various datasets, both in stain and in vitreous ice, and have tabulated the results.
We also discuss the design and capabilities of the calibration and tracking algorithms we have
implemented.
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Methods
Data were acquired on two FEI Tecnai F20 Twin transmission electron microscopes; one
equipped with a Gatan Ultrascan 4k X 4k CCD camera, and the other with a Tietz F415 4k X
4k CCD camera, at accelerating voltages of 120KeV and 200KeV. The details of each dataset,
such as magnification, dose and defocus, are shown in Table 1. The use of a 4K camera over
a 2K camera is highly recommended, but not necessary, since it increases both the number of
particles collected in each image, and the amount of useable overlap between image pairs. The
GroEL vitreous ice specimen was imaged on a new substrate, created by Protochips Inc., called
CryoMesh™. These new grids are designed and manufactured by Protochips using a novel
process, and semiconductor materials rather than carbon, to improve the mechanical stability
and conductivity of the substrate. A full discussion of their properties and performance will be
the subject of a future paper. For the vitreous ice samples a side-entry Gatan 626 stage was
used to maintain the temperature of the specimen below -170°C.

Leginon Automated RCT/OTR Application
A Leginon RCT/OTR data acquisition session begins by deciding the magnification that will
be used for targeting and the magnification that will be used for final imaging. The targeting
and final magnifications are selected so as to ensure they both use the microscope’s objective
lens. This increases the stability and consistency of image shift alignments between
magnifications, which degrade if the objective lens is shut down and allowed to ‘cool’. For the
Tecnai F20 microscope series we typically use a targeting magnification of 1,700X and a final
magnification between 29,000X and 50,000X.

The user begins the data collection process by selecting the location at which to begin targeting.
A z-height correction and optical axis correction are performed at this selected location and an
image is acquired using the targeting magnification. Targets for high magnification imaging
are then selected on this image either manually (using mouse input), or automatically using
one of various automated targeting capabilities available within Leginon. The selected targets
are tracked to the first desired tilt angle before each is centered on the CCD and imaged at the
final magnification. Once this is complete the targets are tracked to the next tilt angle and each
is centered and imaged again. A focus correction and drift check is done once at the beginning
of each of these tilt changes. Image pairs can be examined using a web-based viewer connected
to the Leginon database to visually assess the image quality and extent of overlap. Once all the
image pairs have been collected a new location is selected and the process is repeated. An
overview of the entire process, as experienced by the user, is shown in Figure 1.

Optical Axis Correction and Iterative Targeting
The RCT/OTR application requires additional calibrations during the Leginon set-up process,
the most critical of which is an alignment between the microscope optical axis and the specimen
tilt axis (illustrated in Figure 2). Z-height correction is part of the optical axis alignment and
serves to bring the sample close to the correct focal plane and minimize image translation
during tilting. To correct the z-height we measure the image displacement observed when the
stage is tilted to either side of zero degrees by an equal amount, typically 5-10°. Once the z-
height has been corrected, a second measurement is taken of the image displacement between
a tilted (10°-30°) and un-tilted image. This displacement is caused by the misalignment
between the optical axis and specimen tilt axis, and if left uncorrected can result in drastic
defocus changes during tilting. This second measurement is used to calculate an image shift
correction that centers the tilt axis on the CCD. Once the z-height and optical axis have been
set correctly any subsequent movement using the goniometer will move the sample through
the correct focal plane regardless of the tilt angle. This greatly simplifies the task of maintaining
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focus during the acquisition of tilted targets. The entire procedure described above is now
automated and performed by the Leginon focusing node.

