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Large-scale genetic association studies are now widely conducted using SNPs selected from the International HapMap
Project or provided on commercial “whole genome” chips. As only a subset of human genetic variation has been
identified, it is unknown what proportion of the total genetic variation can be captured in this way, although recent
genome-wide estimates of SNP capture rates have been encouraging. We estimated the expected gene-centric
information capture for whole-genome chips using sequence data from 306 inflammatory/cardiovascular genes and
found SNP capture rates notably lower than previous genome-wide estimates. Further investigation indicates that a
major explanation for these lower capture rates is the aggregation of particular sequence features that influence both
linkage disequilibrium and the amenability of SNPs for genotyping within the broad class of inflammatory/
cardiovascular genes. This suggests that the power of genetic association studies in some complex traits will depend
not only upon established factors, such as allele frequency and penetrance, but may also be influenced by the
distribution of sequence features in the class of genes expected to underlie the disease of interest.

[Supplemental material is available online at www.genome.org.]

The HapMap project (International HapMap Consortium 2005;
http://www.hapmap.org) has truly revolutionized the selection
of SNPs for testing in candidate gene studies; the website and
associated tools such as Haploview (Barrett et al. 2005) and tagger
(de Bakker et al. 2005) allow researchers to select efficient sets of
tag SNPs, which capture the majority of variation within Hap-
Map while reducing redundancy. The resource has been used to
derive sets of genome-wide tag SNPs, selected to capture common
SNPs (with minor allele frequencies >5%) in the HapMap CEU
(Utah residents with ancestry from Northern and Western Eu-
rope) samples, which are available in the Illumina Human-
Hap300 and HumanHap550 SNP chips (containing 317,000 and
555,000 SNPs, respectively). Affymetrix has also produced two
genome-wide SNP chips (100,000 and 500,000 GeneChips) cov-
ering 111,000 and 500,000 SNPs, but these are chosen “at ran-
dom” (without reference to linkage disequilibrium [LD] and on
the basis of genotyping quality using Affymetrix technology).
More recently, Affymetrix has released the SNP Array 6.0 con-
taining >906,000 SNPs. Although SNPs are the primary target of
such resources, recent work has shown that insertion–deletion
variants (indels) are often in strong LD with neighboring SNPs,
implying that they may also be tagged (Hinds et al. 2006; Mc-
Carroll et al. 2006), adding further value to SNP studies.

Previous studies have concluded that the entire set of Hap-
Map SNPs can capture, with r2 > 0.8, 94% of common SNP varia-
tion genome wide in European populations and 81% in African
populations (International HapMap Consortium 2005). The Hap-
Map SNP data have also been used, with appropriate correction

for their incomplete coverage, to estimate expected information
capture for whole-genome chips (Barrett and Cardon 2006),
while another study used sequence data from the ENCODE
project that covers 10 500-kb regions (Pe’er et al. 2006b). Both
produced similar estimates, and found that commercial whole-
genome SNP chips should capture the majority of common SNP
variation with r2 � 0.8 in European and Asian populations (e.g.,
at least 64% for the Affymetrix GeneChip 500k), but a smaller
proportion in African populations (41%).

It is anticipated that many of the disease-associated variants
that will be found in genome-wide studies are likely to be located
in or near genes, meaning that it is important to consider cov-
erage in gene-centric regions specifically. We set out to estimate
the proportion of common gene-centric SNPs that can be cap-
tured using HapMap-derived tag SNP sets and commercial whole-
genome SNP chips using public sources of sequence data (Se-
attleSNPs [http://pga.gs.washington.edu] and PARC [http://
droog.mbt.washington.edu/parc]), which cover 306 genes (6.4
Mb) in total.

Results

The 306 SeattleSNPs/PARC genes included in this study con-
tained a total of 31,965 SNPs; their breakdown into rare and
common variants and according population is shown in Table 1.
Sequenced length per gene ranged from 3.3 kb to 103 kb (me-
dian, 17.5 kb).

