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Background. Small GTPases of the Rab family can cycle between a GTP- and a GDP-bound state and also between membrane and
cytosol. The latter cycle is mediated by the Guanine Nucleotide Dissociation Inhibitor GDI, which can selectively extract GDP-
bound Rab proteins from donor membranes, and then reload them on target membranes. In previous studies, we found that
capture of the small GTPase Rab5, a key regulator of endocytic membrane traffic, by GDI is stimulated by oxidative stress via
p38MAPK, resulting in increased fluid phase endocytosis. Methodology/Principal Findings. When purifying the GDI stimulating
activity we found that that it copurified with a high MW protein complex, which included p38MAPK. Here we report the
identification and characterization of another component of this complex as the thioredoxin-like protein TXNL1. Our observations
indicate that TXNL1 play a selective role in the regulation of fluid phase endocytosis, by controlling GDI capacity to capture Rab5.
Conclusions/Significance. Oxidants, which are known to cause cellular damage, can also trigger signaling pathways, in
particular via members of the thioredoxin family. We propose that TXNL1 acts as an effector of oxidants or a redox sensor by
converting redox changes into changes of GDI capacity to capture Rab5, which in turn modulates fluid phase endocytosis.
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INTRODUCTION
Cellular uptake of particles, solutes, lipids, and membrane proteins,

including receptor–ligand complexes is mediated by clathrin-

dependent endocytosis, macropinocytosis and also by other

pathways, in particular rafts and caveolae [1,2]. Molecules

internalized by the clathrin pathway, and by at least some of the

other routes, are delivered to early endosomes, where sorting

occurs. Some molecules are then recycled back to the plasma

membranes, e.g. housekeeping receptors, or transported to the

trans-Golgi network, while others, like the downregulated signaling

receptors, are transported to late endosomes and then lysosomes for

degradation [3]. Compelling evidence now shows that signaling

pathways control many endocytic transport steps [4,5,6]. In

particular, a genome-wide analysis has revealed that an un-

expectedly high number of kinases are implicated in clathrin and

caveolar/raft endocytosis [5]. Further, many of these ‘‘endocytic’’

kinases also function in various signaling pathways, strengthening

the notion that endocytosis and signaling are tightly coupled [5].

The small GTPase Rab5 plays a crucial role in the cross talk

between endocytic membrane traffic and signaling. This GTPase

regulates early endocytic events [7], and coordinates entry into the

cells by endocytosis and macropinocytosis, in particular via its

effector Rabankyrin-5 [8]. Like other GTPases, Rab5 cycles

between GTP- and GDP-bound states, and, interacts in the active

GTP-bound state with its effectors, which mediates Rab5-

dependent functions. In addition, GTPases of the Rab family

can also cycle between membrane and cytosol via the Guanine

nucleotide Dissociation Inhibitor (GDI). GDI has the capacity to

extract Rab proteins in their inactive GDP-bound state from

cellular membranes, and then to deliver them to their appropriate

target membranes. We previously found that p38MAPK phos-

phorylates GDI and thereby increases GDI capacity to capture

early endosomal Rab5, which in turn stimulates endocytosis

[9,10], presumably by increasing Rab5 cycling rates. Similarly,

long term depression (LTD) triggers p38MAPK activation and

leads to AMPA receptor endocytosis, probably by stimulating

GDI:Rab5 complex formation [11] or by directly activating Rab5

at the plasma membrane [12]. p38MAPK activation is also

required and sufficient for endocytosis of the m-opioid receptor

[13] and the epidermal growth factor receptor (EGFR) [14,15], via

phosphorylation of the Rab5 effector EEA1 [13] and EGFR [15],

respectively. Consistently, silencing several kinases involved in

clathrin endocytosis induces p38MAPK phosphorylation and its

association with endosome-like structures [5].

Here, we report that the thioredoxin-like protein TXNL1

modulates GDI functions in the cycle of Rab5 and regulates fluid

phase endocytosis. At steady state (under cytosolic reducing

conditions), TXNL1 is found in the cytosol partially associated

both with p38MAPK and with GDI. A fraction of TXNL1 and

p38MAPK is also associated with early endosomes, where TXNL1

may interfere with the capture of Rab5 by GDI.

RESULTS

p38MAPK and TXNL1
We previously reported that a cytosolic activity stimulates the

capacity of GDI to capture and extract Rab5 from early

endosomal membranes [9]. This activity eluted at a high
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(<400 kDa) apparent MW by gel filtration (Fig 1 A–B and see

below) and was recovered following purification, in a fraction

containing 5 major polypeptides, including p38MAPK [9]. Since

p38MAPK alone could activate GDI [9], polypeptides co-

purifying with p38MAPK presumably fulfill regulatory functions.

