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Although it has been widely applied in identification of genes responsible for biomedically, economically, or 
even evolutionarily important complex and quantitative traits, traditional candidate gene approach is largely 
limited by its reliance on the priori knowledge about the physiological, biochemical or functional aspects of 
possible candidates. Such limitation results in a fatal information bottleneck, which has apparently become an 
obstacle for further applications of traditional candidate gene approach on many occasions. While the 
identification of candidate genes involved in genetic traits of specific interest remains a challenge, significant 
progress in this subject has been achieved in the last few years. Several strategies have been developed, or being 
developed, to break the barrier of information bottleneck. Recently, being a new developing method of 
candidate gene approach, digital candidate gene approach (DigiCGA) has emerged and been primarily applied 
to identify potential candidate genes in some studies. This review summarizes the progress, application 
software, online tools, and challenges related to this approach. 
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1. Introduction 
Based on the polygenic hypothesis, classical 

quantitative genetics considers a black box to reveal 
the holistic status of all genes associated with 
variation of complex and quantitative traits by 
complicated statistical methods. Such strategy could 
not independently decompose individual genes, 
which usually follow the Mendel's law, from the 
polygenic system of the investigated traits. Advances 
in molecular methods and quantitative techniques 
have clearly changed this status, which are able to 
look inside the black box of polygenic control for 
complex and quantitative traits with a more accurate 
description of how genes act to determine the 
phenotypic variation. More recently, major progress 
has been made in this field with the advent of 
genomics and its potential contribution to 
development of quantitative genetics. One of the hot 
interests of current quantitative genetics is 
systematically exploring an exact genetic architecture 
of the number, distribution and interaction of loci 
affecting the variations of biomedically, economically, 
and evolutionarily important complex and 
quantitative traits. 

There are two approaches for genetic dissections 
of complex and quantitative traits, i.e., genome-wide 
scanning and candidate gene approach, which each 
has specific advantages and disadvantages. 
Genome-wide scanning usually proceeds without any 
presuppositions regarding the importance of specific 
functional features of the investigated traits, but of 

which the principal disadvantage is expensive and 
resource intensive. In general, genome-wide scanning 
only locates the glancing chromosomal regions of 
quantitative trait loci (QTLs) at cM-level with the aid 
of DNA markers under family-based or 
population-based experimental designs, which 
usually embed a large number of candidate genes. In 
comparison, the alternative candidate gene approach 
has been proven to be extremely powerful for 
studying the genetic architecture of complex traits, 
which is a far more effective and economical method 
for direct gene discovery. Nevertheless, the 
practicability of traditional candidate gene approach is 
largely limited by its reliance on existing knowledge 
about the known or presumed biology of the 
phenotype under investigation, and unfortunately the 
detailed molecular anatomy of most biological traits 
remains unknown. It is quite necessary to develop 
new strategies to break the restriction of information 
bottleneck, although considerable candidate genes 
have already been identified. 

In this article, we review and summarize the 
main research advances in the subject, including the 
outline of candidate gene approach and the extended 
strategies for breaking the information bottleneck of 
traditional candidate gene approach. Finally, as a new 
development of candidate gene approach, digital 
candidate gene approach (DigiCGA) was discussed 
and some research outlooks were given to further 
promote this valuable research subject. 
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2. A glance of traditional candidate gene 
approach 
The rationale of candidate gene approach states 

that a major component of quantitative genetic 
variation of phenotype under investigation is caused 
by functional mutation of putative gene. Candidate 
genes are generally the genes with known biological 
function directly or indirectly regulating the 
developmental processes of the investigated traits, 
which could be confirmed by evaluating the effects of 
the causative gene variants in an association analysis. 
Candidate gene approach has been ubiquitously 
applied for gene-disease research, genetic association 
studies, biomarker and drug target selection in many 
organisms from animals to humans [1]. To date, many 
candidate genes of economic traits or disease 
resistance/susceptibility were primarily or even 
repeatedly detected, although the total number of the 
publicly accepted genes is still absolutely small. Most 
importantly, candidate gene analysis is usually the 
indispensable procedure for subsequent positional 
cloning of QTLs controlling the major genetic 
variation of interested traits after initial genome scans. 
In general, significant components of QTLs in a 
chromosomal region affecting genetic variation of 
investigated traits are causative genes, so the ultimate 
pinpoint location of a QTL, with dozens or even 
hundreds of genes assembled in the about ~20cM 
confidence interval, to a specific polymorphic gene is 
inevitably involved in candidate gene analysis. 
However, candidate gene approach has been criticized 
owing to low replication of results and its limited 
ability to include all possible causative genes [1]. 
Moreover, this approach is by necessity highly 
subjective in the process of choosing specific 
candidates from numbers of potential possibilities. 
The main disadvantage is that it requires the 
information that comes from the existed well-known 
physiological, biochemical or functional knowledge 
such as hormonal regulation, biochemical metabolism 
pathway and etc., which is generally finite or 
sometimes not available at all. The actual absence of 
background knowledge for unscrambling the 
molecular stories of most complex and quantitative 
traits has obviously became an information bottleneck 
to clag its further application, and how to break the 
information bottleneck is thus one of the most 
important challenges represented to us. 
3. Extended strategies for breaking the 