Another important requirement for collecting tilted image pairs is accurate target centering on
the CCD. Accurate centering directly affects the efficiency of RCT/OTR data collection by
increasing the overlap between image pairs. An error of a single pixel when centering a target
at low magnification (1,700X bin by 4) can translate into an error of greater than a hundred
pixels at high magnification (50,000X bin by 1). Unfortunately, two factors preclude the use
of image shift adjustments to center targets accurately; the required movements are often
beyond the range of image shift alone (~5μm) (Suloway et al., 2005), and the image shift has
already been set so as to align the optical axis. The accuracy of our goniometer when returning
to a pre-defined location is rated as <100nm, but this accuracy is worse, by up to an order of
magnitude, when attempting to reach a new location unless the non-linear behavior of the
goniometer has been modeled (Pulokas et al., 1999). To further improve the reliability of
goniometer movements we implemented an iterative procedure that measures the error after
each movement and attempts to re-center the target until a specified level of accuracy is
achieved. The amount of error between moves is measured using cross-correlation, and to
account for the possibility that these repeated attempts may result in an infinite loop, there is
a conditional that stops the process if the error ever worsens rather than improves. Using this
simple approach we typically achieve a goniometer accuracy of ~30nm in one to three moves
depending on the quality of the goniometer calibrations and the distance traveled.

Target Tracking using Feature Detection
Our feature based matching algorithm proceeds via three stages; the first is a detection stage
that finds ‘features’, the second is a descriptor stage that describes the features so that they may
be compared, and third is a matching stage where corresponding features are found so that the
relationship between two images can be determined. For feature detection we opted to use the
affine-invariant MSER technique (Matas et al., 2002) over the scale-invariant SIFT DoG
detector (Lowe, 2004). We implemented and tested both detectors using images acquired at a
variety of magnifications and a range of tilt angles. In most circumstances the MSER method
resulted in a higher number of correct matches than the DoG detector but the DoG detector
was often able to find indistinct features more consistently. We have retained the option to use
both detectors concurrently if the need should arise.

The MSER method works efficiently by first sorting image pixels by their values using binsort
(Sedgewick) and then performing union-find operations (Sedgewick) on each pixel and its
neighboring pixels. The end result of these union find operations is that regions form and grow
as pixels on their borders are added to them. The size of each region at each pixel value is
recorded and regions that show little growth over long pixel value spans are selected as ‘stable’.
One can manually enter the thresholds for which regions are determined as stable, i.e. the
percent growth rate, but instead we have these values determined from the images themselves.
As a result our feature detector tries harder to find features in images where they are not as
obvious, and thereby maintains more consistency during the tracking process than we observe
using fixed thresholds. Once stable regions have been found their borders are extracted using
isocontour navigation (Kirk) and approximated using a direct linear least-squares ellipse fitting
(Fitzgibbon et al.). The image information within this elliptical region is then transformed to
a circle with a radius of 20 pixels. The transformation of all features to this standard reference
(41X41 pixels) provides affine invariance; an example of the entire process is illustrated in
Figure 3.

Once features have been found they must be converted to a form that allows them to be easily
compared. Most often this entails reducing image information so as to retain discriminatory
ability while reducing the influence of noise and other destabilizing effects. The most robust
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descriptors to date belong to a group commonly referred to as the SIFT-based descriptors
(Mikolajczyk and Schmid, 2004). These operate by taking the image derivative around the
feature and summing the gradient values into positional and directional bins. This methodology
provides invariance to linear illumination changes, reduces the effects of noise, and provides
additional invariance to affine deformations. One method, PCA-SIFT (Ke and Sukthankar,
2004), does not use a predefined binning strategy, but instead performs principal component
analysis on a large set of training features. Using the principal vectors determined from this
training set, all future features are then projected into the same space to reduce their
dimensionality. Using PCA-SIFT, we reduce each 41X41 pixel image patch obtained from the
MSER detector, to its 36 principal components. The size of the image patches and the number
of principal components were chosen based on the results of the original PCA-SIFT paper (Ke
and Sukthankar, 2004).