Amongst these, we identified by tandem mass spectrometry

TXNL1 or TRP32 (thioredoxin-related protein of 32 kDa)

[16,17]—a protein that had been previously implicated in the

cellular response to sugar starvation stress [18]. TXNL1 is an

ubiquitous protein with a N-terminal thioredoxin-like domain [19]

and a C-domain of unknown functions (see Fig 1D). When

ectopically expressed, FLAG-tagged TXNL1 co-immunoprecipi-

tated His6-p38 and vice versa, but with low efficiency (Fig 1C).

This suggests that a minor fraction only of these proteins formed

a presumably transient complex—endogenous TXNL1 could not

be immunoprecipitated with our antibodies. Importantly, howev-

er, after gel filtration of rat liver cytosol, the bulk of endogenous

TXNL1 was recovered in high MW fractions (Fig 1A fractions 4-5,

red symbols), well separated from the position of the TXNL1

monomer (Fig 1A, fraction 8-9). In fractions 4-5, the high MW

form of TXNL1 co-purified with a portion of endogenous

p38MAPK (Fig 1A fractions 4-5, blue symbols) and with the

GDI stimulating activity (Fig 1B, fractions 4-5). The bulk of

p38MAPK eluted at the position of the monomer (Fig 1A,

fractions 8-9), as expected since p38MAPK is involved in many

cellular responses and only a minor fraction of total p38MAPK

may be involved in this pathway. In addition, p38MAPK

association with the complex may be relatively labile. In any

case, this suggests that TXNL1 is part of a protein complex that

contains p38MAPK and exhibits GDI stimulating activity.

TXNL1 redox activity
Since TXNL1 contains an N-terminal thioredoxin-like domain,

including the conserved CGPC (Fig 1D) catalytic site, we

investigated whether the purified recombinant protein could

reduce the disulfide bonds of insulin in the presence of

dithiothreitol, hence whether it was catalytically active. We also

used a truncated version of TXNL1 corresponding to the N-

terminal domain containing the thioredoxin-like domain (GST-

TXNL1-N, residues 1–122), as well as the C-terminal domain

alone (GST-TXNL1-C, residues 105–289). Both full length GST-

TXNL1 and TXLN1 (after GST cleavage) exhibited reducing

activity in vitro when compared to thioredoxin (TRX), as did the

N-domain of TXNL1 (GST-TXNL1-N), but not the C-domain of

TXNL1 (GST-TXNL1-C), as expected [19] (Fig 1D). Moreover,

mutation of the two conserved cysteine residues in the CGPC

motif to serines (C34,37S) abolished GST-TXNL1 and GST-

TXNL1-N ability to reduce insulin (Fig 1D), indicating that the N-

terminal thioredoxin-like domain of TXNL1 exhibits catalytic

activity, and is thus functionally related to thioredoxin.

TXNL1 and phospho-p38MAPK are partially

associated with early endosomes
TXNL1 is primarily a cytosolic protein [16], but small amounts

(,5% total) co-sedimented with membranes (not shown). After

floatation in gradients, the endogenous form of membrane-

associated TXNL1 co-purified with Rab5 and its effectors

Rabankyrin-5 (Fig 2A) and EEA1 (Fig 2B, solid arrow) in early

endosomal fractions, as did the ectopically expressed FLAG-

tagged form (Fig 2B, open arrow). Similarly, a minor fraction of

phospho-p38MAPK could be detected on Rab5-containing early

endosomes at steady state by immunofluorescence (Fig 2D)-but not

by western blotting when detection was limiting (Fig 2A).

Detection of p38MAPK was specific, since the signal was not

observed when the primary antibody was omitted (Fig 2E).

We previously showed that oxidative stress partially releases

Rab5 (bound to GDI) from endosomes, and that this, in turn,

causes the dissociation of EEA1 ([9] and Fig 2B). When activated,

phosphorylated p38MAPK becomes mainly translocated to the

nucleus (not shown; see also [9] and references therein) but

interestingly we found that amounts of endosome-associated

phospho-p38MAPK also increased significantly after oxidative

stress (Fig 2A and 2C). Under stress conditions, a temporal

sequence may thus control the transient action of active p38 on

GDI:Rab5 before transit to the nucleus. In contrast, endosomal

association of endogenous and FLAG-tagged TXNL1 was

independent of the stress response (Fig 2A and 2B). Moreover,

mutation of the two conserved cysteines in the CGPC catalytic site

of the thioredoxin domain (TXNL1C34,37S) inhibited TXNL1

reducing activity (Fig 1D), but did not affect TXNL1 endosome

association, whether or not cells were submitted to oxidative stress

(Fig 2B).

Rab5 capture by GDI is modulated by TXNL1
We then investigated whether TXNL1 modulated the capacity of

GDI to extract Rab5 from purified early endosomes. We found

that formation of the Rab5:GDI complex was inhibited by cytosol

prepared from cells overexpressing TXNL1, but not by cytosol

from mock-transfected cells or from cells overexpressing the Rab5

effector Rabankyrin-5 (Fig 3A). This TXNL1-dependent in-

hibition was only observed with freshly prepared cytosol pre-

sumably because TXNL1 became oxidized during storage—

a process that would not occur in vivo in the reducing environment

of the cytosol. We thus tested whether the regulatory function of

TXNL1 depended on its redox state. While the addition of the

pre-reduced form of recombinant TXNL1 to control cytosol

inhibited Rab5 extraction, the pre-oxidized form did not interfere

with GDI activity (Fig 3B). Neither did the recombinant

catalytically inactive TXNL1C34,37S mutant Fig 3B), which

presumably mimics a constitutively oxidized state [20]. We could

not determine whether TXNL1 also regulates the capacity of GDI

to capture other Rab proteins, because the detection was limiting

with the antibodies against other Rab proteins that we had

available. Clearly, it will be important to determine whether the

same mechanism only controls endocytosis via Rab5, or controls

selective transport steps via a sub-set of Rabs, or whether this

mechanism operates in a more general manner in membrane

traffic regulation. Our observations thus indicate that, in its

reduced form, TXNL1 negatively regulates the activity of GDI to

capture Rab5 in vitro, and suggest that TXNL1 regulatory

functions depend on its catalytic activity hence its capacity to

cycle between oxidized and reduced states.

TXNL1 interactions with GDI:Rab5 and GDI
Our observations that TXNL1 regulates GDI activity suggest that

TXNL1 interacts with GDI and perhaps with the GDI:Rab5

complex. Indeed, all Rab5 is bound to GDI in the cytosol [10],

while only a minor fraction of GDI is complexed to Rab5 (GDI is

an abundant protein). We thus tested whether, cytosolic Rab5

(bound to GDI) co-purified after pulldown with WT GST-TXNL1

or with the GST-TXNL1C34,37S mutant, which presumably

mimics a constitutively oxidized state. Surprisingly, Rab5 co-

purified with both WT and mutant forms, but only in the presence

of H2O2 (Fig 3C). This was not due to artificial cross-linking via

trans disulfide bridges, since Rab5 mobility was unaffected in non-

reducing gels (not shown). Neither were these interactions due to
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Figure 1. TXNL1 and p38MAPK. (A) Rat liver cytosol (RLC, 30 mg) was precipitated in 30% (NH4)2SO4 (P30). The precipitate was fractionated by gel
filtration chromatography on a Superose 12 column, and fractions analyzed by western blotting. The lower panel shows the densitometric scan of the
gels in the upper panel (red squares: TXNL1; blue triangles: p38MAPK). Arrows point at calibration markers: ferritin 440 kDa; aldolase 156 kDa;
albumin 67 kDa. The bulk of GDI is associated with Rab proteins [10] and is thus present as complexes of <80 kD [22], which elute in fractions 8-9 on
the Superose 12 column. (B) The Superose 12 fractions (A) were pooled 2 by 2 and assayed for their capacity to stimulate 1 mM GST-GDI to extract
early endosomal Rab5 [39]. After endosome removal on gradients, GST-GDI with bound Rab5 was retrieved onto glutathione beads and analyzed by
western blotting. For comparison, the activity of 100 mg RLC or P30 is shown. The fractionation (A) and analysis (B) was repeated 3 times, and
representative examples are shown. (C) HeLa cells were co-transfected with Flag-TXNL1 and His6-p38MAPK. Immunoprecipitation (IP) from lysates
(lys: 5% of total) was with (+) or without (2) the indicated antibodies, and analysis was by western blotting. Each experiment was repeated at least 3
times, and (C) shows a representative example. (D) The outline of TXNL1 is shown with the CPGC motif in the TRX-like N-terminal domain (residues 1–
107). Purified recombinant proteins were assayed (5 mM) before or after GST cleavage for their capacity to reduce insulin disulfide bonds in the
presence of dithiothreitol, using dithiothreitol alone as a control (CTRL). Data are normalized to values obtained with E.Coli thioredoxin (TRX).
doi:10.1371/journal.pone.0001144.g001
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differences in the amounts of GDI pulled down by WT GST-