We identified a total of 9713 SNPs in HapMap version 21a
located within the sequenced regions. Of these, 8904 (92%) were
polymorphic in SeattleSNPs/PARC. Among the common Hap-
Map SNPs (MAF > 5%), 4725 of 5011 (94%) and 5425 of 5790
(93%) were polymorphic in SeattleSNPs/PARC in European and
African descent populations, respectively. These figures should
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be weighed against the expected number of common HapMap
SNPs that would appear monomorphic in 46 sequenced chromo-
somes, given the HapMap allele frequency distribution. We cal-
culated this proportion to be about 1%, suggesting that perhaps
5% of HapMap SNPs may have been missed in the resequencing
efforts. However, HapMap has recently released an updated
data set (version 22), and a number of SNPs that were in version
21a have been excluded. Interestingly, 69 (15%) of the common
HapMap SNPs we failed to identify in SeattleSNPs/PARC were
among the list of excluded SNPs compared with only 22 (0.3%) of
SNPs we did, suggesting that some of the SNPs we failed to align
may have been incorrectly positioned in HapMap version 21a.
Further comparison of genotyped SNPs common to both re-
sources for the subset of 78 genes sequenced in a subset of Hap-
Map individuals demonstrated a high genotype call concordance
rate (98.3% in a total of 74,892 genotype calls over 3401 SNPs).
Thus, our alignment of the SeattleSNPs/PARC resources to Hap-
Map and the quality of the SeattleSNPs/PARC data was validated.

Information measures
We tested six tag SNP sets—all HapMap SNPs, a set of tag SNPs
derived from HapMap, the commercial Affymetrix GeneChip
100k, Affymetrix GeneChip 500k, Illumina HumanHap300, and
Illumina HumanHap550 SNP chips. Coverage was evaluated ac-
cording to “capture rate”—the proportion of common SNPs in
the sequence data (minor allele frequency >5%) either within the
tag SNP set or in strong LD (r2 � 0.8) with a tag SNP. We prefer
this simple pairwise measure to capture by multiple markers be-
cause of the lack of assumptions required about methods of
downstream analysis, although we recognize that capture rates
could be increased by the use of multimarker tagging (de Bakker
et al. 2005).

Capture rates are a useful summary measure, but are based
on a dichotomization of a continuous statistic—the maximum r2

between any sequenced polymorphism and a set of tag SNPs.
Associations with disease-related polymorphisms will still be de-
tectable at more moderate r2 (0.5–0.8) given sufficiently large
sample sizes, but the opposite tail of the distribution contains
polymorphisms with which association will not be detectable, no
matter how large a sample is available. To examine these we
introduce the “noncapture rate”—the proportion of sequenced
SNPs that have a maximum r2 < 0.2 with any tag SNP or haplo-
type of tag SNPs. Jorgenson and Witte (2006) have also proposed
the mean maximum r2 as a more stable measure of information
capture. In this study, we present all three measures in parallel, as
they describe different aspects of the maximum r2 distribution,
and refer to them jointly as information measures.

We calculated information measures for each of our six tag
SNP sets, and these are presented in Table 2. SeattleSNPs and
PARC included African, African American, and European Ameri-
can samples (see Methods for details). For brevity, we describe the
European American samples as “European descent” and both the
African American and African samples as “African descent.” The
tag SNP set composed of all HapMap SNPs captured the majority
of the gene-centric sequence SNPs (in European descent samples,
capture rates CRE = 77%, mean maximum r2, mE = 85%; in Afri-
can descent samples, CRA = 58%, mA = 72%). Relatively low non-
capture rates indicated that only a small minority of polymor-
phisms will not be able to be captured by any HapMap-derived
set of SNPs (noncapture rates in European descent samples,
nCRE = 6%, in African descent samples, nCRA = 13%).