information bottleneck 
3.1. Position-dependent strategy 

Until recently, large efforts have been focused on 
breaking the restriction of information bottleneck to 
which the traditional candidate gene approach faces. 
There are several developed or developing strategies. 
One is position-dependent strategy. 
Position-dependent strategy has integrated genome 
scans and candidate gene analyses, in which the 
identification of candidate gene is mainly based on the 

physical linkage information in a QTL-identified 
chromosomal segment. Such strategy resulted in the 
emergence of positional candidate gene approach, the 
post-genomic version of the positional cloning 
method. This approach aims at the vicinity of known 
QTLs, and candidate genes are sought out from tens to 
hundreds of gene members harbored in the targeted 
chromosomal region. Some successful applications of 
position-dependent strategy have already been 
reported in different fields (including the classical 
examples of DGAT1 in cattle, GDF8 in sheep and IGF2 
in swine) [2-10]. Using this strategy, a recent study has 
testified that a single-nucleotide polymorphism 
haplotype of IGF1 contributes to the control of body 
size in dogs [11]. In general, a combination of linkage 
studies and candidate gene analyses for promising 
chromosomal regions is a straightforward strategy, 
and of which the unifying can effectively improve the 
hitting accuracy [12].  

However, the successful map-based positional 
cloning was mainly involved in the genes that are 
responsible for Mendelian traits with discrete 
phenotypic differences, while the studies that have 
attempted to identify the positionally causative genes 
responsible for typical quantitative traits have met 
with limited success. At the same time, many 
statistically positive genes detected by the gene-trait 
associations could not be verified to locate in or near 
to the known QTL region, which also hints that the 
position-dependent strategy can not always work 
well. Although there were some successful examples 
of positional cloning in animals, the pinpoint location 
of a causative gene or even underlying functional QTL 
nucleotide in a conserved block is highly challenged. 
Usually, there is no guarantee that an identified QTL 
represents a single gene [13] and there are also many 
false-positive QTLs that directly fail the application of 
position-dependent strategy. The difficulty of 
prioritization of positional candidate gene might be 
resulted in by the low penetrance of multiple 
contributing genes. Moreover, the commonly used 
linkage analysis often contains hundreds of genes in 
the LOD support interval for a QTL. High-density 
markers in the same region and alternative analytical 
methods such as linkage disequilibrium analysis can 
refine the span of confidence interval small enough to 
be physically mapped, but this reduced map units will 
still contain tens of genes [14]. Obviously, when 
applying the position-dependent strategy, it is difficult 
to prioritize functional candidates harbored in the 
targeted region, which is frequently scanned through 
the microsatellites markers. On the one hand, for a 
single gene consideration, if without combined 
information about gene position with clues about 
biological function, it is not ensured that the empirical 
speculation can hit the true gene in the face of too 
much interferential information from dozens to 
hundreds of genes; on the other hand, for multiple 
gene consideration, it is too time-consuming and 
expensive to identify all or most of candidates selected 
from the total genes in the targeted region. Moreover, 
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once a certain candidate has already been sought out 
to detect the polymorphisms, e.g., single nucleotide 
polymorphisms (SNPs), there is choice for individual 
site or multiple site detection. If individual rather than 
multiple mutation sites is detected, the really 
contributing mutation site might be missed when 
other mutation sites exist but separate from the effect 
on traits of interest. Unfortunately, individual 
mutation site detection strategy was commonly used 
in many actual applications. It is convinced that a pure 
position-dependent strategy is generally inefficient, 
and positional cloning of the underlying gene(s) of 
complex and quantitative traits still has a stumbling 
block, for which the whole genome association 
analysis might provide one of the ultimate solutions. 
3.2. Comparative genomics strategy 

