Abstract
1 The effects of intravenous infusion of angiotensin I, II and (des-1-Asp) angiotensin II (angiotensin III) on the plasma vasopressin levels, with and without converting enzyme inhibition, were investigated in conscious rats by use of a specific radioimmunoassay. 2 All three peptides caused a dose-dependent increase in vasopressin release, angiotensin III infusion being less effective than angiotensin I or II. 3 The converting enzyme inhibitor, SQ 20881 (Pyr-Trp-Pro-Arg-Pro-Gln-Ile-Pro-Pro) (1.0 mg/kg, i.v.), had no effect on the plasma vasopressin concentrations in bilaterally nephrectomized rats, but increased them in intact or sham-operated animals. 4 SQ 20881 potentiated vasopressin release, elicited by angiotensin I, leaving that elicited by angiotensin II unchanged. The receptor antagonist, saralasin, prevented the angiotensin-induced increase in plasma vasopressin concentration, even after pretreatment with SQ 20881. 5 These data support the assumption that the renin-angiotensin system may be involved in the control of vasopressin release, and indicate that in addition to angiotensin II, angiotensin I and III may also contribute, acting in concert.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ackerly J. A., Felger T. S., Peach M. J. Des-Asp1-angiotensin I: a metabolite of angiotensin I in the perfused feline adrenal. Eur J Pharmacol. 1976 Jul;38(1):113–121. doi: 10.1016/0014-2999(76)90207-7. [DOI] [PubMed] [Google Scholar]
- Bonjour J. P., Malvin R. L. Stimulation of ADH release by the renin-angiotensin system. Am J Physiol. 1970 Jun;218(6):1555–1559. doi: 10.1152/ajplegacy.1970.218.6.1555. [DOI] [PubMed] [Google Scholar]
- Haack D., Möhring J. Vasopressin-mediated blood pressure response to intraventricular injection of angiotensin II in the rat. Pflugers Arch. 1978 Feb 22;373(2):167–173. doi: 10.1007/BF00584856. [DOI] [PubMed] [Google Scholar]
- Hertting G., Meyer D. K. Effect of converting enzyme blockade on isoprenaline- and angiotensin I-induced drinking. Br J Pharmacol. 1974 Nov;52(3):381–386. doi: 10.1111/j.1476-5381.1974.tb08606.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Johnson A. K., Hoffman W. E., Buggy J. Attenuated pressor responses to intracranially injected stimuli and altered antidiuretic activity following preoptic-hypothalamic periventricular ablation. Brain Res. 1978 Nov 17;157(1):161–166. doi: 10.1016/0006-8993(78)91007-7. [DOI] [PubMed] [Google Scholar]
- Kurtzman N. A., Boonjarern S. Physiology of antidiuretic hormone and the interrelationship between the hormone and the kidney. Nephron. 1975;15(3-5):167–185. doi: 10.1159/000180511. [DOI] [PubMed] [Google Scholar]
- Meyer D. K., Eisenreich M., Nutto D. Effect of isoprenaline on the plasma concentrations of angiotensin III in rats. Clin Sci (Lond) 1979 Nov;57(5):401–407. doi: 10.1042/cs0570401. [DOI] [PubMed] [Google Scholar]
- Miselis R. R., Shapiro R. E., Hand P. J. Subfornical organ efferents to neural systems for control of body water. Science. 1979 Sep 7;205(4410):1022–1025. doi: 10.1126/science.472723. [DOI] [PubMed] [Google Scholar]
- Oparil S., Koerner T., O'Donoghue J. K. Mechanism of angiotensin I converting enzyme inhibition by SQ20,881 (less than Glu-Trp-Pro-Arg-Pro-Gln-Ile-Pro-Pro) in vivo. Further evidence for extrapulmonary conversion. Hypertension. 1979 Jan-Feb;1(1):13–22. doi: 10.1161/01.hyp.1.1.13. [DOI] [PubMed] [Google Scholar]
- Peach M. J., Bumpus F. M., Khairallah P. A. Release of adrenal catecholamines by angiotensin I. J Pharmacol Exp Ther. 1971 Feb;176(2):366–376. [PubMed] [Google Scholar]
- Peach M. J. Renin-angiotensin system: biochemistry and mechanisms of action. Physiol Rev. 1977 Apr;57(2):313–370. doi: 10.1152/physrev.1977.57.2.313. [DOI] [PubMed] [Google Scholar]
- Ramsay D. J., Keil L. C., Sharpe M. C., Shinsako J. Angiotensin II infusion increases vasopressin, ACTH, and 11-hydroxycorticosteroid secretion. Am J Physiol. 1978 Jan;234(1):R66–R71. doi: 10.1152/ajpregu.1978.234.1.R66. [DOI] [PubMed] [Google Scholar]
- Regoli D., Park W. K., Rioux F. Pharmacology of angiotensin. Pharmacol Rev. 1974 Jun;26(2):69–123. [PubMed] [Google Scholar]
- SHARE L., LEVY M. N. Cardiovascular receptors and blood titer of antidiuretic hormone. Am J Physiol. 1962 Sep;203:425–428. doi: 10.1152/ajplegacy.1962.203.3.425. [DOI] [PubMed] [Google Scholar]
- Semple P. F., Morton J. J. Angiotensin II and angiotensin III in rat blood. Circ Res. 1976 Jun;38(6 Suppl 2):122–126. doi: 10.1161/01.res.38.6.122. [DOI] [PubMed] [Google Scholar]
- Shimamoto K., Miyahara M. Effect of norepinephrine infusion on plasma vasopressin levels in normal human subjects. J Clin Endocrinol Metab. 1976 Jul;43(1):201–204. doi: 10.1210/jcem-43-1-201. [DOI] [PubMed] [Google Scholar]
- Sirett N. E., McLean A. S., Bray J. J., Hubbard J. I. Distribution of angiotensin II receptors in rat brain. Brain Res. 1977 Feb 18;122(2):299–312. doi: 10.1016/0006-8993(77)90296-7. [DOI] [PubMed] [Google Scholar]
- Snyder S. H. Peptide neurotransmitter candidates in the brain: focus on enkephalin, angiotensin II, and neurotensin. Res Publ Assoc Res Nerv Ment Dis. 1978;56:233–243. [PubMed] [Google Scholar]
- Uhlich E., Weber P., Eigler J., Gröschel-Stewart U. Angiotensin stimulated AVP-release in humans. Klin Wochenschr. 1975 Feb 15;53(4):177–180. doi: 10.1007/BF01466762. [DOI] [PubMed] [Google Scholar]