TXNL1 or GST-TXNL1C34, 37S (Fig 3D). Indeed, TXNL1 pulled

down GDI equally well under reducing or oxidizing conditions—

as did TXNL1C34, 37S (Fig 3D), ruling out the possibility that

TXNL1 was artificially cross-linked to GDI in vitro. Hence,

TXNL1 independently of its redox state seemed to have the

capacity to interact directly or indirectly with cytosolic GDI—as it

did with endosomal membranes (Fig 2B). This interaction required

full-length TXNL1, since neither the catalytic active N-domain

(Fig 1D) nor the C-domain alone pulled down GDI (Fig 3E). We

thus conclude that, while TXNL1 can interact with GDI

independently of its redox state (Fig 3D), peroxide triggers or

stabilizes direct or indirect interactions with the GDI:Rab5

complex (Fig 3C). Oxidative conditions may thus facilitate

TXNL1 interactions with the cytosolic GDI:Rab5 complex

(Fig 3C), concomitantly with increased Rab5 capture by GDI

[9] and decreased GDI membrane-association [21].

It should be noted that in our gel filtration analysis (Fig 1A) we

used a Superose 12 column, which does not provide sufficient

resolution in the low MW range to separate GDI associated with

Rab proteins [10] as complexes of <80 kD [22] from a putative

complex of GDI:Rab5 with TXNL1. Moreover, this complex

Figure 2. Association with early endosomes. (A) Early endosomes were prepared from BHK cells treated or not for 10 min with 0.05 or 1 mM H2O2

[39], and analyzed by western blotting. (B) Experiments were as in (A), but cells were transfected with Flag-TXNL1 or Flag-TXNL1C34,37S. Open and
solid arrows point at Flag-tagged and endogenous TXNL1, respectively. Each experiment in (C) and (D) was repeated at least 5 times, and
representative examples are shown. (C) Phospho-p38MAPK present in early endosomal fractions was quantified after lysis in 1% TX100 by sandwich
ELISA (expressed as OD units per mg protein). The figure shows the mean of 3 experiments. Error bars represent standard deviations; the observed
differences are significant according to Student’s t test with p,0.0001 at each H2O2 concentration. (D) HeLa cells were analyzed by
immunofluorescence using antibodies against phospho-p38MAPK (pp38) and Rab5, followed by labeled secondary antibodies. Arrows point at
examples of endosomes containing both Rab5 and pp38 (see inset). A fraction of pp38MAPK colocalized with Rab5 on early endosomes, but we were
unable to unambiguously localize pp38MAPK on the membrane of other organelles using various markers, presumably because detection was
limiting. (E) Cells were processed as in (D), except that primary antibodies against phospho-p38MAPK were omitted, and then analyzed in the red
channel.
doi:10.1371/journal.pone.0001144.g002
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should only correspond to a small fraction of total GDI, since GDI

interacts with most Rab proteins [7].

TXNL1 regulates endocytosis
Since TXNL1 appears to regulate Rab5 capture by GDI and to