Comparative genomics strategy makes the utility 
of cross-species approach to identify and characterize 
the effect of putative candidates. This strategy 
includes comparative functional genomics strategy 
and comparative structural genomics strategy, which 
results in comparative functional candidate gene 
approach and comparative positional candidate gene 
approach, respectively. In this strategy, candidate 
genes may be functionally conserved or structurally 
homologous genes identified from other related 
species. Comparative genomics strategy can rapidly 
work if functionally conserved or structurally 
homologous genes affecting phenotypic variation of 
interest have already been confirmed in other species. 
It is publicly known that animal models generally 
provide a comparative approach for identification of 
potential genes susceptible to human diseases [15-18]. 
It has been proved that comparative genomics 
strategy is a well-worked strategy on many occasions, 
e.g., the information from human, mouse, rat and 
other information-riched species was frequently used 
to make discovery of candidate genes of economically 
important traits in livestock [19-22]. In fact, such 
strategy has been broadly applied in the biological, 
agricultural and medical sciences [23].  

Until nowadays, increasing accumulations of 
mammalian genomic data make this strategy more 
convenient. Nevertheless, this strategy has 
sporadically come up against difficulties in some 
applications, although it has many advantages [24]. 
For most complex and quantitative traits, the total 
number of identified genes in related species is still 
small, and furthermore, the phenotypic similar trait of 
different species maybe has a quite different genetic 
architecture, which could lead that the selected 
candidate genes have quite different genetic effects in 
the analytical species. Thus, comparative genomics 
strategy is occasionally inefficient because of the 
biological difference from one species to another due 
to the genetic heterogeneity or evolutionary 
differentiation. 
3.3. Function-dependent strategy 

Tracing of gene expression process of the 
investigated trait in different stages or genetic 

background, including signaling pathway, regulatory 
network and complex genome-wide transcriptional 
profiles can contribute to a better understanding of the 
molecular architecture and find out the detailed clues 
that candidate gene tells. Although functional 
information from gene knock-out and transgenic 
animal and cellular models can also provide us with 
distinct clues about candidate genes responsible for 
phenotypes of interest, there is little practical 
information available because of the difficulty of 
producing gene knock-out and transgenic animals in 
livestock. In general, important biological features of 
traits are directly reflected by transcript pattern, and 
quantitative traits were usually the consequence of the 
structure of genetic regulatory networks and the 
parameters that control the dynamics of those 
networks [25]. The genetic analysis of variation in 
gene expression would provide valuable models for 
studying complex and quantitative traits [26]. 
Considering that environmental factors affecting gene 
expression process are also mediated with products of 
specific genes such as heat shock protein [27, 28], both 
genetic and environmental factors affect phenotypic 
variation of trait through gene expression process. 
Apparently, the variations of traits are directly 
responsible for the variations of transcriptome and 
proteome rather than the variome of genomic DNAs. 
The rationale of function-dependent strategy states 
that those genes responsible for the variation of gene 
expression process are also responsible for the 
variation of trait, and the candidate gene governing 
the major genetic component of trait variation can be 
mined from the pattern of gene expression profiles. In 
fact, gene expression profiles are increasingly 
analyzed in the search for candidate genes. Generally 
speaking, there are two types of gene expression 
variation, the inheritable one and the non-inheritable 
one [29]. The genes directly transferring or decoding 
the environmental factors inside and outside usually 
arouse the non-inheritable components of gene 
expression variation. By contrast, the genes 
determining the inheritable components of gene 
expression variation naturally control the inheritable 
components of phenotypic variation. There have been 
hundreds of literatures to sustain the aforementioned 
viewpoints concerning inheritance of gene expression 
[30-35].  

The function-dependent strategy resulted in the 
functional candidate gene approach, in which a 
putative candidate gene is the one that could be 
statistically detected from the genes controlling large 
components of inheritable gene expression variation. 
To date, some researchers began to consider or use 
this approach for seeking candidate genes in different 
fields. For instances, by using this strategy, functional 
candidate genes for “eye muscle area” in pigs [36], 
genetic resistance for mastitis in cows [37], cancer, 
obesity and diabetes in human beings [38], nutrient 
transformation in cattle [39], responses for anabolic 
agents in heifers [40], muscle development in bovine 
fetuses [41] and other candidate genes with causative 
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allelic variant that may be of biomedical, economic 
and evolutionary interest were mined in succession.  

