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Abstract
Rationale and Objectives: The clinical utility of interactive computer-aided diagnosis (ICAD)
systems depends on clinical relevance and visual similarity between the queried breast lesions and
the ICAD-selected reference regions. The objective of this study is to develop and test a new ICAD
scheme that aims improve visual similarity of ICAD-selected reference regions.

Materials and Methods: A large and diverse reference library involving 3000 regions of interests
was established. For each queried breast mass lesion by the observer, the ICAD scheme segments
the lesion, classifies its boundary spiculation level, and computes 14 image features representing the
segmented lesion and its surrounding tissue background. A conditioned k-nearest neighbor algorithm
is applied to select a set of the 25 most “similar” lesions from the reference library. After computing
the mutual information between the queried lesion and each of these initially selected 25 lesions, the
scheme displays the six reference lesions with the highest mutual information scores. To evaluate
the automated selection process of the six “visually similar” lesions to the queried lesion, we
conducted a two-alternative forced-choice observer preference study using 85 queried mass lesions.
Two sets of reference lesions selected by one new automated ICAD scheme and the other previously
reported scheme using a subjective rating method were randomly displayed on the left and right side
of the queried lesion. Nine observers were asked to decide for each of the 85 queried lesions which
one of the two reference sets was “more visually similar” to the queried lesion.

Results: In classification of mass boundary spiculation levels, the overall agreement rate between
the automated scheme and an observer is 58.8% (Kappa = 0.31). In observer preference study, the
nine observers preferred on average the reference lesion sets selected by the automated scheme as
being more visually similar than the set selected by the subjective rating approach in 53.2% of the
queried lesions. The results were not significantly different for the two methods (p = 0.128).

Conclusion: This study suggests that using the new automated ICAD scheme, the inter-observer
variability related issues can thus be avoided. Furthermore, the new scheme maintains the similar
performance level as the previous scheme using the subjective rating method that can select reference
sets that are significantly more visually similar (p < 0.05) than when using traditional ICAD schemes
in which the mass boundary spiculation levels are not accurately detected and quantified.
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I. INTRODUCTION
Computer-aided detection (CAD) of breast abnormalities is rapidly becoming a well accepted
clinical practice to assist radiologists interpreting screening mammograms [1,2]. Studies have
found that radiologists' attitude toward and acceptance of CAD-cued micro-calcification
clusters and masses are substantially different [3,4]. Due to the high sensitivity (e.g., > 98%
[5]), a large number of radiologists heavily rely on CAD-cued results when searching for and
identifying micro-calcification clusters depicted on mammograms [4], This practice
substantially improves the efficiency of radiologists when interpreting screening
mammograms and helps radiologists detect more subtle cancers associated with micro-
calcifications [6]. However, the lower CAD sensitivity for mass detection and the higher false-
positive rates reduce radiologists' confidence in CAD-cued masses [4]. As a result, although
CAD schemes could potentially detect a larger fraction of false-negative cancers depicted as
subtle masses [7,8], radiologists frequently discard CAD-cued subtle masses in the clinical
practice [9,10]. A recent study reported that using current commercialized CAD systems did
not increase cancer detection rate but significantly increase recall (false-positive) rate in the
clinical practice [11]. To improve CAD performance and increase radiologists' confidence in
CAD-cued masses, investigators have been developing interactive computer-aided diagnosis
(ICAD) schemes to identify visually similar and clinically relevant mass lesions [12-15]. Once
a suspected mass lesion is queried by the observer, ICAD scheme segments the queried lesion
and computes the likelihood of this region being associated with cancer based on comparisons
with sets of “similar” lesions CAD-selected from a reference library. These “similar” lesions
with verified outcome are displayed on the ICAD workstation and used as a “visual aid” to
assist the radiologist in his/her decision making. Preliminary observer performance studies
suggest that using an ICAD concept could improve radiologists' performance in classifying
between malignant and benign masses [12] as well as increase their confidence in the CAD-
cued results [16].