The last step in feature-based image correlation is to find correspondences between the features
in two different images so that an accurate global transformation can be calculated. Matches
in our tracking routine are found by calculating the vector distance between every descriptor
in one image against descriptors in another and keeping those whose shortest distance is at
least 5% shorter than the second-shortest distance. This methodology is simple and widely
used, but generates many false positives so a robust outlier removal algorithm is required. To
this end, initial correspondences are filtered using RAndom SAmple Concensus (RANSAC)
(Fischler and Bolles, 1981), to find the largest set of geometrically consistent feature
correspondences. In RANSANC three correspondences are selected at random and a tentative
affine transform is generated from them. All matches that agree with this affine transform (error
of less than a pixel) vote for it, and the process is repeated with the starting assumption that
95% of the matches are correct and the terminating assumption that 1% are correct. Using
MSER, PCA-SIFT, and RANSAC we typically find that tracking works reliably even when
the percentage of correct matches falls as low as 8%, though it is often above 50%. The feature-
tracking algorithm generally takes 1-15 seconds for each correlation between images
depending on factors such as the number of features, the percentage of correct matches, the
size of the images, and the speed of the computer. This is fast enough that it only adds a minimal
amount of overhead to the entire process of automated data collection; but it could certainly
be improved through optimization, particularly during region selection and descriptor
matching. We also would like to mention that this tracking works without modification even
if the image size, magnification, and rotation are different between images. The feature
detection, descriptor creation, and matching code was written in C and wrapped in a Python
object before being integrated into the Leginon acquisition node.

Results
In this section we discuss the performance of our automated RCT/OTR acquisition program.
To assess the efficiency and consistency of automated RCT/OTR data collection we collected
two large datasets in stain and two smaller datasets in vitreous ice. From these datasets we were
able to assess the overlap between image pairs, the defocus consistency, and the efficiency of
the entire process. The information related to the acquisition of these datasets is shown in Table
1.

Automated OTR Data Acquisition Results
Example RCT/OTR image pairs collected using our application are shown in Figure 5. The
four datasets collected were GroEL in vitreous ice, COPII in vitreous ice, COPII in negative
stain and NSF in negative stain. The details for each of these data acquisition sessions are
shown in Table 1. Overall we collected 528 image pairs in stain and 134 image pairs in vitreous
ice, and the approximate collection rate was 1.3 minutes per pair in stain and 2.2 minutes per
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pair in ice. These timings do not include the time taken to set Leginon up, which typically
varies from 30 minutes to 2 hours depending on the state of microscope calibrations. The quality
of target tracking and centering was quantified by measuring the degree of overlap between
image pairs. Figure 6 shows percent number of images versus percent image overlap. It also
graphs the number of images as a cumulative sum to provide a better idea of the amount of
useable overlap, i.e. over 50% of the image pairs taken have an overlap of ~90% or better and
90% of the images have an overlap of ~70% or better.

The program ACE (Mallick et al., 2005) was used to measure the defocus of the datasets so
that we could determine the accuracy and consistency of defocus during automated data
collection. The result of plotting the deviation of the measured defocus from the nominal (set)
defocus can be seen in Figure 7, and indicates that the final images fell within a suitable defocus
range. The vitreous ice images have a larger distribution of defocus values than the negative
stain datasets due to a small error in the alignment of the optical axis to the tilt axis, likely
caused by performing the optical axis alignment right after stage insertion when the specimen
was still drifting. Since most of these vitreous ice images (66%) fall within a ±0.792μm range
of the nominal defocus, we still consider them suitable for low-resolution initial model work,
and if required, a tighter defocus distribution could be achieved by verifying the result of the
initial optical axis correction and repeating it if necessary. The accumulated dose for each
image pair was estimated by adding the dose at high magnification to the dose accumulated
from low magnification images. It ranged from ~30 e-/A2 to ~32 e-/A2, with at most ~6% of
the dose attributed to the overhead of tilt tracking and target centering. The actual overhead
dose of many images, however, is far below 6%, as that constitutes a high upward estimate.
For many of the vitreous ice image pairs collected (~75%) the dose from overhead is less than
2%.