High-throughput technologies have produced 
massive expression data that are invaluable for 
identifying candidate genes associated with traits of 
specific interest. However, when using the 
function-dependent strategy, challenge remains. 
Especially for earlier simple applications of 
function-dependent strategy, there was a trend for 
misemploying. In many cases, the differentially 
expressed genes were directly taken as candidate 
genes in a nutshell [42, 43], and such hypothesis is 
usually improper and befall failure [44]. Nowadays it 
is clear that candidate gene is far beyond differentially 
expressed gene. In general, there are too many 
differentially expressed genes presented in the 
expression process, and, without additional 
supporting evidence, the aforementioned hypothesis 
ineluctably meets the following dilemma: the 
comprehensive identification of all differentially 
expressed genes is too arduous and expensive to be 
feasible, while the random identification of single 
differentially expressed gene could capture the true 
candidate gene only in a very small probability. At a 
large extent, candidate genes underlying the large 
inheritable components of gene expression variation 
are usually the key genes impacting on the vital cols 
between the neighboring developmental phases or key 
node genes in the topologic structure of gene 
expression network. The coming systems biology 
might provide an ultimate understanding of this 
problem. 
3.4. Combined strategy 

Every strategy mentioned previously is 
conditionally effective and not universal. In such 
circumstances, combined strategy, which combines at 
least two strategies together to mine candidate genes, 
has begun to show its onset in some applications. 
Recently, it is increasingly common to combine 
genome-wide expression profiles and linkage analysis 
to search for candidate genes and such newly 
developed genetical genomic approach originating 
from function-dependent strategy provides a 
particularly powerful means to identify candidates 
underlying complex phenotypic variation of economic 
importance [45-47]. In chicken, Marek's disease 
resistance genes were identified through the gene 
expression differences between disease resistant and 
susceptible chickens in which microarrays analysis 
and QTL mapping were jointly used [48]. By 
investigating the expression pattern of genes harbored 
in a genomic interval including a known QTL, 
candidate genes for alcohol preference were identified 
in a rat model [49]. Weibel et al. (2006) [50] have 
combined QTL mapping with proteomics approach to 
discover six candidate genes for longevity. The study 
that 34 candidate genes in the control of ovariole 
number were identified from 548 positional candidate 
genes through linkage associated with microarray 
analyses in Drosophila melanogaster provided another 
successful application for combined strategy [6]. These 

studies mainly provided the successful applications of 
combination of function-dependent strategy with 
position-dependent strategy. Any other types of 
combinations, e.g., combined function-dependent and 
comparative mapping strategy [51], combined linkage 
and linkage disequilibrium strategy [52] and 
combined RNAi-microarray strategy [53], could more 
effectively work despite few actual applications of 
other type combined strategies have been reported. It 
is anticipated that the promising combined strategy 
would provide a more powerful comprehensive 
means to solve the problem of information bottleneck 
because it could congregate the advantages of each 
single strategy. 

Up to date, many candidate genes or linked 
markers have been identified but few of them have 
been successfully verified and made an endpoint 
usage ultimately. It is common phenomenon that 
candidate genes did not provide accurate and 
consistent evidence in each gene-trait association 
analysis. So, the facticity of a primary association 
necessarily need to be further verified in some feasible 
way, which, for animals, usually includes validations 
in more future generations of the same population or 
other different populations, and even quantitative 
complementation test [54] or other functional 
mutation analyses to the site-specific mutation of 
candidate gene that brings the phenotypic mutant 
effect. Quantitative complementation test is a 
validating method for the candidate gene at a QTL, 
which was designed originally for QTL work in model 
animal [55] but usually difficult in livestock.  
4. Digital candidate gene approach  

The most remarkable progress in this field is the 
emergence of digital candidate gene approach 
(DigiCGA). DigiCGA, which also named in silico 
candidate gene approach or computer 
facilitated candidate gene approach, is a novel web 
resource-based candidate gene identification 
approach. In this section, we address a recapitulation 
of DigiCGA concerning its birth background, concept 
and some other related issues. 
4.1. Background and concept 

It is well known that the prosperous projects of 
mammalian genome mapping accelerate researches on 
the anatomy of molecular architecture of complex and 
quantitative traits. The completion and development 
of the animal genome projects have revealed a 
multitude of potential avenues for identifying 
candidate genes in which digital approach is an 
attention-getting one and as such could enable the 
systematic identification of genes underlying 
biological traits [56]. Especially, when the advent and 
development of Biological Ontology (BO) has well 
established, the digital resources make it possible to 
identify candidates by some certain principles, e.g., 
functional similarity [57]. In such circumstance, with 
increasing accumulations of web resources, DigiCGA 
emerges and comes into some use in practice.  