Using a subset of HapMap-derived tag SNPs proved to be an
efficient strategy, resulting in moderate reductions in informa-
tion capture (CRE = 66%, mE = 78%; CRA = 43%, mA = 61%) and
increases in noncapture (nCRE = 8%; nCRA = 18%) for SNPs in
return for substantial reductions of over 55% in genotyping re-
quirements.

The commercially available whole-genome chips contained

Table 1. Polymorphisms identified in the SeattleSNPs and PARC resources

Total
European-descent
common variants

African-descent
common variants

SNPs found in SeattleSNPs/PARC only 22,252 6726 11,451
SNPs found in SeattleSNPs/PARC and present in HapMap 8904 4725 5425
HapMap SNPs in SeattleSNPs/PARC regions but not polymorphic in SeattleSNPs/PARC 809 286 365
Total number of SNPs 31,965 11,737 16,494

Common variants had minor allele frequency of greater than 5% in at least one resource.

Table 2. Summary of information measures for six tagsets in SeattleSNPs/PARC samples

N-SNPs HM-all HM-tags A100 A500 HH300 HH550

European-descent
N-tags 6565 1908 221 1152 981 1505
m 9262 0.850 0.781 0.195 0.548 0.562 0.668
CR 9262 0.770 0.658 0.126 0.414 0.414 0.530
nCR 9262 0.063 0.081 0.710 0.277 0.246 0.174

African-descent
N-tags 8389 3250 242 1425 926 1487
m 12036 0.718 0.609 0.104 0.349 0.276 0.391
CR 12036 0.580 0.431 0.056 0.212 0.154 0.232
nCR 12036 0.127 0.180 0.833 0.479 0.550 0.405

(m) Mean maximum r2; (CR) capture rate; (nCR) noncapture rate. N-SNPs is the number of polymorphisms found in the sequencing data on which the
estimate is based (after exclusion of SNPs in flanking LD blocks—see Methods for details). N-tags is the number of SNPs in the tag set. (HM-all) All
HapMap SNPs; (HM-tags) tag SNPs derived from HapMap; (A100) Affymetrix GeneChip 100k; (A500) Affymetrix Gene Chip 500k; (HH300) Illumina
HumanHap300; (HH550) Illumina HumanHap550.
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substantially fewer SNPs in the sequenced regions than the num-
ber of HapMap-derived tags and, as a result, did not perform as
well in comparison. The Illumina HumanHap550 was the stron-
gest performer (CRE = 53%, mE = 67%; CRA = 23%, mA = 39%),
followed by the Affymetrix GeneChip 500k (CRE = 41%,
mE = 55%; CRA = 21%, mA = 35%) and the Illumina Human-
Hap300 (CRE = 41%, mE = 56%; CRA = 15%, mA = 28%). These
relatively low capture rates are offset, in Europeans at least, by
noncapture rates of �27% (and 17% for Illumina Human-
Hap550), suggesting that the majority of genetic variants should
be detectable with sufficiently large sample sizes. In African-
descent samples, however, noncapture rates are considerable (at
least 40%).

Comparison with genome-wide estimates and correction
for bias due to short sequenced regions

These capture rates are all notably below previously reported es-
timates. For example, our results indicate that, for the Affymetrix
GeneChip 500k, CRE = 41%, while previous genome-wide esti-
mates were at least 64% (Barrett and Cardon 2006; Pe’er et al.
2006b). An important consideration is that we may have under-
estimated capture rates. First, due to any SNPs missed in rese-
quencing efforts, and second, as a direct result of our study de-
sign based on the SeattleSNPs/PARC resources. These consist of
relatively short sequenced regions, which means long-range LD
between tag SNPs and target SNPs is missed (Pe’er et al. 2006a).
We have mitigated against this by estimating the block structure
for each sequenced region and estimating capture rates only for
those SNPs not in the flanking LD blocks (see Methods). How-
ever, capture rates do tend to be higher in longer genes (data not
shown), suggesting underestimation may be a problem.