interact with GDI:Rab5, we investigated TXNL1 potential role

during endocytosis in vivo. To this end, uptake of the fluid phase

tracer horseradish peroxidase (HRP) was quantified over short

time-periods to ensure that only internalization was being

monitored, rather than more distal transport steps. Knockdown

of TXNL1 with dicer-generated siRNA duplexes (Fig 3F) did not

interfere with HRP uptake, except perhaps by causing a small,

marginal increase (Fig 4A) in line with the inhibitory effect of

reduced TXNL1 in vitro (Fig 3B). Strikingly, overexpression of

TXNL1C34,37S—the catalytically inactive mutant that presumably

mimics the oxidized state—caused a marked (<200%) increase in

endocytosis (Fig 4B), consistently with observations that oxidative

conditions accelerate endocytosis and facilitate Rab5 capture by

GDI [9] as well as TXNL1 interactions with the GDI:Rab5

complex. Some stimulation was also observed with WT TXNL1

(overexpressed to the same levels as TXNL1C34,37S, Fig 2B),

presumably reflecting TXNL1 capacity to cycle from reduced to

Figure 3. Rab5 capture by GDI is modulated by TXNL1. (A) The capture of early endosomal Rab5 by GDI was analyzed. In the assay, GST-GDI was
incubated with early endosomes in the absence (2) or presence of cytosol prepared from mock-transfected cells (mock), or from cells overexpressing
either the Rab5 effector Rabankyrin-5 (RabAnk-5) or TXNL1. Rab5 bound to GDI was then retrieved and analyzed as in Fig 1B. The experiment was
repeated 3 times, and a representative example is shown. (B) The capture of early endosomal Rab5 by GDI was analyzed as in (A), except that the
assay was in the absence (2) or presence (+) of rat liver cytosol and 500 nM recombinant TXNL1 or TXNL1C34, 37S (after GST removal). Recombinant
proteins were pre-reduced for 30 min with 1 mM DTT on ice (reducing conditions), or pre-oxidized for 15 min with 10 mM H2O2 at 25uC (oxidizing
conditions). In both cases, proteins were then diluted 12 fold in the reaction mixture and the same final DTT or H2O2 concentrations were used when
TXNL1 or TXNL1C34, 37 were omitted. These experiments were repeated 5 times, and representative examples are shown (C) Pulldown of rat liver
cytosol (RLC) using purified GST fusion proteins that were (+) or not (2) pre-oxidized (Ox) as in (B). GST-proteins were retrieved onto immobilized
beads and analyzed by western blotting with anti-Rab5 antibodies (all lanes are from the same gel). These experiments were repeated 4 times, and
representative examples are shown. All lanes in the panel are from the same experiment. (D) Pulldown of rat liver cytosol (RLC) using purified GST-
fusion proteins that were (+) or not (2) pre-reduced (Red) or pre-oxidized (Ox) as in (B). Analysis was by western blotting with anti-GST or anti-GDI
antibodies. These experiments were repeated 3 times, and representative examples are shown (E) Pulldowns with GST-fusion proteins (C, and see
Fig 1D) were analyzed by western blotting with anti-GDI antibodies. These experiments were repeated 3 times, and representative examples are
shown (F) HeLa cells were either mock transfected or transfected with siRNA duplexes for 72 h (MGC2477 hypothetical protein as RNAi control). Total
cell-extracts were analyzed by western blotting with the indicated antibodies.
doi:10.1371/journal.pone.0001144.g003
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oxidized states—indeed, the constitutively oxidized mutant in-

creased endocytosis in vivo, while reduced TXNL1 was inhibitory

in vitro (Fig 3B). Consistently, TXNL1 overexpression did not

cause Rab5 release from membranes (not shown), hence did not

lead to GDI activation, demonstrating that TXNL1 levels are not

limiting. By contrast, overexpression of TXNL1 or TXNL1C34,37S

Figure 4. TXNL1 regulates fluid phase endocytosis. (A) HRP uptake for 5 min at 37uC was quantified in HeLa cells either mock-transfected or
transfected with TXNL1-siRNA duplexes. Data are normalized to the uptake in mock-treated cells and are representative of at least three independent
experiments (each in duplicate). The error bar represents the standard deviation; the observed differences are significant according to Student’s t test
with p,0.005 (B) HeLa cells were either mock transfected or transfected with Flag-TXNL1 or Flag-TXNL1C34, 37S. Cells were incubated with HRP for
5 min at 37uC and analyzed as in (A). The figure shows the mean of 3 independent experiments. Error bars represent the standard deviation; the
observed differences are significant according to Student’s t test with p,0.0001 under each condition (C–D) HeLa cells were either mock transfected
or transfected with Flag-TXNL1 or Flag-TXNL1C34, 37S, as in (B), incubated with rhodamine-labeled transferrin (Tf), processed for immunofluorescence
using anti-flag antibodies and visualized by double-channel fluorescence microscopy (D). The number of transferrin-containing endosomes was
counted in 20 cells of duplicate samples in 3 independent experiments (as in D) and the quantification is shown in (C). Error bars represent the
standard deviation; the observed differences after TXNL1C34, 37S overexpression are significant (p,0.01), but not after TXNL1 overexpression (p,0.2).
doi:10.1371/journal.pone.0001144.g004

Endocytic Regulation by TXNL1

PLoS ONE | www.plosone.org 6 November 2007 | Issue 11 | e1144



did not stimulate clathrin-mediated endocytosis of the transferrin

receptor to any significant extent (Fig 4D)—a marginal increase

was observed with the TXNL1C34,37S mutant (Fig 4C). These

observations suggest that the massive increase in HRP endocytosis

after TXNL1C34,37S or WT TXNL1 overexpression occurred

primarily via a clathrin-independent pathway, presumably macro-

pinocytosis. Indeed, this pathway, which accounts for the uptake of

large volumes of fluid, can be transiently up-regulated [1] and is

under the direct control of Rab5 [8]. TXNL1 thus appears to

serve as a redox sensor that selectively controls fluid phase

endocytosis via GDI functions in the membrane-cytosol cycle of

Rab5.