Although providing observers with a visual aid is a promising concept, to be effectively used
the reference lesions selected by ICAD must be considered as “clinically relevant” and
“visually similar” to the queried suspected lesion. Previous studies demonstrated that due to
the substantial difference between computer vision and human vision, ICAD-selected “similar”
lesions are often not considered by observers as “visually similar” [13,14]. As a result, when
observers believe that ICAD scheme selected a “poor” set of reference images for comparison,
they are likely to ignore this visual aid.

Our previous study has demonstrated that after the differences in a number of image features
(i.e., region size and circularity) have been controlled, the poor visual similarity of the ICAD-
selected reference lesions was mainly caused by the substantial difference of the lesion
boundary spiculation levels between the selected lesions. Without an accurate and robust
method to detect spiculated rays around the mass boundary and quantify mass spiculation
levels, automated selection of visually similar mass lesions remains one of the most difficult
technical challenges in ICAD development. In an attempt to improve the selection of the
reference lesions with respect to visual similarity, we previously tested a subjective
(interactive) rating method in an attempt to improve the visual similarity of the ICAD-selected
reference mass lesions [14]. The boundary spiculation levels of all 3000 lesions stored in our
reference library were rated by an experienced observer and the ICAD scheme was restricted
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in searching for similar reference lesions that were rated as having spiculation levels similar
to the queried lesion. In a two alternative forced choice observer preference experiment
involving nine observers, there was an overall significant preference (p<0.01) for the reference
lesion sets selected by the interactive rating method in which the spiculation levels of all
reference lesions and the queried lesion were rated by the same observer as compared with the
lesions sets selected by a traditional non-interactive ICAD method [14].

Although the study suggested that in general human observers were quite sensitive to mass
spiculation levels in determining “visual similarity” [14], our recent study highlighted the large
inter-observer variability when rating mass spiculation levels. When three experienced
radiologists independently rated a set of 240 randomly selected mass lesions using a nine
category scale in order to divide the mass lesions into three groups that represented “none/
minimal,” “moderate,” and “severe/significant” spiculation levels, there was a relatively low
level of agreement among the three radiologists. Agreement rates between paired observers
ranged from 41% to 59% (Kappa = 0.14 to 0.31) [17]. Because of the large inter-observer
variability, when applying this subjectively interactive rating approach in the ICAD system,
different observers may rate the same queried mass lesion into different spiculation level. As
a result, ICAD-selected reference lesions using the subjective rating method may be considered
“visually similar” by some observers and “not similar” by others (due to the disagreement in
spiculation rating between these observers and the observers who pre-rated all reference mass
lesions).

The visualized spiculation level of mass boundary has been well recognized as an important
factor in classification between malignant and benign masses [18]. Several techniques have
been developed and tested to detect and classify between spiculated and non-spiculated masses
[19-21]. One group used the analysis of locally oriented edges (ALOE) and a binary decision
tree (BDT) [19]. Since spiculation frequently appears as linear structures with a positive image
contrast and the structures lie in all radial directions to the mass center, a second group used
the gradient directions (orientation) at pixels on, or close to, spiculation to detect and classify
spiculated masses [20]. A third group defined a 30-pixel-wide band around the segmented mass
boundary contour and then used a threshold and labeling algorithm to detect and classify
between spiculated and non-spiculated masses [21]. Despite these efforts, adequate detection
of mass spiculation remains a technical challenge. In addition, without a “ground truth” it is
often difficult to quantify and correctly classify masses into different severity categories of
spiculation levels.

To overcome the difficulty of inter-observer variability and generate a consistent “match”
between queried regions and ICAD-selected reference image sets, we developed a new
automated scheme that detects spiculated rays and classifies masses into three groups of
spiculation levels. The ICAD scheme then uses a two-step approach including conditioned k-
nearest neighbor (KNN) algorithm and mutual information (MI) template matching to select
the visually similar lesions. To test this new ICAD scheme, we conducted a two- alternative
forced-choice observer preference study. It compared the “visual similarity” between queried
mass lesion and two sets of selected “similar reference lesions,” one by the new ICAD scheme
and the other by the previously reported scheme using a subjective rating method [14]. The
goal of this study is to develop a new technique that automatically selects visually similar
reference lesions in such a manner that the selected lesions are at least as well appropriated as
those selected by our previously developed subjectively interactive rating method [14] used
for comparison.
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II. MATERIALS AND METHODS
A. Automated detection and classification of mass region spiculation levels