As a new development of candidate gene 
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approach, DigiCGA can be defined as an approach 
that objectively extract, filter, (re)assemble, or 
(re)analyze all possible resources available derived 
from the public web databases mainly in accordance 
with the principles of biological ontology (e.g., 
anatomy ontology, cell & tissue ontology, 
developmental ontology, gene ontology, and 
phenotype & trait ontology) and complex statistical 
methods to make computational identification of the 
potential candidate genes of specific interest, which is 
generally followed a subsequent validation of actual 
association analysis.  
4.2. Classification of existing methods 

Up to date, in our opinion, the present reported 
approaches related with DigiCGAs could be primarily 
classified as ontology-based identification approach, 
computation-based identification approach and 
integrated identification approach (including 
literature-based meta-analysis).  

The ontology-based identification approach is 
mainly involved in the bioinformatic analyses for in 
silico identification of candidate genes for specific 
interest in case of the semistructured, structured and 
controlled vocabularies for systematic annotation of 
gene functional information from biological ontology 
sources available through Internet. A typical example 
of this approach is the prioritization of positional 
candidate gene by using gene ontology [58]. The 
computation-based identification approach includes 
those computational candidate gene identification 
methods that describe computational framework to 
prioritize the most likely candidate genes through a 
variety of web resource-based data sets. There were 
many statistical algorithms or computational methods, 
and of which some included data-mining analysis 
[59], hidden Markov analysis [60], cluster analysis 

(similarity-based method) [61], kernel-based data 
fusion analysis [62], machine learning [63], KNN 
classification algorithm [64] and others. Tiffin et al. 
(2006) had compared seven independent 
computational methods for disease gene identification 
[65]. The integrated identification approach comprises 
most of the combined methods for prioritizing 
candidate genes through more than one avenues 
available or integration of relevant information from 
many sources, including converging actual 
experimental data, web database-based resources 
(including literature-based resources [66] and 
biological ontology resources) or the theoretical 
assembling of molecular features or molecular 
interaction principles, e.g., gene structure variation, 
homologs, orthologs, SNPs data, protein-DNA 
interactions, protein-protein interactions 
(interactome), molecular module, pathway and gene 
regulatory network [67-71]. There have been reported 
many candidate genes prioritized by the integrated 
identification approach such as pathway and gene 
ontology combined analysis [72], text- and 
data-mining integrated method [73], genetic maps and 
QTL combined analysis [74] and mutome network 
modeling integrative analysis [75].  

Currently, some application software or online 
tools for prioritizing candidate genes such as GFSST, 
ENDEAVOUR, POCUS, G2D, SUSPECTS and others 
have been developed and released to public [57, 76-81] 
(see Table 1). In addition, a series of software or online 
tools such as TAMAL, SNPsfinder, SNPselector, 
QuickSNP, SNPHunter, SNP-VISTA, CLUSTAG, 
WCLUSTAG, CASCAD, LS-SNP, QualitySNP, 
SNP-PHAGE and MAVIANT could been taken as 
auxiliary tools to redound to the downstream 
validation steps of DigiCGA [82, 83]. 

Table 1. Summary of application software and online tools related to digital candidate gene approach 
Name Literature source Web Site 

GeneSeeker van Driel MA, et al. Nucleic Acids Res. 2005;33:W758-61 http://www.cmbi.ru.nl/GeneSeeker/ 
GFSST Zhang P, et al. BMC Bioinformatics. 2006; 7: 135 http://gfsst.nci.nih.gov 

Endeavour Aerts S, et al. Nat Biotechnol. 2006;24:537-44 http://www.esat.kuleuven.be/endeavour 
POCUS Turner FS, et al. Genome Biol. 2003; 4: R75. http://www.hgu.mrc.ac.uk/Users/Colin.Semple/ 

G2D Perez-Iratxeta C, et al. Nucleic Acids Res. 
2007;35:W212-6. 

http://www.ogic.ca/projects/g2d_2/ 

SUSPECTS Adie EA, et al. Bioinformatics. 2006; 22: 773-4. http://www.genetics.med.ed.ac.uk/suspects/ 
TOM Rossi S, et al. Nucleic Acids Res. 2006; 34: W285–92. http://www-micrel.deis.unibo.it/~tom/ 