DISCUSSION
Previous studies have shown that p38MAPK regulates endoyctic

membrane traffic by regulating GDI [9] and EEA1 [13] activity.

In particular, we had found that p38MAPK increases the capacity

of GDI to capture early endosomal Rab5 and stimulates

endocytosis, presumably through a net increase in Rab5 cycling

[9]. Here, we report that the thioredoxin-like protein TXNL1,

which can be associated with p38MAPK, modulates GDI

functions in the cycle of Rab5 and regulates fluid phase

endocytosis. Our observations suggest that TXNL1 functions as

an effector of oxidants or redox sensor that couples oxidative stress

to endocytosis, by converting redox changes into a specific

GDI:Rab5-mediated endocytic response (see outline, Fig 5).

Thioredoxins and the endocytic pathway
Previous studies have linked thioredoxin to the regulation of

membrane traffic in yeast. Vacuole homotypic fusion [23,24] and

the fusion of ER-derived vesicles with Golgi membranes [25]

depend on the LMA1 (low molecular weight activity 1) complex

composed of thioredoxin and the cytosolic proteinase B inhibitor

IB
2. Thioredoxin catalytic activity appears to be dispensable for

this role in membrane fusion [26]. Since we find that TXNL1

redox activity is required, TXNL1 function appears distinct from

that of thioredoxin in fusion. Our findings rather support the view

that TXNL1 acts as a physiological regulator of GDI:Rab5-

mediated endocytic response. Our observations also suggest that

TXNL1 controls some, but not all, Rab5 functions, since TXNL1

primarily regulates fluid phase uptake, while Rab5 plays a dual

role in endocytosis and macropinocytosis [8].

It is tempting to speculate that TXNL1 selectively regulates

Rab5 cycling to and from specific endosomal effector platforms,

presumably containing Rabankyrin-5 [8], involved in macropino-

cytosis regulation (see outline Fig 5). In the GTP-bound state,

Rab5 can recruit its effectors (see outline Fig 5), and after GTP

hydrolysis, inactive GDP-bound Rab5 is extracted by GDI [7], We

previously reported that this process is stimulated by the action of

p38MAPK [9]. We propose that, at steady state, i.e. under

cytosolic reducing conditions, TXNL1 is found in the cytosol

partially associated both with p38MAPK and with GDI, while

a fraction of TXNL1 and p38MAPK are also associated with

endosomal membranes. There, TXNL1 may interfere with GDI-

mediated Rab5 extraction. This inhibitory function may be

released by intracellular redox changes and TXNL1 oxidation,

leading to increased activation of GDI on membranes via

p38MAPK [9]. We thus conclude that TXNL1 functions as an

effector of oxidants or a redox sensor that selectively couples

oxidative stress and redox changes into GDI:Rab5-mediated

response in fluid phase endocytosis. This mechanism may

contribute to control the turnover of membrane components for

repair or degradation after stress.

Thioredoxins as ROS effectors
Disturbed intracellular redox balance, also known as ‘‘oxidative

stress’’, is characterized by increased intracellular concentrations

of highly reactive, oxidizing species, known as ROS (reactive

oxygen species) and RNS (reactive nitrogen species). Cells can

intentionally produce ROS during host defense and inflammatory

response. However, in many instances ROS production may also

fulfill signaling purposes [27,28]. For instance, ROS-induced

cystein oxidation is now considered a reversible and rapid

modification that regulates protein functions [27,29]. Further,

oxidant species modulate the activity of two antioxidant proteins,

namely peroxiredoxin [30] [31] and thioredoxin [32,33], suggest-

ing the existence of a dynamic crosstalk between ROS and ROS-

scavenging system.

