Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1980 Mar;68(3):449–459. doi: 10.1111/j.1476-5381.1980.tb14558.x

Parasympathomimetic influence of carbachol on local cerebral blood flow in the rabbit by a direct vasodilator action and an inhibition of the sympathetic-mediated vasoconstriction.

P Aubineau, R Sercombe, J Seylaz
PMCID: PMC2044198  PMID: 7052337

Abstract

1 Two sorts of effect of carbachol on local cerebral blood flow (caudate nucleus) have been studied: (a) a direct action on the arterial smooth muscle; (b) an interaction with the adrenergic (sympathetic) constrictor system which innervates the vascular system of this nucleus. 2 Continuous measurements of the following variables were performed in lightly anaesthetized rabbits: local blood flow (caudate nucleus), arterial blood pressure, PaO2, PaCO2. 3 After blockade of the nicotinic synapses in the superior cervical sympathetic ganglion by local hexamethonium injection, carbachol was infused into the common carotid artery, thus minimizing systemic effects of this drug. Infusions of 0.6, 1.3 and 2.5 micrograms kg-1 min-1 induced mean increases in caudate blood flow of about 8, 17 and 37% respectively, without notable modifications of other variables measured. 4 The dilator effect of 2.5 micrograms kg-1 min-1 carbachol was reduced to a mean of 12% after intravenous injection of 0.5 mg/kg atropine, and could be totally abolished by higher doses (1 to 1.5 mg/kg). 5 Administration of 2.5 micrograms kg-1 min-1 of carbachol diminished by more than 50% the reduction in caudate blood flow induced by postganglionic stimulation of the cervical sympathetic chain, but did not affect the reduction of flow obtained by intravenous infusion of noradrenaline (2.5 to 5.0 micrograms kg-1 min-1). This inhibition of the adrenergic (sympathetic) system by carbachol was not modified by high doses of atropine (1 mg/kg i.v.). 6 We conclude that: (a) the local cerebral blood flow of a deep structure can be significantly modified by activation of vascular muscarinic receptors; (b) activation of non-muscarinic prejunctional cholinoceptors can cause inhibition of the sympathetic fibres innervating the vascular bed of the same structure.