BioMercator Arcade A, et al. Bioinformatics. 2004; 20: 2324-26 http://moulon.inra.fr/~bioinfo/BioMercator 
FunMap Ma CX, et al. Bioinformatics. 2004; 20: 1808-11.  
GFINDer Masseroli M, et al. Nucleic Acids Res. 2005;33:W717-23 http://www.bioinformatics.polimi.it/GFINDer/ 

PROSPECTR Adie EA, et al. BMC Bioinformatics. 2005;6:55. http://www.genetics.med.ed.ac.uk/prospectr/ 
eVOC Tiffin N, et al. Nucleic Acids Res. 2005; 33:1544-52  

QTL Mixer Serrano-Fernández P, et al. Bioinformatics. 
2005;21:1737-8 

http://qtl.pzr.uni-rostock.de/qtlmix.php 

DGP Lopez-Bigas N, Ouzounis CA. Nucleic Acids Res. 
2004;32:3108-14 

 

CoGenT++ Goldovsky L, et al. Bioinformatics. 2005; 21:3806-10 http://cgg.ebi.ac.uk/cogentpp.html 
KNN classifier Xu J, Li Y. Bioinformatics. 2006;22:2800-05 available on request: jianzxu@hotmail.com 

SNPs3D Yue P, et al. BMC Bioinformatics. 2006;7:166 http://www.SNPs3D.org 
PhD-SNP Capriotti E, et al. Bioinformatics. 2006;22:2729-34 http://gpcr.biocomp.unibo.it/cgi/predictors/PhD-SNP/Ph

D-SNP.cgi 
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4.3. Outstretched issues 
In comparison with traditional candidate gene 

approach, DigiCGA is a rational inferring rather than 
empirical speculation. In usual, the technical 
framework of DigiCGA includes the upstream web 
resource-based operational procedures and the 
downstream validation procedures similar with the 
actual procedures of association analysis in traditional 
candidate gene approach. Additionally, in order to 
heighten the veracity of candidate gene identification, 
DigiCGA would be essentially open to utilize 
multifarious available information despite the main 
analytical source is web resource-based. To date, 
DigiCGA has given positive results in some cases but 
failed to identify candidate genes in others, and the 
consummation and in-depth applications of DigiCGA 
remain large challenges. Currently, it is urgent to 
establish the theoretical building blocks and the 
mature framework for common applications of 
DigiCGA, which would capture the eyeballs of some 
computational geneticists and bioinformaticians.  

From a practical viewpoint, the pursuit of 
successful application of DigiCGA has still been 
problematic because the detailed information of 
molecular architecture with respect to most biological 
traits in public web databases is still fragmentary, 
which suggests DigiCGA is still in its infancy. 
Although the human and other mammalian genome 
projects have produced a vast magnitude of digital 
resources including maps, clones, sequences, 
expression data and phenotypic data, the public 
databases provide more sequence data rather than 
functional data. As for most animals, the gene 
expression data in public web databases is still needed 
to supplement on large scale. It should be strongly 
suggested that the authoritative public databases 
should subdivide specific sub database to accept and 
offer the more detailed functional resources for mass 
identifications of candidate genes underlying traits of 
biomedical, economic and evolutionary importance. 
Moreover, the mature methodology and easily used 
tools compatible with this approach are still being 
under development. There is still a long way to reach 
the broader applications. For the development of 
DigiCGA, it is just the beginning but not the end of the 
story. It is our view that, with the further development 
of functional genomics and consummations of mature 
methodologies and tools, DigiCGA would 
undoubtedly become more important for various 
fields to address a wide range of biological questions 
in near future. 
5. Conclusion  

Although the candidate gene approach is useful 
for quickly determining the association of a specific 
genetic variant with phenotype, the proportion of 
causative genes governing traits of biomedical, 
economic and evolutionary importance that have been 
confirmed is still small and consequently, the number 
in the list of candidate genes is limited. Current 
methods for solving the problem of information 

bottleneck have complemented and consummated the 
efforts of traditional candidate gene approach in 
identifying causative genes, in which much progress 
has been achieved, but there are still lots to be done. 
Here we generalized the representative methods in 
order to be able to promote the efficiency for 
evaluating the gene-phenotype relations. For the 
future landscape of candidate gene approach, to meet 
near-complete or complete solutions to current 
problems, the ultimate development is to integrate 
traditional mapping data, fine mapping data, 
cross-species resources, literature resources, 
bioinformatics resources on the internet, and even 
high-through genome-wide resources including 
sequence-based and gene expression data as 
comprehensively as possible. 
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