Thioredoxins (Trx) are the major dithiol reductants present in

the cytosol [34] and act mainly as antioxidants by protecting

cytosolic proteins from ROS-induced oxidative damages [35] and

by directly scavenging ROS. However, thioredoxins, which are

highly susceptible to ROS-induced oxidation, may also play an

important role as effectors of oxidants. For instance, thioredoxin1

has redox-dependent inhibitory functions on ASK1 [36],

a MAPKKK that activates JNK and p38MAPK and mediates

stress-induced apoptosis. Similarly, the redox-sensitive interaction

of nucleoredoxin—a thioredoxin-like protein with reducing

activity—with Dishevelled probably regulates ROS-induced

Wnt-ß-catenin signaling [37]. Finally, the thioredoxin-like protein

PICOT/TXNL2 (protein kinase C-interacting cousin of thior-

edoxin), which presumably lacks enzymatic activity, interacts with

protein kinase C-theta (PKCh) inhibiting its activation of JNK/

AP1 and NF-kB, probably by competing with thioredoxin or

thioredoxin-reductase for substrate binding [38]. Future work will

Figure 5. The TXNL1 cycle. The model outlines the proposed
mechanism by which TXNL1 may regulate fluid phase endocytosis, by
modulating GDI function in the membrane-cytosol cycle of Rab5. See
text for further explanations. P38, p38MAPK; pP38, phosphorylated
p38MAPK; GDI, Guanine nucleotide Dissociation Inhibitor; pGDI;
phosphorylated GDI; Rab5:GTP or GDP, Rab5 in the GTP- or GDP-
bound state, respectively.
doi:10.1371/journal.pone.0001144.g005
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be needed to determine whether PICOT and TXNL1, which

share a similar domain organization and mass, act as selective

effectors of the stress pathways regulated by JNK and p38MAPK,

respectively, although PICOT carries critical mutations in the

thioredoxin-like active site. These observations highlight possible

general functions of thioredoxin family members as redox sensors

or regulators in signaling pathways that couple oxidative stress to

cellular responses.

MATERIALS AND METHODS

Cells, antibodies and reagents
Baby Hamster Kidney cells (BHK21) and HeLa cells were grown

as described [9,39]. Monoclonal antibodies were obtained from:

His6 from Roche Diagnostics (Basel, CH); GST from Santa-Cruz

Biotechnology, Inc. (San Diego, CA); TXNL1 from Abcam

(Cambridge, UK); Rab5 and GDI from Reinhard Jahn (Göttin-

gen, Germany); FlagM2 from Sigma Chemical Co. (St. Louis,

MO); polyclonal antibodies against phospho-p38 and p38 were

from Cell Signaling (Beverly, MA); fluorescently labeled secondary

antibodies were from Jackson Immunoresearch Laboratories (West

Grove, PA). The peptide KCSTKEIPIIKFDLNK, corresponding

to a conserved C-terminal region of Rabankyrin-5 (amino acids

1136–1151) was used to raise a polyclonal antibody (Ab 16KK) in

rabbits (CovalAb, Oullins Cedex, France). Glycerol 2-phosphate,

Sodium Orthovanadate, ATP, GDP, hydrogen peroxide, horse-

radish peroxidase (HRP), o-dianisidine, recombinant E. Coli

thioredoxin and bovine insulin were from Sigma Chemical Co.

(St. Louis, MO); glutathione-Sepharose 4B beads, Benzamidine,

Sepharose 4 fast flow, Factor Xa from Amersham (UK);

transferrin-rhodamine from Molecular Probes (Eugene, OR);

okadaic acid from Calbiochem (San Diego, CA); FuGene6 from

Roche Diagnostics (Basel, CH). Oligonucleotides were synthesized

by Eurogentec SA (Seraing, BE).

Plasmids and recombinant proteins
pGEX-2T-1 with the bovine aGDI was from M Zerial, (Dresden,

Germany), PME18S-Flag-TXNL1 (TRP32) from KK Lee (Kyoto,

Japan), and pCNA3.1 His-p38a from K Tamura (San Diego, La

Jolla, CA). Generation of point mutants was carried out with the

Quick-Change Site-Directed Mutagenesis kit (Stratagene, San

Diego, La Jolla, CA). Truncated TXNL1 corresponding to the N-

terminal (residues 1–122) and C-terminal (residues 105–289)

domains were generated by PCR. GST-TXNL1 proteins were

expressed in BL21 (Stratagene) cells and purified according to the

manufacturer’s instructions (Amersham). GST-GDI was produced

using BL21(DE3)plysS bacteria (Stratagene) [39]. When indicated,

the GST tag was cleaved by Factor Xa, which was then removed

using Benzamidine Sepharose 4 fast flow according to the

manufacturer’s instructions (Amersham).