As mentioned in the introduction, a serious limitation of tilted image acquisition over vitreous
ice is the image deterioration caused by charge buildup from the electron beam (Glaeser and
Downing). We observed this charging effect in 49% of the COPII images collected using C-
Flat™ grids under cryo conditions. Interestingly, charging was usually seen only in the first
(tilted) image of each pair despite the long time delay (up to 29 minutes) between collection
of the first and second tilt images (example, Figure 4). To eliminate the possibility that charging
in the first image was due to the tilt direction, half the COPII OTR ice dataset was collected
using an initial tilt of 45° and the other half using -45°. This had no discernible effect on the
observation of charging in the first image. Conversely, the use of a camera pre-exposure set to
100ms appeared to abolish the effect of charging but at the cost of 20% of the total specimen
dose. We also note that the effect of charging appeared greatly reduced on the prototype
CryoMesh™ grid we tested, but we reserve making definitive and quantitative statements on
this result as the topic of a future paper.

Discussion
Alignments

Efficient collection of tilted image pairs requires more fastidious microscope alignment than
is usually necessary since stage tilting can both translate the sample and move it away from
the focal plane. During our early testing we found that our tracking routine could track the
position of targets even with large optical axis and z-height misalignments but the autofocus
routine could not compensate adequately for the changes in focus. Additionally we found that
using image shifts to move to targets, a common practice when collecting standard 0° data,
complicated matters by actively misaligning the optical axis. This is unfortunate since image
shifts are very accurate and correctly centering targets is an important criterion when trying to
achieve better overlap between image pairs. Although it would have been feasible to use image
shifts for targeting, it would have required a complex focusing scheme and occasional z-height
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corrections- essentially replacing one inaccurate mechanical movement (goniometer position)
with another (goniometer height).

Instead we decided to set the image shift and z-height once and gain the advantage that stage
movements would automatically move the sample into the correct focal plane. On a reasonably
flat substrate this means that only one focusing step is necessary to set the defocus of all images
acquired within the same grid square, and target centering only requires a goniometer
movement rather than a change in z-height, image shift, and focus. The relative inaccuracy of
goniometer movement compared to image shift is compensated by our iterative movement
routine, which works well in practice since stage movement error is proportional to the distance
traveled (Pulokas et al., 1999). One disadvantage of iterative stage targeting is an increase in
the dose accumulated by the specimen as a result of the images acquired during this procedure.
However the total dose accrued at the targeting magnification is on the order of < 0.01 e-/A2

and thus a very large number of targeting images can be taken before they become a significant
percentage of the total dose.

Proceeding directly from a very low magnification targeting image directly to the high
magnification image removes an intermediate magnification step that is commonly used in
standard 0° MSI Leginon runs. This intermediate magnification serves two purposes, it
provides a step between inaccurate stage movements and accurate image shifts and it provides
a higher magnification image from which it may be easier to distinguish areas that contain
good ice or well-distributed sample. With more experience it has become apparent that the
quality of the ice can often be judged at low magnification, and while the sample distribution
cannot be as easily assessed, the grid can instead be rapidly screened for desirable sample
distribution prior to the start of automated data collection.

Feature Detection and Correlation
Feature based tracking offers the advantage of being able to provide an affine relationship
between two images without a priori knowledge of the imaging conditions and in the presence
of complications such as occlusion. As a result, it provides the ability to track targets not only
across tilts, but also through translations, rotations, and scale changes without modification to
the underlying algorithm. When using cross-correlation to track tilt changes it is necessary to
explicitly provide several variables, including the tilt angle of both images and the position
and orientation of the tilt axis in both images. The tilt angle is used to compensate for image
compression and should be accurate (not relative) since the compression seen when going from
-4° to 51° is not the same as the compression seen when going from 0° to 55°. Another easily
overlooked factor is the image rotation that may be introduced while tilting due to mechanical
peculiarities in the goniometer (for our Tecnai F20 this can be 10° when going to -45° to 45°).
If any of these factors are unaccounted for they can lead to systematic tracking errors.