We attempted to correct for this bias in two ways. First, we
estimated the extent of the bias by resampling from the ENCODE
data set. This showed that information measures calculated using
short sequenced regions were underestimated by a factor that
varied according to tagset, but not population (Table 3). If we
assume no systematic differences between the regions within
which the SeattleSNP/PARC genes lie and the regions sequenced
by ENCODE, we can multiply the information measures from the
SeattleSNPs/PARC data by the inverse of these underestimation
factors. These corrected information measures remain below pre-
vious published estimates (Table 4).

We also attempted to overcome the bias by incorporating
HapMap data to extend the length of SeattleSNPs/PARC-
sequenced regions in an extended window analysis. A total of 78
of the 306 SeattleSNPs/PARC genes were sequenced in a subset of

HapMap individuals. For this subset, we combined sequenced
genotypes with HapMap genotypes in successively larger win-
dows, allowing all HapMap SNPs to be potential tags, and thus
incorporating long-range LD. Figure 1 shows that information
capture increases as window size increases. The effect on HapMap
derived tagsets is modest (e.g., CRE = 76% for all HapMap SNPs
with no window compared with CRE = 79% with a 200-kb win-
dow). However, the underestimation is greater for genome-wide
chips, as might be expected given their lower density of SNPs
compared with HapMap, and therefore, their greater reliance on
long-range LD.

These two methods both lead to increased estimates of in-
formation capture, but still substantially below published esti-
mates. For example, for the Affymetrix GeneChip 500k, the cor-
rected CRE = 56%, and the windowed CRE = 45% compared with
64% (Barrett and Cardon 2006; Pe’er et al. 2006b). This suggests
that bias due to using short sequenced regions accounts for part,
but not all of the difference between our estimates and previously
published estimates. We therefore began to search for alternative
explanations for the remaining difference.

Explaining the residual difference in information capture
estimates

An obvious difference between this and earlier studies is the
gene-centric nature of the SeattleSNPs/PARC sequence data. We
examined whether information measures varied with proximity
to known genes within the ENCODE data, but found no evidence
to support a hypothesis that gene-centric SNPs are more difficult
to capture (Supplemental Fig. 1). For example, capture rates in
European descent samples for the Affymetrix GeneChip 500k
were 68% for gene-centric SNPs and 61% for intergene SNPs.

Also, ENCODE has sequenced more samples (60 compared
with 23 or 24 for SeattleSNPs/PARC). We resampled 23 (CEU) or
24 (YRI) samples from the ENCODE data set and recalculated
information measures. After 1000 replications, the mean infor-
mation measures across the resampled data set suggested little
systematic difference compared with those from the entire data
set.

Finally, we considered whether differences in the allele fre-
quency spectra between SeattleSNPs/PARC and HapMap could
explain the differences in estimated capture rates, as HapMap is
biased toward common SNPs. However, we estimated capture
rates only for SNPs with MAF > 5%, and, although the allele fre-
quency spectra show the expected excess of rare SNPs in the
SeattleSNPs/PARC data, the frequency spectra for common SNPs

Table 3. Underestimation of information capture in ENCODE
data due to short sequence lengths

A500 HH300 HH550 A100

European-descent
mE 0.371 0.739 0.805 0.838
CRE 0.508 0.740 0.723 0.771
nCRE 2.237 2.925 2.625 2.762

African-descent
mA 0.371 0.739 0.805 0.838
CRA 0.508 0.740 0.723 0.771
nCRA 2.238 2.926 2.625 2.762

(m) Mean maximum r2; (CR) capture rate; (nCR) noncapture rate; (A100)
Affymetrix GeneChip 100k; (A500) Affymetrix Gene Chip 500k; (HH300)
Illumina HumanHap300; (HH550) Illumina HumanHap550.