In vivo experiments
TXNL1 expression was silenced in HeLa cells by Dicer-generated

siRNA duplexes. Briefly, after PCR amplification to generate T7

promoter-based DNA templates, the target sequence (nucleotide

181–760) was transcribed in vitro to generate dsRNA. Dycing

reaction and purification of d-siRNAs were according to the

manufacturer’s instructions (Invitrogen, Carlsbad, CA). Cells were

transfected with d-siRNA using Lipofectamine 2000 24 h after

seeding, and 24 h later they were split and grown for an additional

48 h time period (total time of silencing: 72 h). DNA transfection

was performed with either Fugene6 or CaPO4 24 h after seeding

and cells were incubated for 36 h.

In vitro experiments
Rat liver cytosol (RLC) preparation and endosome fractionation

by floatation in sucrose gradients were described [39], and

performed in the presence of inhibitors of proteases (10 mg/ml

aprotinin, 10 mM leupeptin and 1 mM pepstatin) and phospha-

tases (0.1 mM vanadate and 50 mM glycerol 2-phosphate or

1 mM okadaic acid). RLC was fractionated by (NH4)2SO4

precipitation and gel chromatography on a Superose 12 column

using the SMART system [9]. The assay measuring the capture of

Rab5 from purified early endosomes by recombinant GDI was

described [9,39]. Briefly, 20 mg purified early endosomes were

incubated for 20 min at 30uC in EEB (75 mM K-Acetate, 30 mM

HEPES pH 7.4, 5 mM MgCl2) containing 0.3 mM ATP, 3 mM

GDP, 1 mM GST-GDI and 100 mg cytosol. When indicated, the

reaction mixture was supplemented with 500 nM recombinant

TXNL1 or TXNL1C34, 37S (after GST removal) that were either

pre-reduced with 1 mM DTT (30 min, on ice) or pre-oxidized

with 10 mM H2O2 (15 min, 25uC). The mixture was then

adjusted to 40.6% sucrose, transferred to a TLS55 centrifuge

tube and overlaid sequentially with 35% sucrose solution, then

with HB (8.6%, w/w sucrose in H2O). The gradient was

centrifuged at 1700006g for 1 h at 4uC. After centrifugation,

GST-GDI with bound Rab5 was found in the load of the gradient

— well separated from Rab5 still associated with endosomes,

which floated to the 35-HB interface. GST-GDI was then

recovered onto glutathione-Sepharose beads, which were then

resuspended in SDS gel sample buffer and Rab5 bound to GST-

GDI was analyzed by SDS-PAGE and western blotting.

For immunopreciptation, Fugene-transfected HeLa cells were

lysed in TNE buffer (20 mM Tris pH 7.4, 150 mM NaCl, 1 mM

EDTA) containing 10% glycerol, 1% NP-40, and proteases

inhibitors. Lysates were pre-cleared on protein-A Sepharose

beads, divided and then incubated with or without the indicated

antibodies for 2 h, and then for 1 h with protein-A Sepharose

beads. Beads were washed with TNE containing glycerol,

resuspended in sample buffer and analyzed by SDS-PAGE and

western blotting.

In GST pulldowns, pre-cleared RLC was incubated with 60 nM

GST fusion proteins for 2 h in HB. When indicated, the

recombinant proteins were either pre-reduced with 1 mM DTT

(30 min, on ice) or pre-oxidized with 10 mM H2O2 (15 min, 25uC).

Complexes were recovered onto glutathione-Sepharose beads,

washed with EEB and analyzed by SDS-PAGE and western blotting.

Other techniques
Activation of p38MAPK by oxidative stress [9,39], quantification

of endocytosis with HRP [39] and immunofluorescence [9] were

described. Phospho-p38 was measured using an ELISA kit

according to the manufacturer’s instructions (Cell Signaling,

Beverly, MA). Briefly, BHK cells were homogenized in the

presence of 10 mg/ml aprotinin, 10 mM leupeptin, 1 mM pep-

statin, 1 mM Vanadate and 1 mM ß-Glycerophosphate. After

fractionation by flotation in a sucrose step gradient, 5 mg early

endosomes were lysed in 1% TX100 and used in the assay. Insulin

disulfide reduction assay was performed essentially as described in

[19,40]. Briefly, 0.13 mM bovine insulin were mixed with 5 mM

recombinant protein in 0.1 M potassium phosphate pH 7.0,

2 mM EDTA. The reaction was started by adding 2.5 mM DTT

and insulin reduction was monitored by recording the absorbance

at 600 nm at RT. The nonenzymatic reduction of insulin by DTT

was recorded as a control. TXNL1 was identified by tandem mass

spectrometry [9] (peptide sequences: GYMDLMPFINK, ID-

QYQGADAVGLEEK, FQNVNSVTIFVQSNQGEEETTR).
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