When tilting the specimen stage at low magnifications we also commonly observe many large,
non-planar image changes that complicate tracking. These include the grid square profiles,
pieces of contamination, and the carbon surface, which translate separately due to different
heights. The effect is most clearly seen by observing how holes in the carbon surface disappear,
or appear, behind grid bars. Feature based correlation using RANSAC does a good job of
dealing with these occlusions by voting for the affine transformation with the largest number
of correspondences. Since the carbon surface always has the most features (cracks, markings,
holes, grains, etc.) the correlation is very strongly biased towards tracking the carbon surface.

Automation of RCT/OTR Data Collection
Images collected using the automated RCT/OTR application are of consistently high quality
(excepting cases of charging) and the defocus values fall within a range reasonable for low-
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resolution initial model construction. The most serious problem affecting the quality of the
data is the effect of charging when imaging tilted specimens in vitreous ice. Our example
datasets showed that if no steps are taken to avoid charging, up to half the images can exhibit
the effect, and unfortunately, this half almost exclusively consists of the first image of each
pair, making the useable throughput very low. Fortunately, various solutions to this problem
exist, such as the use of pre-exposure, carbon sandwiching (Gyobu et al., 2004), and new grid
substrates. Of these methods we tested the use of pre-exposure, and did preliminary evaluations
of a new grid substrate, CryoMesh™. The use of pre-exposure removed the effect of charging
at the expense of increased dose, but charging in an area would not recur if it had been
previously exposed, even after a significant period of time (30 minutes). This leads us to believe
that only the first image of each tilt pair, rather than every image, requires the use pre-exposure
making the added dose requirement more bearable. Likewise, the use of the new CryoMesh™
substrate seemed to greatly reduce the effect of charging. These two observations, along with
the results reported for the carbon sandwich technique, lead us to conclude that while RCT/
OTR data collection in vitreous ice may be more difficult than it is in stain, it is still made
accessible and efficient using an automated method.

The Leginon RCT/ORT application considerably improves the throughput of tilt pair data
acquisition and automates a process that is difficult and tedious to do by hand. The usual rate
of data acquisition when using Leginon is on the order of 1000 high magnification 4K CCD
frames every 24 hours (Stagg et al., 2006). Our results show that we can now achieve a similar
rate of data acquisition even when acquiring tilted pairs of images. The principal reasons that
RCT/ORT application is competitive with standard Leginon MSI data acquisition is that the
overhead of tilting is minimized, focus corrections are performed less frequently, and
intermediate targeting steps have been eliminated.

The value of automated RCT/OTR data collection is two-fold. Now that it is more accessible
it is our wish to use it routinely prior to, during, or after, standard data collection. This will
hopefully provide a useful springboard from which to deal with new samples that are
structurally uncharacterized or that have multiple conformations. The second benefit is that we
can now undertake a much more systematic evaluation of the factors that affect tilted data
collection, such as charging, drift, defocus, etc. This can be used to optimize parameters that
will improve the quality and efficiency of tilted data collection in the future.
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Figure 1.
An overview of automated RCT/OTR data collection as experienced by the end user. The boxes
in red depict actions a user must perform while the boxes in blue depict functions performed
by Leginon. The red arrows denote the semi-automated approach where a user must select the
regions they are interested in imaging and the software handles the rest. The green arrows
depict the fully automated approach where Leginon determines the regions of interest
automatically. The images on the right provide a visual example of each step in the process
and demonstrate the order in which images are collected.
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Figure 2.
The three panels illustrate the microscope z-height and optical axis alignment that is performed
prior to automated collection of RCT or OTR data. Panel A shows the image translation (red
arrow) seen when the microscope z-height is set incorrectly and the stage is tilted to either side
of 0°. By measuring this displacement it is possible to correct the z-height regardless of the
position of the optical axis. Panel B shows the microscope when the z-height is set correctly
but the tilt axis is misaligned with the optical axis. This misalignment manifests itself, as shown,
as another image displacement and defocus change when the stage is tilted away from 0°. Since
this alignment has no effect when the stage remains at 0° it is commonly ignored in standard
data collection. Fortunately it can be corrected electronically by using an image shift adjustment
to compensate. Panel C shows the final aligned state where sample remains within a consistent
focal plane regardless of tilt angle or stage movement (stage movements translate the specimen
along the tilt plane).
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Figure 3.
Shown, is an overview of feature detection and matching. Panel A is a view of a grid square
at 0° tilt. The border of a region (in this case a hole in the carbon) found using MSER is shown
in red, and around it, in green, is the ellipse that has been fitted to the border (the ellipse radii
are multiplied by 2). In the blue inset is the normalized feature (using the fitted ellipse
parameters), on the left, and its derivative image, on the right. The green graph, superimposed
in the panel, represents the PCA-SIFT descriptor for this feature, and is composed of the 36
principal components derived from the derivative image. Panel B shows two features found in
an image of the same grid square tilted to 55°. Of note is that the fitted ellipses are now eccentric,
and when normalized, the features become circular. This illustrates the reason why the MSER
detector is affine invariant. The PCA-SIFT descriptors for two features in Panel B are also
shown, and as expected, the feature that corresponds to the one in panel A has a very similar
descriptor, while the other does not. The fact that the descriptors do not match perfectly has
several potential sources, i.e. noise, detector instability, and the fact that an EM image is created
by projection rather than reflection. Reasonable differences between correctly matched
descriptors are fairly common in feature tracking, where the most important criterion is
generally not how perfect a correct match is, but how well it compares to all the incorrect
matches.
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Figure 4.
An example OTR image pair taken from the COPII vitreous ice dataset. In panel A is the first
tilt image of a pair, taken at -45°, showing considerable charging towards the bottom half of
the image. The charging resembles drift except that the effect is localized to only a portion of
the image. In panel B is the second image (at 45°) taken 30 minutes later showing little evidence
of the previous charging. The image overlap for this pair was ~90%. This image pair was taken
before the use of a pre-exposure timing on the camera shutter.
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Figure 5.
Example tilt pairs taken from the NSF negative stain, GroEL in vitreous ice, and COPII in
negative stain datasets, these images are representative of most images in the dataset. An
example of the COPII dataset was shown in Figure 4. Landmarks have been highlighted to
make the image overlap easier to assess by eye. The tilt axis in these images largely runs along
the y axis, though there is a small rotational component of about 5-10° in the orientation of the
tilt axis between each pair. This is an example of a difference that is automatically incorporated
when using feature based tracking. Note that in comparison to the vitreous ice tilt pair shown
in Figure 3, the GroEL (on CryoMesh™) image pair shows no sign of charging in either image
even without the use of pre-exposure.
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Figure 6.
A histogram that plots the number of images (as a percent of the total number) vs. the percent
image overlap between tilt pairs. For example, ~38% of the negative stain image pairs, and
~25% of the vitreous ice image pairs, have an overlap of 95% ± 2.5%. The line graphs represent
the cumulative sum of these distributions and are included to aid in an alternate assessment of
the image overlap. For example, ~80% of the vitreous ice image pairs have an overlap greater
than, or equal to, 77% and ~80% of the negative stain image pairs have an overlap of greater
than, or equal to, 85%.
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Figure 7.
A bar graph showing the deviation between the measured defocus and the nominal defocus for
the image pairs collected. As can be seen the negative stain dataset is very tightly clustered
around the desired defocus, while the ice datasets, are not as tightly clustered, but fall within
a useable range of defocus values.
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