The new automated scheme for detecting and classifying mass boundary spiculation levels
includes five steps. An example showing the detection results at each step is shown in Fig. 1.
First, once a suspected mass is queried by an observer, the scheme searches for an initial growth
seed that is defined as the pixel with local minimum digital value inside a window of 4mm ×
4mm centered at the queried location. An adaptive multi-layer topographic region growth
algorithm [22] is applied to define the initial mass boundary contour. Based on the result of
the region growth, the scheme computes a set of 14 image features to represent the segmented
lesion and its surrounding tissue background. The detailed definitions and computing methods
for these 14 features have been previously reported [14]. A feature-based artificial neural
network (ANN) is then applied to generate an initial detection score (the likelihood of the
suspected region depicting an actual mass) [23]. The topographic region growth algorithm had
been implemented and used in our previous CAD scheme [8]. It plays an important role in
reducing false-positive detections in that it typically eliminates approximately 75%-80% of
suspected lesions (i.e., from an average of over 15 to approximately 3 regions per image)
identified by the Difference-of-Gaussian filtering method employed to identify all possible
regions that may depict masses; thereby, sensitivity remains high (i.e., > 85% of image based
sensitivity or > 95% case based sensitivity) [23]. In order to minimize the risk of over
segmentation (penetration of the growth region into surrounding normal breast tissue), current
growth threshold in each layer is conservatively controlled by local contrast measurement
[22]. As a result, segmented mass lesions are typically slightly smaller than the actual masses
depicted on the images (based on visual examination). In a fraction of mass lesions, the region
growth algorithm can be “trapped” by local structures (e.g., a cyst) inside the masses resulting
in partial segmentation. Fig. 1 (b) shows the segmented boundary contour of the mass shown
in Fig. 1 (a) after applying the topographic region growth algorithm.

Second, the scheme applies an active contour algorithm [24] to improve mass segmentation.
The active contour is a deformable curve controlled by an internal and an external force.
Selection of the initial growth boundary contour is important for avoiding the algorithm being
trapped by local image noise [25]. In general, the internal force imposes a smoothness constraint
on the contour, and the external force is typically determined by the magnitude of the image
gradient and moves the vertices to locations with stronger gradients [26]. In mass segmentation,
the assumption that the edge of a mass lesion always has the strongest gradients as compared
with the surrounding background is frequently violated due to tissue overlap inherent to X-ray
projection images. A fraction of subtle mass regions has fuzzy and ill-defined boundaries
surrounded by dense and fluctuating tissue patterns. As a result, active contours can expand
(penetrate) into the surrounding breast tissue. In our scheme, the boundary contour identified
by the topographic region growth algorithm is used as the initial contour of the active contour
algorithm and a map of generalized gradient vector flow representing the external forces [26]
is computed. Unlike to what is the case of a typical active contour algorithm, shrinking is not
allowed in our scheme in order to minimize the risk of being trapped inside the mass lesion.
After completing a new active contour iteration, the scheme re-computes the same set of 14
features and applies the same ANN to compute a new detection score for the revised growth
region. If the new detection score is higher than the previous one (indicating the higher
likelihood of the new growth region being a true-positive mass region), the iteration of active
contour continues. Otherwise, the iteration is terminated and the boundary contour generated
by the previous iteration (with the higher detection score) is used as the final boundary contour.
As shown in Fig. 1 (b) and Fig. 1 (c), after applying the active contour, the estimated mass
boundary contour covers a larger area than when applying topographic region growth algorithm
alone and it is substantially closer to the visually depicted boundary of the mass.
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Third, the scheme detects linear structures (or initial suspected spiculated rays) surrounding
the mass lesion segmented in step 2. For the first two steps, the region growth is conducted
using sub-sampled images with pixel size of 400μm × 400μm to increase computation
efficiency and reduce image noise. However, this step uses the original high resolution image
with pixel size of 100μm × 100μm. The scheme typically extracts a 512 × 512 pixel region of
interest (ROI) centered at the estimated center of the mass. The size of the ROI is large enough
to cover the most breast masses of interest. For extremely large masses, ROI size is
automatically increased by expanding the ROI 5mm away from the identified mass boundary
in all four directions. The mass region boundary detected by the active contour is mapped from
the low-resolution image to the high-resolution image. The scheme then computes two maps.
The first one is a map of the generalized gradient vector flow [26] outside the mass as detected
by active contour algorithm (step 2) and the second one is a “positive contrast” map. For the
first map a pre-trained threshold value (e.g., 80 [17]) is applied to generate a binary
representation of the gradient vector flow. The contrast of the pixel is defined for this purpose
as the maximum pixel value difference between the center pixel (Ii) and any other pixel (In)
inside a 1.5mm × 1.5mm convolution window (Ci = Max[In – Ii)], n = 1 to N). The scheme
detects all pixels whose contrast values are larger than a pre-determined positive threshold
value (e.g., = 150 in our scheme). Then, the scheme uses a logic “AND” operator to select all
suspected pixels remained on both the gradient vector flow map and the positive contrast map.
Other pixels (with lower contrast) detected in the gradient vector flow map are deleted [as
shown in Figure 1(d)].

Fourth, the scheme applies a morphological closing operator to connect neighborhood
(adjacent) regions that might be segmented separately during step 3 (i.e., the broken lines). A
labeling algorithm is applied to all detected regions. Since all spiculation lines (or assigned
pixels) must connect to the initial mass boundary identified in step 2, the scheme selects only
one labeled region whose center is located inside the growth mass lesion and deletes all other
labeled regions [as shown in Fig. 1 (e)].

Fifth, after connecting the detected “spiculated rays” to the mass lesion detected by the two
region growth algorithms (steps 1 and 2), the scheme detects the perimeter pixels by applying
a 3 × 3 window to convolve the image. If the window center overlaps with a pixel inside the
mass and with at least one other pixel of the window located outside the mass lesion, this center
pixel is defined as a “perimeter” pixel [as shown in Fig. 1 (f)]. The scheme then counts the
total number of perimeter pixels (P) and the total number of pixels inside the mass (A). A

“spiculation index” feature F = P 2
A  is computed to represent the spiculation level of the lesion.

The larger the F value, the higher the estimated spiculation level is, since a larger number of
pixels are classified as “perimeter” pixels.

B. Classification of three spiculation levels of reference lesions
We applied this new automated scheme to detect the boundaries of all 3000 suspected lesions
(including 1000 malignant, 300 benign, and 1700 CAD-generated false-positives) contained
in our reference library [14] and used the spiculation index to segment (classify) these mass
lesions into three spiculation groups. The following approach was used to determine the two
threshold values for this group segmentation. First, the spiculation levels of the 3000 reference
lesions were grouped using the subjectively rated scores (1−9) as follows. All lesions with a
subjective rating smaller than 4 were assigned to the first group (none/minimal spiculation),
all lesions with the subjective rating between 4 and 6 (inclusive) were assigned to the second
group (moderate spiculation), and all lesions with rating 7 and higher were assigned to the third
group (severe/significant spiculation). The number of lesions in each group was counted and
recorded. Then, the CAD-generated spiculation indices were sorted and two threshold values
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were determined to segment the 3000 lesions into three spiculation groups with respective
number of lesions equal to those produced by the subjective, observer based rating method in
each group.

C. A new scheme to select and display similar reference lesions
We developed and tested a new fully-automated ICAD scheme that searches in our reference
library for mass lesions similar to an observer queried lesion. The scheme is composed of two
steps. The first step uses a conditioned k-nearest neighbor (KNN) classifier to search for an
initial set of “similar” lesions. The KNN classifier had been trained and optimized using genetic
algorithm and ROC method as previously reported [14]. In brief, three boundary conditions
on the difference in lesion size (area), circularity, and margin spiculation level between a
queried lesion ( Aq, Cq and Sq ) and a reference lesion ( Ar, Cr and Sr ) are applied in the KNN

classifier; they are: (1)
∣ Ar − Aq ∣

Aq
≤ 1

3 , (2) | Cr – Cq |≤ 0.15 , and (3) Sq = Sr . As a result,

the KNN classifier is restricted to select “similar” lesions, each having a comparable size, an
overall similar shape, and the same computed spiculation level to the queried lesion. Restricted
by these three conditions, the KNN measures the “similarity” based on the difference of 14
feature values, fr (x) , between a queried ROI (yq) and a reference ROI (xi) in a multi-
dimensional (n = 14) feature space:

d(yq, xi) = ∑
r=1

n ( f r(yq) − f r(xi))2
The smaller the difference (“distance”), the higher the degree of the computed “similarity”
between paired lesions (the queried lesion and the selected lesion). Computed distances
between the queried lesion and each of the lesions in the reference library are recorded and
sorted (rank ordered) from the smallest to the largest. The first K-nearest lesions in the rank
ordered list are selected as the K “most similar” reference lesions. In our current study, K = 25.

The second step of the scheme uses a mutual information (MI) algorithm that aims to further
improve visual similarity between the queried lesion and each of CAD-selected reference
lesions. MI is originally defined as an intensity-based measure of general independence
between two random variables x and y [27]. Applying MI concept to the two-dimensional
images allows measuring the similarity between the pixel value distributions in two images.
MI is widely considered as being one of the most effective approaches for the registration of
multi-modality medical images [28] and for template matching of breast mass lesions [29]. To
compute MI in our scheme, a rectangular window (ROI) is first drawn to cover the boundary
of each selected lesion. Then, the size of the ROI is increased 6mm (e.g., 15 pixels in sub-
sampled ROI with pixel size of 400μm × 400μm) in all four directions to include the
surrounding normal tissue background used for image feature computation [14]. A same size
ROI is mapped to each of the reference images. The MI of two compared ROIs, X (e.g., the
queried ROI) and Y (e.g., the reference ROI), is computed as:

I (X ; Y ) =∑
x
∑
y

P(X , Y )log2
P(X , Y )

P(X )P(Y )

where, P(X,Y) is the joint probability density function (PDF) of the two ROIs, P(X) and P(Y)
are the marginal PDFs. We used a histogram approach to compute the PDFs. In this approach,
the joint PDF is estimated by computing the fraction of pixels in a particular pixel values bin
in the 2-D histogram divided by the total number of pixels inside the ROI [30]. Before
computing these PDFs, normalization of local histogram is applied to pre-process each paired
ROIs in an attempt to reduce image noise and compensate the irregular variation or shift of the
pixel value distributions. Specifically, the mean (μ) and the standard deviation (σ) of the pixel
value distributions are calculated for each ROI. The interval [μ − 2σ, μ + 2σ] is divided into
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128 pixel value bins. All pixels with values falling outside the interval range are assigned to
the nearest ending bin during histogram calculation. After MI computation between the queried
lesion and each of the reference lesions initially selected by the KNN classifier, the 25 “similar
reference lesions” are re-sorted based on the computed MI values. The first N reference regions
(e.g., N = 6) with the highest MI values in the sorted list are finally selected as the reference
lesions “most similar” to the queried one. These lesions are displayed on an ICAD workstation
for observers to visually compare between the queried lesion and the CAD-selected reference
lesions. This aims at assisting radiologists in their decision making for diagnosis of the queried
suspected mass lesion.

D. An observer preference study
To assess whether the new automated scheme improves visual similarity between the queried
mass lesion and the CAD-selected reference lesions we performed a two-alternative forced-
choice observer preference study. Since visual similarity is a subjective concept and there is
no “ground truth,” absolutely objective similarity rating is difficult [12]. Hence, the two-
alternative forced-choice observer preference study is considered a practical and effective
approach for this purpose [31,32]. The experimental design and data analysis procedure were
similar to our previously reported study [14].

We selected 85 mass lesions from our reference library and defined these as “queried” lesions.
For each queried lesion, two ICAD schemes were independently used to select two sets of six
“most similar reference lesions” from our reference library. In the first scheme, the mass
boundary spiculation levels of the queried and reference lesions had been subjectively rated
by one experienced observer. In the second scheme, the new automated method is used to
classify mass boundary spiculation levels. The two reference sets were displayed for
comparison together with the queried lesion (Fig. 2) on our ICAD workstation. To better
compare the difference in visual similarity in this study, we allowed for no more than one
reference lesion to be the same in the two reference sets (Technically, the two methods might
have selected the same reference lesion, or lesions, in some cases). A computer management
program was implemented in the study to control the reading process from loading each queried
mass, randomly displaying the two reference sets (left and/right to the queried lesion), and
recording observer's preference.

Nine observers (including five board certified radiologists experienced in mammography and
four investigators highly familiar with CAD research in mammography) participated in this
observer preference study. Each observer visually examined the images displayed on the screen
of the ICAD workstation and was forced to select one set of references (left group or right
group) as being overall “visually more similar” to the queried lesion displayed in the center of
the workstation screen (Fig. 2). We emphasized to each observer that he/she should make the
choice based on the “overall” preference for one set (a group of six reference lesions) and not
based on the “similarity” of any individual reference lesion in the set to the queried mass lesion.
After reviewing a case, the observer selected one of the two sets by clicking the left button of
the computer mouse with an arrow (mark) positioned anywhere inside the preferred set (left
or right group). The preference selection was recorded and the next queried mass along with
two new sets of selected reference lesions was instantaneously displayed for review and
selection.

Recorded preference data were tabulated and compared for each individual observer and the
group of nine observers (the average of preference results). One sample test for a binomial
proportion (normal theory method with correction for continuity [33]) was used to test whether
there was any significant difference in observers' preference for one of the two kinds of sets.
A two sided test (p<0.05) was used for determining significance.
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III. RESULTS
The agreement for rating boundary spiculation levels of mass lesions between the automated
scheme and the subjective rating of one observer who rated spiculation levels of all reference
lesions in the library is summarized in table 1. Among a total of 3000 reference lesions in the
library, 1763 reference lesions were assigned to the same spiculation group (i.e., none/minimal,
moderate, and severe/significant spiculation level) by two methods (subjective rating and the
automated scheme) as shown in table 1. The overall agreement rate between two methods was
58.8% (with Kappa coefficient = 0.31).

Each of the nine observers completed the reading session in less than 30 minutes recording 85
forced choice preferences (selections) between the two sets of “similar” reference lesions
presented for each of the queried mass lesion. The preferences of each of the observers are
summarized in table 2. The five radiologists preferred between 45.9% and 63.5% of the
reference image sets selected by the automated scheme as “more visually similar” to the queried
masses of interest. The four non-clinician observers preferred the reference lesions selected by
the automated scheme from 50.6% to 58.8% of the cases. The average preference level of the
nine observers in identifying the reference sets of similar lesions selected by the automated
method (53.2%) as “more similar” over the subjective rating method (46.8%) was not
statistically significantly different (p = 0.128). Similarly, the differences were not significant
for either of the observer groups (radiologists and non-radiologists).

The number of cases for which a given number n of observers (n = 0 to 9) preferred the reference
sets selected by the automated scheme as “more similar” is summarized in Fig. 3. This figure
shows that for 9 of the 85 queried masses (10.6%), all nine observers preferred the reference
image set selected by the automated scheme, while for 7 of the 85 queried lesions (8.2%), all
observers preferred the reference set selected by subjective rating method. In 49 of the 85
queried cases (57.6%), more than half (at least 5 out of 9) of the observers preferred the
reference sets selected by the automated scheme.

IV. DISCUSSIONS
Our previous study demonstrated that the inclusion of a mass spiculation measure into the
selection process for reference lesions could significantly improve the “visual similarity”
between queried mass and ICAD-selected reference lesions [14]. However, visual rating of
spiculation levels is highly subjective and somewhat ill-defined. Therefore, there is a large
inter-observer variability when rating spiculation levels of mass region boundaries [17].
Different observers may rate the same queried lesion with different spiculation levels that may
or may not match with the spiculation levels pre-rated and recorded by other observers in the
reference library. As a result, the utility and performance of the ICAD system may be observer-
dependent. ICAD scheme could not only select different reference lesions for different
observers and might also generate different classification scores for the same queried suspect
mass. To overcome these limitations (including inter-observer variability), we developed and
tested a new automated scheme that aimed to consistently detect spiculation levels of masses
and classify them into one of three groups (in the present study). The same scheme is used for
both the queried lesions and each of the recorded lesions in the reference library.

Unlike previously developed computer schemes that detect and classify spiculated and
nonspiculated masses [18-21], our scheme uses a simple summary index to quantify spiculation
levels of any suspected masses. As do most of current CAD schemes, our scheme used the
low-resolution image to define the initial boundary contour of a suspected mass, thereby
reducing image noise and increasing the computation efficiency of the region growth
algorithm. Our scheme then uses the high resolution image to detect spiculations connected to
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the lesion boundary and distributed along radial directions from the lesion center. By including
the spiculated lines (if any), the scheme then computes a single spiculation related summary
index (feature) to quantitatively classify mass spiculation levels. Although this feature, the

square of perimeter divided by the mass area (F = P 2
A ), has been used in a number of CAD

schemes [14,34], the difference is that our automated scheme can detect more “spiculated rays.”
Hence, the number of counted perimeter pixels is substantially increased for the spiculated
masses. The agreement between the speculation levels assigned by this automated summary
index and those assigned by the subjective rating of the single observer (Kappa = 0.31 as shown
in table 1) is quite comparable to the agreement reported for the subjective ratings of two
observers [17].

A number of different template matching approaches (or statistical models) have been
investigated as the basis for similarity measures of breast masses [35]. Among these,
information theory based mutual information (MI) is considered one of the most effective
methods to search for similar mass regions depicted on different images [15]. However, the
previously reported MI approach [29,35] has two disadvantages related to the computing
efficiency and measurement reliability when used in ICAD schemes. The different approach
used in our study aimed at overcoming these disadvantages. First, using MI to search for similar
regions requires significant computing time as the size of reference library increase. With our
current ICAD workstation, however, the time for segmenting a queried lesion, computing the
image related features, and identifying a set of “similar reference regions” from the library
using the KNN classifier is less than one second because all features used by KNN have been
pre-computed (off-line) and stored in the library. Using MI based measures to replace the KNN
classifier, the process currently takes approximately 1.5 minute because all image processing
routines of pixel value distributions must be conducted on-line. Although computing speed
may be increased by code optimization and the use of a faster computer, the continually
increasing size of the reference library in ICAD development rules out the use of a MI based
approach as the primary one for real-time clinical applications. A previous study has also
suggested that the success and efficiency of any method based on image content searching
depend on how effective the system is in discarding the majority of irrelevant reference regions
early in the process [36]. Therefore, to take advantage of the MI based approach in the measure
of similarity we developed and tested a two stage scheme. The KNN feature based classifier
quickly discards 99% of the 3000 reference lesions, and the MI related measure is only
computed for a small subset of the “most similar” candidates (e.g., 25 in this study). Using our
current ICAD workstation this two step process takes less than one second. Hence, when the
observer interacts with our ICAD system, the “real-time” response can be achieved. Observers
do not notice any time delay between querying a suspected lesion and viewing ICAD results.

Second, the previous studies applied MI to the ROIs with a fixed size (e.g., 512 × 512 pixels
[29]). This approach reduces the reliability of MI results when comparing the masses with
different sizes. In general, the accuracy of similarity measures of masses decreases as (1) the
size of masses decreases and (2) the location of the masses is closer to the breast skin boundary.
The sizes of ROIs used in our scheme for MI computation vary as the segmented sizes of the
queried mass regions. Before computing MI, the majority of un-related normal (background)
breast tissue are eliminated. Therefore, MI focuses on the comparison of segmented masses
with controlled surrounding background tissue. The accuracy of MI-generated similarity
measures is independent from the actual size of the queried mass lesions. This improves the
reliability of MI-based similarity measures applied in ICAD schemes.

We are aware of the limitation of any measure of the agreement between spiculation levels as
rated by an automated scheme and observers [17] as well as the shortcomings of using CAD
performance (e.g., ROC or FROC) to evaluate the accuracy of visual similarity measures of
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ICAD schemes [15]. In the absence of “ground truth” the more relevant approach to evaluate
the visual similarity of mass lesions selected by ICAD is an observer preference study [13,
14]. In this study we used the previously developed subjective rating method (that can select
reference sets that are significantly more visually similar (p < 0.05) than when using the CAD
schemes in which the mass boundary spiculation levels are not accurately detected and
quantified [14]) as a new baseline for the comparison of the new automated scheme. We found
that the performance of the automated scheme was comparable to that of the subjective rating
approach, which suggests that this fully-automated scheme could replace the subjective rating
method currently used in our ICAD system and generate consistent results in rating (or
classifying) mass spiculation levels without reducing the visual similarity of selected reference
lesions. Although a fraction of the 85 queried masses used in this study had already been used
in our previous study [14], and despite the fact that seven of the nine observers had already
participated in the previous observer preference study, we believe that the large time delay
between the two studies (approximately 14 months), together with the random display of the
queried lesions, significantly reduced (if not completely eliminated) any possible biases of the
preference results recorded in this study.

Radiologists' confidence in and reliance on ICAD results for their decision making depend
largely on whether they believe ICAD-selected reference lesions are clinically relevant and
visually similar to the queried lesion. In this study, we only focused on the improvement of
visual similarity between the queried masses and the ICAD-selected reference lesions with a
fully-automated scheme. Because the reference library and the 14 image features used in this
study were already used in our previous studies, the overall ICAD performance in classification
between true-positive and false-positive (or malignant and benign) mass lesions should remain
the similar level (e.g., the areas under ROC curves = 0.87) as we reported in two previously
independent studies using the KNN classifiers with different learning methods and conditions
[14,37].

In summary, we have developed a new computer scheme to automatically detect spiculation
in mass region and classify it in three groups. We then integrated the computed spiculation
index into our new ICAD scheme that uses two stages (feature-based KNN classifier and MI
based template matching) to select a set of reference lesions similar to the queried suspected
mass. The results of the two-alternative forced-choice observer preference study demonstrate
that reference region sets selected by this new ICAD scheme are comparable in “visual
similarity” to those selected when using an subjective (interactive) rating method in which the
queried lesion and all reference lesions were subjectively rated by the same observer.
Therefore, the new ICAD scheme provides an alternative approach to consistently select
reference lesions in real-time from a large reference library while maintaining high level of
perceived visual similarity between selected reference sets and the queried mass. Although the
results are encouraging, this is a very preliminary study. Further clinical and laboratory studies
are needed to assess whether using this new ICAD scheme can significantly increase the cancer
detection rate and/or reduce false-positive rate. The reading efficiency of radiologists when
using ICAD also needs to be investigated in the future studies.
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Figure 1.
Example showing the five steps for detecting and classifying mass region spiculation. (a) ROI
depicting a mass region. (b) Mass boundary resulting from the topographic region growth
algorithm. (c) Mass boundary obtained from the active contour algorithm. (d) Initial detection
of suspected pixels after a logical (“AND”) operation to combine the two maps of generalized
gradient vector flow and positive contrast. (e) The final estimated mass region after the
application of the morphological closing operation and labeling algorithm. (f) The computed
perimeter pixels of the mass region.
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Figure 2.
An example of a queried mass region (center as pointed by the arrow) and two sets of the
reference regions selected by the subjective rating method (left) and the automated method
(right).
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Figure 3.
Number of cases (among the 85 ones) in which a given number of observers (n = 0 to 9)
preferred the reference set selected by the automated scheme to the one selected by the
subjective rating method.
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Table 1
Agreement between the number of reference regions classified into one of three spiculation categories as
subjectively rated by an observer and the new automated scheme.

Spiculation level None/minimal Moderate Severe/significant Total (Observer)
None/minimal 499 410 9 918

Moderate 415 983 197 1595
Severe/significant 4 202 281 487

Total (Scheme) 918 1595 487 3000
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