Table 4. Information measures in SeattleSNPs/PARC data after
correction for bias due to short sequence lengths derived from
ENCODE data

A500 HH300 HH550 A100

European-descent
mE 0.525 0.742 0.698 0.797
CRE 0.248 0.560 0.573 0.687
nCRE 0.317 0.095 0.094 0.063

African-descent
mA 0.280 0.472 0.343 0.467
CRA 0.110 0.287 0.213 0.301
nCRA 0.372 0.164 0.209 0.147

(m) Mean maximum r2; (CR) capture rate; (nCR) noncapture rate; (A100)
Affymetrix GeneChip 100k; (A500) Affymetrix Gene Chip 500k; (HH300)
Illumina HumanHap300; (HH550) Illumina HumanHap550.
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are not dissimilar between HapMap and SeattleSNPs/PARC
(Supplemental Fig. 3). In addition, reanalysis of only SNPs with
MAF > 10% still showed considerably lower capture rates in Se-
attleSNPs for the Affymetrix chips than a similar analysis using
ENCODE (data not shown).

We also compared the distribution of interspersed repeats in
SeattleSNPs/PARC and ENCODE (Fig. 2). These are sequence fea-
tures within which SNP genotyping can be difficult and fall into
four classes: long interspersed elements (LINEs), short inter-
spersed elements (SINEs), long terminal repeat (LTR) retrotrans-
posons, and DNA transposons. Their distribution is similar to
genome-wide averages in the ENCODE regions and similar in the
SeattleSNPs/PARC regions to “gene-centric” ENCODE regions
(within 10 kb of a known gene), except for a lower frequency of
LINEs in SeattleSNPs/PARC (9.3% vs. 15%) and a slightly higher
frequency of SINEs (15.2% vs. 13.9%).

An interesting pattern emerges
when we compare the above distribu-
tions with the proportion of SNPs iden-
tified in each sequence feature (Fig. 2).
Within SeattleSNPs/PARC, the propor-
tion of SNPs in each feature is similar to
the proportion of sequenced region in
each feature, with perhaps a small in-
crease in the number of SNPs found in
SINEs compared with their sequenced
length (18% vs. 15%). This is in keeping
with a recent report that SNPs are found
more frequently in SINEs than neighbor-
ing sequences (Ng and Xue 2006). Since
only ∼80% of ENCODE SNPs identified
by sequencing efforts are genotyped in
HapMap (http://www.hapmap.org/
downloads/encode1.html.en), we con-
sidered separately all ENCODE SNPs sub-
mitted to dbSNP (ENCODE-seq) and
those ENCODE SNPs genotyped by Hap-
Map (ENCODE-HapMap). The propor-
tion of SNPs and sequenced regions
within each feature are also similar com-
paring ENCODE-seq SNPs with ENCODE
regions. However , for ENCODE-
HapMap, SNPs in SINEs appear under-
represented (6%) compared with the
proportion of ENCODE-sequenced re-
gions in SINEs (12%). While there may
be an increase in false positive SNPs in
SeattleSNPs/PARC, as it is notoriously
difficult to sequence through repeat re-
gions, this low frequency of SNPs in
SINEs only in ENCODE-HapMap sug-
gests an undersampling of SNPs in SINEs
by ENCODE-HapMap. This is most likely
due to difficulties creating unique geno-
typing primers for such SNPs.

This difference in the composition
of the resources is important because in-
formation capture for SNPs in repeat fea-
tures tends to be lower compared with an
“average” SNP (e.g., Supplemental Fig. 4
shows capture rates for SNPs in each se-
quence feature, but a similar pattern is

also seen for maximum mean r2), but this is most marked for
SNPs in SINEs. A data set that under-represents these difficult to
capture SNPs, then, could lead to inflated estimates of informa-
tion capture.

Discussion

Our gene-centric analysis reveals lower information capture for
HapMap and whole-genome SNP chips than previously pub-
lished genome-wide estimates. We believe this difference results
from a combination of different study designs and the contrast-
ing resources that have been used to estimate capture rates. Our
results tend to underestimate capture due to long-range LD with
distant chip SNPs outside the sequenced regions. However, ex-
tended-window analysis of 78 genes and resampling of ENCODE

Figure 1. Information measures for 78 genes using combined SeattleSNPs/PARC and HapMap data
for extension windows of 0–200 kb around the sequenced region. Mean maximum r2, capture rates,
and noncapture rates are shown by squares, circles, and triangles, respectively; European and African
descent samples are distinguished by solid and open symbols, respectively.
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demonstrates that this underestimation explains only part of the
lower information capture observed here. The other major expla-
nation appears to be the higher proportion of SNPs in SINEs
found in and around the SeattleSNPs/PARC genes, combined
with lower capture rates in these features.

There are at least two mechanisms by which capture rates
may be lower in sequence features. First, because it is more dif-
ficult to create unique primers, SNPs are less likely to be captured
directly by virtue of their inclusion in the tag set and, indeed,
SNPs in all sequence features are less likely to be included on any
chip, but the effect is most dramatic for SNPs in SINEs (Supple-
mental Fig. 5). Second, sequence features may also affect the
chance of a SNP being captured through high LD with one of its
neighbors. The extent of LD in a region depends, among other
things, on the local recombination rate, and this is correlated
with proximity to particular sequence features. LINEs and SINEs,
in particular, have been associated with decreases and increases
in local recombination rates, respectively (Yu et al. 2001). A di-
rect relationship between sequence features and LD has also been
observed, with LINEs and SINEs being associated with increased
and decreased LD, respectively (Smith et al. 2005).

We note that the relatively lower frequency of SNPs in SINEs
in the ENCODE-HapMap data, given that such SNPs are harder to
capture, could have led to overoptimistic genome-wide estimates
of capture rates in a previous ENCODE-based empirical evalua-
tion (Pe’er et al. 2006b), but this is likely to have had a relatively
small effect on the estimated genome-wide capture rates.

These findings raise interesting questions about why the Se-
attleSNPs/PARC genes studied here display such different fre-
quencies of interspersed repeats to that observed from genome-
wide averages. The frequency of these elements has been shown
to be correlated with LD, and LD, in turn, has been shown to be
correlated with a broad functional class of gene, with inflamma-
tory genes displaying the lowest average LD of 35 classes consid-
ered (Smith et al. 2005). It has been noted that genes such as
inflammatory and immune-response genes that displayed low
LD were amongst those for which great allelic diversity is likely to
be advantageous to the species (Smith et al. 2005). The majority
of genes sequenced by SeattleSNPs/PARC are in inflammation
pathways and the pattern of SINE/LINE frequency in these genes
shown in Figure 2 represents a plausible explanation for the
lower LD. It is tempting to speculate that the atypical frequency
of these elements in inflammatory genes, then, is the mechanism
by which this advantageous lower LD is maintained.

Thus, this snapshot of sequence data from SeattleSNPs/
PARC is not representative of the average genome-wide distribu-
tion of interspersed repeats, apparently due to the nature of se-
quences within inflammatory genes. Had we considered another
class of genes with a different set of sequence features (e.g., those
involved in DNA metabolism that display higher than average
LD; Smith et al. 2005), it is feasible that our results may have been
very different. This illustrates that our ability to map disease-
causing variants should be defined not only by their allelic dis-
tribution and penetrance, but also by their “capture potential,”
reflecting the collection of sequence features typical of the classes
of genes likely to be involved in the disease of interest. The vol-
ume of available large-scale sequencing data continues to increase
(for example, from projects such as the Environmental Genome
Project; http://www.niehs.nih.gov/envgenom) and whether cap-
ture rates vary by gene class will be testable in the near future.

An important point is that this analysis assumes all SNPs on
a given chip genotype successfully, which is in contrast to the
experience in real datasets, where a proportion of SNPs fail. Thus,
the results here (and in other studies) represent an upper bound
for information capture in an ideal world.

In summary, our results suggest that, for any particular dis-
ease that may result from variation in a particular functional class
of genes, SNP chip performance may differ from genome-wide
estimates of average performance. Although information capture
is generally expected to improve with the new one million SNP
chips recently released and in the pipeline, it is likely that addi-
tional technological approaches will be required to genotype
variants in repeat sequence features, and hence, capture all com-
mon variation. These findings may remain particularly impor-
tant for disease-gene detection in studies of disorders with an
inflammatory etiology.

Methods

Data sets
We retrieved data from the SeattleSNPs and PARC databases for
all 306 genes labeled “complete,” and which had been sequenced

Figure 2. Frequency distribution of local genomic characteristics in
evaluation resources (%). The top and bottom panels show the proportion
of sequenced region and the proportion of SNPs that fall into each cat-
egory of sequence features. (gc) Gene-centric (within 10 kb of any known
gene); (SS/P) SeattleSNPs/PARC; (ENC-seq) ENCODE SNPs submitted to
dbSNP; (ENC-HM) SNPs genotyped by the ENCODE-HapMap project
(http://www.hapmap.org/downloads/encode1.html.en). (LINE) Long in-
terspersed element; (SIN) short interspersed element; (LTR) long terminal
repeat retrotransposons; (DNA element) DNA transposons. Genome-
wide averages are those published by Lander et al. (2001).
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in human samples by March 20, 2006. Initially, sequencing in
both of these projects was conducted in samples from American
individuals of European (n = 23) and African (n = 24) descent,
distinct from those used by HapMap. In October 2004, these were
replaced by a subset of the HapMap CEU samples (n = 23) and
YRI (Yoruba in Ibadan, Nigeria) samples (n = 24), so that 228
genes were sequenced in independent samples, and the remain-
ing 78 in a subset of HapMap samples. All 306 genes were in-
cluded in this study. A summary of the number of polymor-
phisms studied is given in Table 1. We extracted all SNPs from
HapMap release 20 within the sequenced regions and aligned the
two resources.

Alignment of SeattleSNPs/PARC with build 35 of the human
genome
All SeattleSNPs/PARC SNPs were aligned to build 125 of dbSNP
(Sherry et al. 2001) by taking 50 bp upstream and downstream of
each SNP and using MegaBLAST (Zhang et al. 2000). A SNP was
considered mapped to a dbSNP entry when the hit was aligned at
the position of the SNP in both sequences and the percent iden-
tity was �98% over a region of �80 bp. To validate mappings,
SeattleSNPs/PARC positional order was compared with the posi-
tional order of mapped dbSNP entries and mismappings were
excluded. We manually checked the mapping of SNPs in five
genes chosen at random by comparison with dbSNP to confirm
that our alignment algorithms worked as intended.

We placed SNPs from SeattleSNPs and PARC, which were
not yet in dbSNP, onto build 35 of the human genome by using
MegaBLAST with the same settings as those used by the NCBI
for mapping dbSNP entries onto the genome. The flanking se-
quence was initially cleaned with RepeatMasker (http://
www.repeatmasker.org) and then the MegaBLAST was performed
with a word size of 28. The position of the SNP in the SeattleSNPs
and PARC sequences had to be returned in the alignment for a
mapping to be considered valid.

Proportion of HapMap SNPs that would appear monomorphic
in SeattleSNPs/PARC
The probability that a HapMap SNP i with minor allele frequency
qi would appear monomorphic in a sample of n samples is
pi = qi

2n + (1 � qi)
2n. From this we can estimate the expected pro-

portion of N HapMap SNPs that would appear monomorphic in
n independent samples as ∑N

i pi/N.

Exclusion of genes
Two of the sequenced genes map to both chromosome X and Y,
and 10 genes contained no SNPs in HapMap. All 12 are listed in
Supplemental Table 1 and were excluded from further study. It is
not clear why these gaps exist in HapMap, but notes on the
website suggest that they arose through difficulties resolving dif-
ferences between builds 34 and 35 of the human genome and
may be resolved in a future ”gold standard” release.

We retrieved the ENCODE data from HapMap release 20 and
found the position of all known genes within these regions by
manually extracting their coordinates from the HapMap view of
each region. There was no overlap between the ENCODE regions
and the SeattleSNPs/PARC regions.