Full text

PDF
449

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen G. S., Glover A. B., McCulloch M. W., Rand M. J., Story D. F. Modulation by acetylcholine of adrenergic transmission in the rabbit ear artery. Br J Pharmacol. 1975 May;54(1):49–53. doi: 10.1111/j.1476-5381.1975.tb07408.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Aubineau P. F., Seylaz J., Sercombe R., Mamo H. Evidence for regional differences in the effect of beta-adrenergic stimulation on cerebral blood flow. Brain Res. 1973 Oct 26;61:153–161. doi: 10.1016/0006-8993(73)90524-6. [DOI] [PubMed] [Google Scholar]
  3. Benzi G. An analysis of the drugs acting on cerebral energy metabolism. Jpn J Pharmacol. 1975 Jun;25(3):251–261. doi: 10.1254/jjp.25.251. [DOI] [PubMed] [Google Scholar]
  4. D'Alecy L. G., Rose C. J. Parasympathetic cholinergic control of cerebral blood flow in dogs. Circ Res. 1977 Sep;41(3):324–331. doi: 10.1161/01.res.41.3.324. [DOI] [PubMed] [Google Scholar]
  5. Denn M. J., Stone H. L. Cholinergic innervation of monkey cerebral vessels. Brain Res. 1976 Aug 27;113(2):394–399. doi: 10.1016/0006-8993(76)90950-1. [DOI] [PubMed] [Google Scholar]
  6. Edvinsson L., Falck B., Owman C. Possibilities for a cholinergic action on smooth musculature and on sympathetic axons in brain vessels mediated by muscarinic and nicotinic receptors. J Pharmacol Exp Ther. 1977 Jan;200(1):117–126. [PubMed] [Google Scholar]
  7. Edvinsson L. Neurogenic mechanisms in the cerebrovascular bed. Autonomic nerves, amine receptors and their effects on cerebral blood flow. Acta Physiol Scand Suppl. 1975;427:1–35. [PubMed] [Google Scholar]
  8. Edvinsson L., Nielsen K. C., Owman C., Sporrong B. Cholinergic mechanisms in pial vessels. Histochemistry, electron microscopy and pharmacology. Z Zellforsch Mikrosk Anat. 1972;134(3):311–325. doi: 10.1007/BF00307168. [DOI] [PubMed] [Google Scholar]
  9. Edvinsson L., Nielsen K. C., Owman C., West K. A. Alterations in intracranial pressure, blood-brain barrier, and brain edema after sub-chronic implantation of a cannula into the brain of conscious animals. Acta Physiol Scand. 1971 Aug;82(4):527–531. doi: 10.1111/j.1748-1716.1971.tb04998.x. [DOI] [PubMed] [Google Scholar]
  10. Fozard J. R., Muscholl E. Do adrenergic fibres have muscarinic inhibitory receptors?-- a reply. J Pharm Pharmacol. 1974 Aug;26(8):662–664. doi: 10.1111/j.2042-7158.1974.tb10688.x. [DOI] [PubMed] [Google Scholar]
  11. Iwayama T., Furness J. B., Burnstock G. Dual adrenergic and cholinergic innervation of the cerebral arteries of the rat. An ultrastructural study. Circ Res. 1970 May;26(5):635–646. doi: 10.1161/01.res.26.5.635. [DOI] [PubMed] [Google Scholar]
  12. Lacombe P., Reynier-Rebuffel A. M., Mamo H., Seylaz J. Quantitative multiregional blood flow measurements during cervical sympathetic stimulation. Brain Res. 1977 Jun 24;129(1):129–140. doi: 10.1016/0006-8993(77)90975-1. [DOI] [PubMed] [Google Scholar]
  13. Lee T. J., Su C., Bevan J. A. Nonsympathetic dilator innervation of cat cerebral arteries. Experientia. 1975 Dec 15;31(12):1424–1426. doi: 10.1007/BF01923224. [DOI] [PubMed] [Google Scholar]
  14. Malik K. U., Ling G. M. Modification by acetylcholine of the response of rat mesenteric arteries to sympathetic stimulation. Circ Res. 1969 Jul;25(1):1–9. doi: 10.1161/01.res.25.1.1. [DOI] [PubMed] [Google Scholar]
  15. McKee J. C., Denn M. J., Stone H. L. Neurogenic cerebral vasodilation from electrical stimulation of the cerebellum in the monkey. Stroke. 1976 Mar-Apr;7(2):179–186. doi: 10.1161/01.str.7.2.179. [DOI] [PubMed] [Google Scholar]
  16. Mchedlishvili G. I., Nikolaishvili L. S. Evidence of a cholinergic nervous mechanism mediating the autoregulatory dilatation of the cerebral blood vessels. Pflugers Arch. 1970;315(1):27–37. doi: 10.1007/BF00587234. [DOI] [PubMed] [Google Scholar]