The coordinates of sequence features on builds 34 and 35 of
the human genome were retrieved from the rmsk table in the
Table Browser at the UCSC Human Genome Browser Gateway
(http://genome.ucsc. edu/cgi-bin/hgGateway). Genome-wide av-
erage rates of sequence features used in Figure 2 were taken from
Table 11 in Lander et al. (2001).

Estimation of capture measures
Measures of capture potential were based on ri,max

2 = maxj ∈ tagset

rij
2, the maximum pairwise r2 between a SNP we want to capture,

i, given all SNPs, j, in a specific tagset. Three capture measures
were defined as follows:

the capture rate

CR =
�

i
I�i ∈ tagset OR r i,max

2 � 0.8�

n
,

the noncapture rate

nCR =
�

i
I�i ∉ tagset AND ri,max

2 < 0.2�

n
,

and the mean maximum r2

m =
�

i
ri,max
2

n
,

where I() is an indicator function and n the total number of SNPs
evaluated.

We expected SNPs toward the ends of sequenced regions,
not directly typed in the tag set under consideration, might be in
high LD, not with any tag SNP within the sequenced region, but
with one lying outside that region, causing capture rates to be
underestimated. For each sequenced region, we estimated the
LD-block structure and considered polymorphisms in the flank-
ing blocks separately. (We allow that a “block” may consist of a
single SNP). Capture rates in these flanking blocks were ∼5%
lower compared with polymorphisms in inner LD blocks, and we
estimated capture rates only for those SNPs in inner LD blocks to
avoid drawing potentially unfair conclusions. For the equations
above, that means we allow j to roam over all SNPs in a tagset
(regardless of whether they are also in a flanking block), but
restrict i to common SNPs not in flanking LD blocks.

LD blocks were inferred using all three methods pro-
grammed in Haploview. Estimated capture rates were very similar
across all three, and we chose to use the method “SPINE” in the
final results, as it was the most conservative (selecting the largest
LD blocks and resulting in marginally higher estimated capture
rates). We used tagger (de Bakker et al. 2005) to assess capture
rates and chose tag SNPs from all HapMap SNPs using the pair-
wise algorithm in the software Haploview (Barrett et al. 2005) to
tag all known HapMap SNPs in a given region with minor allele
frequencies �5% with r2 � 0.8. Tagger and Haploview use the
same algorithms, but while Haploview is more convenient be-
cause it can be run on local computer, tagger, run on a remote
server, provides greater functionality for evaluation of tag SNP
sets.

Resampling from ENCODE to estimate degree of bias
due to missed long-range LD
The ENCODE project (ENCODE Project Consortium 2004) has
sequenced 10 500-kb regions in a subset of the HapMap individu-
als and these data are one of the resources used in previous evalu-
ations. We chose random starting points and repeatedly (200
times) superimposed the pattern of sequenced regions for each
gene onto the ENCODE data set and calculated information mea-
sures for the set of SNPs within these “pseudo-sequenced genes”
in the same way as for the SeattleSNPs/PARC data and using the
complete ENCODE data set as potential tags. For each tagset,
population, and information measure, we used the mean ratio of
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the measure using the smaller tagset to the measure using all
SNPs as tags to calculate underestimation factors.

Extended windows analysis
For the 78 genes sequenced in a subset of HapMap individuals,
we combined SeattleSNPs/PARC and HapMap genotype data for
successively larger windows surrounding the sequenced regions.
Windows of size 0 include only SeattleSNPs/PARC SNPs, but all
other windows also include all HapMap SNPs within the window
size (including those within the central sequenced region). When
both resources contained genotype data for the same individual
and the same SNP, data was combined as follows: (1) if both
genotypes concordant, keep; (2) if one genotype missing, keep
the non-missing genotype; (3) if genotypes discordant, set to
missing. Capture rates were defined as above, but using LD esti-
mates from the combined data.
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