  17. Motavkin P. A., Vlasov G. S., Palashchenko L. D. A comparative characteristic of effector innervation of cerebral arteries in mammals and humans. Acta Morphol Acad Sci Hung. 1975;23(2):157–164. [PubMed] [Google Scholar]
  18. Nelson E., Rennels M. Neuromuscular contacts in intracranial arteries of the cat. Science. 1970 Jan 16;167(3916):301–302. doi: 10.1126/science.167.3916.301. [DOI] [PubMed] [Google Scholar]
  19. Nielsen K. C., Owman C., Sporrong B. Ultrastructure of the autonomic innervation apparatus in the main pial arteries of rats and cats. Brain Res. 1971 Mar 19;27(1):25–32. doi: 10.1016/0006-8993(71)90369-6. [DOI] [PubMed] [Google Scholar]
  20. Pinard E., Seylaz J. Intracerebral gas partial pressure changes under vasoactive drugs. A mass spectrometry study. Pflugers Arch. 1978 Jun 21;375(1):25–30. doi: 10.1007/BF00584144. [DOI] [PubMed] [Google Scholar]
  21. Pontén U., Siesjö B. K. Gradients of CO2 tension in the brain. Acta Physiol Scand. 1966 Jun;67(2):129–140. doi: 10.1111/j.1748-1716.1966.tb03294.x. [DOI] [PubMed] [Google Scholar]
  22. Rand M. J., Varma B. The effects of cholinomimetic drugs on responses to sympathetic nerve stimulation and noradrenaline in the rabbit ear artery. Br J Pharmacol. 1970 Apr;38(4):758–770. doi: 10.1111/j.1476-5381.1970.tb09885.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Ross G. The regional circulation. Annu Rev Physiol. 1971;33:445–478. doi: 10.1146/annurev.ph.33.030171.002305. [DOI] [PubMed] [Google Scholar]
  24. Sercombe R., Aubineau P., Edvinsson L., Mamo H., Owman C. H., Pinard E., Seylaz J. Neurogenic influence on local cerebral blood flow. Effect of catecholamines or sympathetic stimulation as correlated with the sympathetic innervation. Neurology. 1975 Oct;25(10):954–963. doi: 10.1212/wnl.25.10.954. [DOI] [PubMed] [Google Scholar]
  25. Sercombe R., Lacombe P., Aubineau P., Mamo H., Pinard E., Reynier-Rebuffel A. M., Seylaz J. Is there an active mechanism limiting the influence of the sympathetic system on the cerebral vascular bed? Evidence for vasomotor escape from sympathetic stimulation in the rabbit. Brain Res. 1979 Mar 23;164:81–102. doi: 10.1016/0006-8993(79)90008-8. [DOI] [PubMed] [Google Scholar]
  26. Seylaz J., Aubineau P. F., Correze J. L., Mamo H. Techniques for continuous measurement of local cerebral blood flow, PaO 2 , PaCO 2 and blood pressure in the non-anesthetized animal. Pflugers Arch. 1973 May 18;340(2):175–180. doi: 10.1007/BF00588175. [DOI] [PubMed] [Google Scholar]
  27. Seylaz J. Biophysique de la mesure rapide de l'irrigation sanguine locale. Helv Physiol Pharmacol Acta. 1968;26(1):1–32. [PubMed] [Google Scholar]
  28. Seylaz J., Pinard E. Continuous measurement of gas partial pressures in intracerebral tissue. J Appl Physiol Respir Environ Exerc Physiol. 1978 Apr;44(4):528–533. doi: 10.1152/jappl.1978.44.4.528. [DOI] [PubMed] [Google Scholar]
  29. Seylaz J., Pinard E., Correze J. L., Aubineau P. F., Mamo H. Quantitative continuous measurement of blood gas tensions by mass spectrometry. J Appl Physiol. 1974 Dec;37(6):937–941. doi: 10.1152/jappl.1974.37.6.937. [DOI] [PubMed] [Google Scholar]
  30. Seylaz J., Pinard E., Dittmar A., Birer A. Measurement of blood flow, tissue PO2 and tissue PCO2 continuously and simultaneously in the same structure of the brain. Med Biol Eng Comput. 1979 Jan;17(1):19–24. doi: 10.1007/BF02440949. [DOI] [PubMed] [Google Scholar]
  31. Steinsland O. S., Furchgott R. F., Kirpekar S. M. Inhibition of adrenergic neurotransmission by parasympathomimetics in the rabbit ear artery. J Pharmacol Exp Ther. 1973 Feb;184(2):346–356. [PubMed] [Google Scholar]
  32. Vanhoutte P. M., Shepherd J. T. Venous relaxation caused by acetylcholine acting on the sympathetic nerves. Circ Res. 1973 Feb;32(2):259–267. doi: 10.1161/01.res.32.2.259. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES