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We describe a gene network for the Arabidopsis thaliana transcriptome based on a modified graphical Gaussian model
(GGM). Through partial correlation (pcor), GGM infers coregulation patterns between gene pairs conditional on the
behavior of other genes. Regularized GGM calculated pcor between gene pairs among ∼2000 input genes at a time.
Regularized GGM coupled with iterative random samplings of genes was expanded into a network that covered the
Arabidopsis genome (22,266 genes). This resulted in a network of 18,625 interactions (edges) among 6760 genes
(nodes) with high confidence and connections representing ∼0.01% of all possible edges. When queried for selected
genes, locally coherent subnetworks mainly related to metabolic functions, and stress responses emerged. Examples
of networks for biochemical pathways, cell wall metabolism, and cold responses are presented. GGM displayed
known coregulation pathways as subnetworks and added novel components to known edges. Finally, the network
reconciled individual subnetworks in a topology joined at the whole-genome level and provided a general framework
that can instruct future studies on plant metabolism and stress responses. The network model is included.

[Supplemental material is available online at www.genome.org.]

Remarkable conceptual and technical advances in genomics have
generated exceptionally large data sets. Global analyses of these
collections of data may now be used to construct biological net-
works that systematically categorize all molecules and describe
their functions and interactions (Barabasi and Oltvai 2004). Net-
works are emerging that, oriented to highlight different levels of
complexity and placing emphasis on distinct regulatory, devel-
opmental, or metabolic “pathways,” can now integrate biological
functions of cells, organs, and organisms (Brazhnik et al. 2002).

Most advanced are gene networks analyzing large-scale mi-
croarray hybridizations that monitor transcriptome dynamics
(de la Fuente et al. 2002; Yugi et al. 2005). Emerging also are
networks extracted from protein–protein interactions or protein
complexes (Ito et al. 2001; Gavin et al. 2002), regulatory net-
works based on ChIP-chip data, which describe the interactions
between transcription factors and their targets (Lee et al. 2002;
Buck and Lieb 2004), or metabolic networks elucidating effects of
the dynamics of metabolites (Baxter et al. 2007; Martins et al.
2007). Synthetic lethal networks extract genetic interactions
critical for an organism’s fitness (Tong et al. 2004; Pan et al.
2006).

In contrast to single-cell organisms, network reconstruction
of higher organisms has been restricted mainly due to limitations
in data availability. Nevertheless, in a complex system such as
the plant model Arabidopsis thaliana, expression profiles ex-
tracted from microarray data sets offer information on physi-
ological status, in particular, because data from time series and
from developmental, genetic intervention, or manipulative treat-
ments are available (Schmid et al. 2005; Kilian et al. 2007).

The assembly of a gene network depends on the mathemati-
cal models applied, which, ideally, should describe inferred

causal relationships that govern the expression patterns and dy-
namics of a set of genes. In reality, networks are assembled ac-
cording to coincidence or coregulation of genes and the magni-
tude of regulation or statistical significance of the coincidence
(Brazhnik et al. 2002). Currently, the most widely used compu-
tational method involves calculating standard Pearson correla-
tion coefficients (r) between pairs of genes. A pair of genes with
r larger than a preselected threshold is considered to reveal func-
tional interaction, influence, or dependence. Networks based on
these interactions are termed relevance network. However, such
networks may lead to ambiguous results, especially when the
network is heavily connected (Brazhnik et al. 2002). An alterna-
tive method, the graphical Gaussian model (GGM), uses partial
correlations as the source for a robust assessment of a direct in-
teraction between any gene pair (Whittaker 1990; Toh and Hori-
moto 2002). Different from Pearson correlation that records cor-
relation between gene pairs without regard to other genes, partial
correlation between two genes measures the degree of correlation
remaining after removing the effects of other genes. Recent stud-
ies have demonstrated that GGM is a useful tool to infer condi-
tional dependency structure and to reconstruct network-like as-
sociations among genes (Kishino and Waddell 2000; Toh and
Horimoto 2002; Magwene and Kim 2004; Schäfer and Strimmer
2005b; Wille and Buhlmann 2006).

Irrespective of the potential intrinsic to GGM, its applica-
tion for building network inferences had before been restricted to
a small number of genes (Kishino and Waddell 2000; Toh and
Horimoto 2002) due to the generally small number of samples (n)
available from microarray experiments. This number is typically
much smaller than the number of genes (P). Classical GGM
theory cannot accommodate settings for P >> n (Schäfer and
Strimmer 2005a; Wille and Buhlmann 2006). Recently, GGM
with a limited-order partial correlation function, which estimates
correlations conditional on one or two, but not all other genes,
has been developed to infer gene networks from Arabidopsis and
yeast transcript profiles (Magwene and Kim 2004; Wille et al.
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2004). Another way to tackle the small sampling problem is to
infer GGM with regularization and moderation (Schäfer and
Strimmer 2005b). This shrinkage approach to graphical Gaussian
modeling, implemented in “GeneNet” in R, is such an approach
that is applicable to data sets with P slightly larger than n (Schäfer
and Strimmer 2005c; Schäfer et al. 2006).

We have used this regularized GGM to build a gene network
for A. thaliana, based on data from more than 2000 Affymetrix
ATH1 microarray experiments deposited in the NASC database
(Craigon et al. 2004). A pilot study evaluated the method for
2000 genes for which biologically meaningful interactions had
been established in single-gene studies. Then, as an exploratory
experiment, by using an iterative random sampling strategy, the
model was expanded to cover >22,000 Arabidopsis genes, result-
ing in a network that included 6760 nodes (genes) connected by
18,625 significant edges (interactions).

Results and Discussion

Pilot experiment with 2000 genes

The data for construction of the model (Schäfer and Strimmer
2005c) represented 2466 Affymetrix ATH1 microarray slides de-
posited at NASC by August 2006. After excluding 421 potentially
outlying experiments according to Persson et al. (2005), 2045
chips remained for network construction. The selected condi-
tions reported transcript changes in plants challenged by a spec-
trum of abiotic and biotic stresses and chemical treatments. In
addition, transcript profiles from different tissues or develop-
mental stages were included (Supplemental Table S1).

A proof-of-concept experiment started with a collection of
∼5000 named, and to some degree, analyzed genes in Arabidopsis.
This collection was filtered by a selection of genes with high
regulation by biotic and abiotic stresses and tissue expression
characteristics, which reduced the number to ∼2000 genes. Par-
tial correlation (pcor) was estimated for every gene pair among

these genes using the “GeneNet” package (Schäfer et al. 2006).
Figure 1A shows the histogram for the distribution of the esti-
mated pcor values. According to previous observations, connec-
tions within biomolecular networks are typically sparse (Jeong et
al. 2001; Yeung et al. 2002). It has been assumed that most esti-
mated pcor identified gene pairs lacking interactions and showed
values close to 0 (Schäfer and Strimmer 2005c). These pcor from
noninteracting gene pairs provided a basis to infer a null distri-
bution, resulting in an excellent fit with a formula describing the
distribution of the sample normal correlation coefficients (Ho-
telling 1953; Schäfer and Strimmer 2005c). The null model was
then used to calculate the P-value for every pcor and determine
the probability that it satisfied the null distribution. We focused
on 1024 gene pairs with |pcor| �0.10, whose P-values were
<2.2 � 10�19. Then, gene pairs with Pearson correlation values
(r) ranging from –0.25 to 0.35 were eliminated, reasoning that
any r close to zero indicated independence. This filter is asym-
metric because there were far more significant positive than
negative pcors. The asymmetry was further supported by the per-
mutation experiment for the expanded network (see below). This
resulted in a network with 820 nodes and 828 edges. An inspec-
tion of this network revealed subnetworks of biological signifi-
cance (Fig. 2). The figure shows networks of genes predicted to
interact with CBF1 (cold stress response) (Fowler et al. 2005; Agar-
wal et al. 2006), AP3 (flower development) (Krizek and Fletcher
2005), CCA1 and TOC1 (circadian rhythmicity) (Ledger et al.
2001; Salome and McClung 2004; Kikis et al. 2005), and phyto-
alexin-deficient 4, PAD4 (salicylic acid metabolism and pathogen
response) (Glazebrook et al. 2003). The predicted networks con-
sistently included experimentally verified genes, demonstrating
the ability of this GGM to reveal significant, potentially important
gene interactions.

A network for 22,200 Arabidopsis genes

This result provided motivation to expand the network by in-
cluding ∼22,200 genes of the Arabidopsis transcriptome, repre-

Figure 1. The distribution of estimated partial correlations. (A) Distribution of pcors for 2000 named and at least partially studied genes. (Bars)
Histogram; (green line) distribution of estimated pcor after Fisher’s normalizing z-transformation; (dashed blue line) fitted null distribution; (pink)
alternative distribution, inferred by the locfdr algorithm (Efron 2004, 2007). (B) Comparison of the pcor distribution in the pilot experiment (green line)
and the expanded calculation (dark line). Shown is the area between –0.05 and 0.05. Densities were calculated using the kernel density estimator
embedded in R, with the bandwidth set to 0.001.
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sented by 22,266 Affymetrix ATH1 probes with the discrepancy
in numbers, due to the fact that some genes were represented by
more than one probe set. GGM does not allow for computing the
pcor of all input genes simultaneously, because the maximum
number of genes that may be analyzed at one time depends on
sampling numbers. An iterative process with 2000 iterations was
adopted. In each iteration, 2000 genes were randomly selected
and used as input for pcor estimation. On average, every gene
pair was sampled 16.2 times, and the pcor with the lowest abso-
lute value, representing the one with the largest amount of ef-
fects from other genes removed, was chosen as an estimation of
the final pcor in the expanded network. Compared with the pilot
experiment, these pcors were more narrowly concentrated
around zero (Fig. 1B). A null distribution model was then built to
estimate the P-values for the edges derived from these final pcors
(Supplemental Fig. 1). When setting the cutoff values for pcor at
less than –0.10 or larger than 0.10, the corresponding P-value,
according to this null model, was lower than 1.92 � 10�190.
With this pcor cutoff and after applying the Pearson correlation
filter (�0.25–0.35; see Methods), which removed 12.4% of the
accepted pcor values, a network for 6760 genes and 18,625 edges
was recovered, which retained ∼0.01% of all possible interactions
as significant edges. Our selection of the pcor cutoff value at
|0.10| represents high stringency. In comparison, a yeast gene
network recovered 70,201 interactions between 5205 genes, a
human coexpression network identified 220,649 links among
8805 genes, while another yeast network based on first order
partial correlation revealed 11,416 connections between 4686
genes (Lee et al. 2004; Magwene and Kim 2004; Yu et al. 2006).

Additionally, two random permutation experiments were
conducted to evaluate potential false discovery rates. First, all
22,266 genes were permutated, followed by the analysis de-
scribed before. After 1000 iterations, all final pcors were in the
range of from –0.0002 to +0.0004 and deemed insignificant. Sec-
ond, 1000 genes were randomly chosen, permutated, combined
with the remaining 21,266 genes, and subjected to the analysis
with 2000 iterations, resulting in an overall pcor distribution
similar to that in Figure 1B. Among the 21,765,500 gene pairs
with one or two genes permutated, 4875 pairs showed
|pcor| �0.05, and 132 pairs had |pcor| �0.10. However, the cor-
responding Pearson correlation for 4873 of these gene pairs
ranged from –0.10 to +0.30, and only two pcor values, or 9.18E-
08 of the permutated gene pairs, survived the Pearson correlation
filter, both with |pcor| >0.10. The result indicated that few (∼23)
pcors were attributable to false discovery in analyses without per-
mutations, which are disregarded as we discuss the properties of
the expanded network. It should be noted that the permutation
was carried out without replications due to the length of com-
puting time; more permutations are required to reach conclu-
sions with highest certainty.

Overall network properties

The resulting network was not completely scale free, but exhib-
ited scale-free behavior over a wide range. The average network
connectivity for a node was 5.5. Figure 3A shows the connectivity
frequency distribution, with k symbolizing connectivity and
N(k) the number of nodes with connectivity k. For a typical scale-
free network, N(k) observes power-law distribution, and in the
plot of log(N(k)) relative to log(k) the dots should fit a straight
line (Barabasi and Albert 1999).

The network seems to follow a truncated power-law distri-
bution (Amaral et al. 2000), with a power-law regime at
1 � k � 11, where the network exhibits certain scale-free behav-
ior, followed by a sharp drop off. Biological networks with similar
connectivity distribution have been reported before (Jeong et al.
2001; Giot et al. 2003). A recent analysis indicated that most
biological networks were not totally scale free, but rather might
better be described as following a truncated power law, while
certain scale-free features such as small world and centrality
properties hold true (Khanin and Wit 2006). An evident qualita-
tive feature of our network, characteristic of scale-free network
models, was the presence of few nodes with many connections,
which appeared to constitute major hubs and many nodes with
very few connections.

The final overall network (Fig. 3B) was densely organized.
When querying the network with selected genes, a number of
coherent subnetworks emerged to which biological significance
could be attached (Figs. 3–6, below; Supplemental Fig. 2). We
have chosen subnetworks for which biological proof and signifi-
cance already exists. The resulting network modules, in their ma-
jority, defined and organized functions in metabolism or stress
responses (Table 1). Subsequently, we included additional edges
that then described the Arabidopsis transcriptional response to
cold treatment. In these examples, the potential usefulness of the
GGM gene network tool may be seen in establishing connections
within a subnetwork of known functions with genes not previ-
ously associated with a network module or pathway. Often, these
novel nodes were functionally unknown, never having been
studied before.

Figure 2. Subnetworks in a pilot experiment with functionally charac-
terized genes. The subnetworks were derived from seeded nodes, and
including all other nodes within two connections from seeded nodes
(four for PAD4). The seed nodes in each subnetwork are (A) CBF1; (B) AP3;
(C) CCA1 and TOC1; (D) PAD4. Within each subnetwork, a link between
two nodes indicates direct interactions. Black indicates edges with the
highest 20% pcor values, gray lines indicate edges at the lower 20% pcor,
and dashed lines indicate negative interactions.
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Modules in metabolism reveal
coherent network subgraphs

By use of the kCores method in Carey
and Long’s RBGL package (version
1.10.0) in Bioconductor, we identified
coherent subgraphs (Gentleman et al.
2004). Easily identifiable among these
subgraphs were networks assignable to
defined metabolic processes. Figure 4 ex-
emplified this for six cases, which were
summarized in Table 1A. Table 1B sum-
marizes 18 additional subnetworks
(Supplemental Fig. 2), listing enriched
GO-terms associated with the genes
identified.

Genes centered on APR1, one of
three 5�-adenylylsulfate reductase genes
in Arabidopsis, identified a coherence
group associated with sulfur metabolism
(Fig. 4A). Strongly associated with APR1
were APR2 and APR3, two homologs of APR1 in the Arabidopsis
genome. Associated genes in this network were ATSERAT2;1, AKN2,
APK, AT1G18590, AT1G74090, ATGSTF11, SULTR4;1, and
AT1G74100, all of which encode proteins related to sulfur metabo-
lism. Two genes, SUR1 and ASA1, are genes associated with auxin
and tryptophan biosynthetic pathways, confirming other reports
(Nikiforova et al. 2003, 2005; Dan et al. 2007).

In Figure 4B, genes involved in phosphate starvation reac-
tions are linked. AT3G05630 encodes phospholipase DZ2, which
hydrolyzes phospholipids in plasma membranes, thus releasing
inorganic phosphate upon phosphate starvation (Cruz-Ramirez
et al. 2006). NPC4 is a starvation-induced phosphate lipase C
(Nakamura et al. 2005). MGD2, MGDC, SQD2, and SQD1 all
participate in converting phospholipids to nonphospholipids,
sulfolipid, and galactolipid, releasing phosphate (Yu et al. 2002;
Benning and Ohta 2005). SRG3, a glycerophosphoryl diester
phospho-diesterase family protein may be involved in a similar
process. Other related genes are AT3G17790, specifying a type 5
acid phosphatase, AT2G27190, a purple acid phosphatase
(PAP12), PHT5, an inorganic phosphate transporter, and two SPX
domain containing proteins (AT2G26660, AT5G20150). Tran-
script profiling had shown that many of these genes are induced
by phosphate starvation (Misson et al. 2005).

Figure 4C highlights genes that participate in branch-
chained amino acid degradation. MCCA and MCCB form a com-
plex involved in leucine degradation in mitochondria (Gavin et
al. 2002). DIN4, BCE2, AT1G10070, AT1G21400, and BCDH
BETA1 encode subunits of branched chain alpha-keto acid dehy-
drogenase. The expression of several genes in the group, e.g.,
DIN9, ASN1, DIN2, and AT2G43400, were shown as regulated by
senescence and repressed by sugars (Fujiki et al. 2001). Thus,
genes in this module could be involved in the regulation of cel-
lular energy levels.

Figure 4D includes genes associated with TRP1. TRP1, TSA1,
ASA1, CYP79B2, AT1G25155, PAD3, TSB1, and DHS1 are in-
volved in tryptophan biosynthesis. GLIP1 is an important com-
ponent of pathogen responses (Oh et al. 2005). In addition, we
note that this subgraph is itself strongly connected to the sub-
graph in Figure 4A, including many genes related to sulfur me-
tabolism.

Shown in Figure 4E and F are subgraphs for nitrogen and

starch metabolism, respectively. NIA1 and NIA2 encode nitrate
reductases involved in the first step of nitrate assimilation with
NIR1 (encoding nitrite reductase) participating in the second
step. NIR1 is connected to AT5G13110, AT1G24280, and
AT4G05390, genes whose products participate in NADP metabo-
lism. ASN2 encodes an asparagine synthetase converting ammo-
nium into nitrogen-containing compounds. The subnetwork
around starch catabolism included 15 genes, seven of which are
known to belong to this pathway: SBE2.1, SEX1, AT5G64860,
AT4G09020, DPE2, AT3G52180, and AT5G26570. Among them,
AT3G52180 (DSP4) has been identified as encoding a protein
phosphatase that binds to starch and regulates its accumulation
(Sokolov et al. 2006). COR414-TM1 is a known cold-induced gene
of unknown function (Breton et al. 2003), whose connection
with SEX1 possibly indicates the necessity of increasing the cel-
lular osmotic potential for acquisition of cold tolerance.

The selected seed genes for metabolic functions revealed a
structure of the model (Fig. 4) that could be reconciled with es-
tablished functions in plant metabolism. During phosphate star-
vation, biochemical studies have established degradation of
phospho-, sulfo- and galactolipids (Cruz-Ramirez et al. 2006),
requiring the lipases, phosphatases, sulfolipid synthases, or ga-
lactolipid synthases that populate this subgraph. Similarly, the
subnetworks on sulfur and nitrate metabolism, starch catabo-
lism, and tryptophan biosynthesis are supported by biochemical
evidence. The lysine catabolism subgraph included genes with
relationships to sulfur and phosphate metabolism and connec-
tions to tryptophan biosynthesis and mitochondrial functions (Ni-
kiforova et al. 2003, 2005; Glawischnig et al. 2004; Dan et al. 2007).

Subnetworks describing cell wall biosynthesis and
related processes

As another example, we analyzed placement of cellulose syn-
thase genes, CESAn, in the network. Two major subnetworks were
identified that covered eight CESA genes. Figure 5, A and B, show
that the CESA genes separated into two groups: CESA1, CESA2,
CESA3, CESA5, and CESA6 are group I CESAs responsible for pri-
mary cell wall synthesis, while CESA4, CESA7 (IRX3), and CESA8
are group II CESAs in charge of secondary cell wall synthesis
(Somerville 2006). The Figure 5A subnetwork is drawn from edges

Figure 3. Connectivity and network structure. (A) The connectivity distribution for the expanded
network (k) Connectivity; (N(k)) number of nodes with connectivity k. The line indicates the distribu-
tion expected for a network following the power law. (B) An overview of the network (with 5000 edges
included), as generated by the tYNA platform.
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with pcor larger than 0.08 instead of 0.10 to slightly increase the
population. The analysis agreed with previous studies in which
the cell wall-related gene network in Arabidopsis had been ana-
lyzed (Brown et al. 2005; Persson et al. 2005).

Of particular interest here were genes related to secondary
cell wall synthesis. Covered in Figure 5B were not only group II
CESA genes, but also other genes that have been demonstrated to
be important for secondary cell wall synthesis, such as SND1

(AT1G32770), a NAM transcription factor (Zhong et al. 2006),
IRX6 (AT5G15630), a member of the COBRA family of proteins,
and UXS3, encoding an enzyme that produces UDP-xylose for
cell wall biosynthesis. Also included were multiple metabolism-
related genes, encoding laccases, glycoside hydrolase, and glyco-
genin glucosyltransferase. Further included were several genes
related to vesicle trafficking and microtubule functions, such as
ARAC2, RIC2, TUB8, AT1G73640 (G-protein), and AT4G38320
(microtubule associated). According to Genevestigator (Zimmer-
mann et al. 2004), these genes are in their majority induced by
salinity, osmotic, and oxidative stresses, in agreement with the
need to strengthen secondary cell walls under such challenges
and with physiological observations.

In addition to group I and II CESAs, CESA10, one of the
cellulose synthases involved in the biosynthesis of primary cell
walls (Beeckman et al. 2002), appeared in a subnetwork with
relationships to epidermal cell development, including tri-
chomes, root hairs, and seed coats (Supplemental Fig. S2J). Also
clustered in separate, but closely related subnetworks were genes
related to lignin and wax biosynthesis (Supplemental Fig. S2K,L).

Gene modules related to cell wall synthesis showed substan-
tial overlap with networks based on Pearson correlation coeffi-
cients, with the exception that GGM provided more complex
structure in as far as additional nodes were inserted. Also, highest
correlation with genes reported by Pearson correlation were
found only when the subgraphs were extended by several edges.
For example, the cellulose synthases CESA4, CESA7 (IRX3), and
CESA8, and additional genes in the synthesis of secondary cell
walls (Fig. 5B) were arranged similar to structures reported by
others (Brown et al. 2005; Persson et al. 2005). The study by
Persson et al. (2005) identified AT4G28500, a NAM transcription
factor correlated with three group-II CESA genes. The GGM net-
work assigned connections between the CESA genes and this
NAM transcription factor mediated through RIC2 (AT1G27380),
a protein with rho-binding capacity, and correctly placed SND1
(AT1G32770), another NAM protein recently identified as a regu-
lator of secondary cell wall synthesis (Zhong et al. 2006).

Arabidopsis responses to cold stress

To visualize a network for genes induced by cold stress, we ex-
tracted a subnetwork centered on CBF1, CBF2, DREB1A, and
RAV1 (Fig. 6A), all known as cold stress-induced transcription
factors in this pathway according to Genevestigator (Zimmer-
mann et al. 2004). The network structures distinguished CBFs
with similar expression patterns that appear to contribute to fine
control of cold stress responses. In addition, the cold response
pathways appeared to diverge into at least four different direc-
tions (Fig. 6C–F). Several genes that may connect these different
parts were identified in the network. The U-box protein encoded
by AT1G60190, for example, emerged as one of these connectors
(Fig. 6D).

The center of the subnetwork was dominated by DREB-type
transcription factors (Fig. 6B). The three CBFs (CBF1, CBF2, and
DREB1A) were identified by strong interactions, indicating mu-
tual functional redundancy (Gilmour et al. 2004; Maruyama et al.
2004; Agarwal et al. 2006). Connected to these central, well-
studied transcription factors were other DREBs, such as RAV2
(AT1G68840) and AT1G25560. The concentration of transcrip-
tion factors seems to reflect a complex coregulatory network.

Genes strongly induced by cold stress, and as well by a va-
riety of other stress treatments (Fig. 6C), might be viewed as

Table 1. A summary of coherent subnetworks

(A) Subnetworks discussed in the text

Subnetwork
#

Genes Major GO Terms P-value

4A 41 sulfate assimilation (5) 1.33 � 10�11

4B 34 cellular response to phosphate
starvation (6)

6.94 � 10�16

4B 34 glycolipid metabolism (5) 3.53 � 10�13

4C 53 response to sucrose stimulus (6) 5.12 � 10�11

4C 53 leucine catabolism (3) 5.19 � 10�8

4D 25 tryptophan metabolism (7) 1.58 � 10�16

4E 18 nitrate reductase activity (2) 6.26 � 10�7

4F 15 starch catabolism (6) 6.47 � 10�18

5A 21 cell wall biosynthesis (6) 2.67 � 10�11

5B 64 secondary cell wall
biosynthesis (sensu
Magnoliophyta) (7)

1.45 � 10�16

(B) Table for coherent subnetworks included in the Supplemental
materials

Subnetwork
#

Genes
Major GO terms

(or notes) P-value

S2A 35 ER stress response
S2B 13 proteasome complex (sensu

Eukaryota) (11)
6.73 � 10�29

S2C 81 mitochondrion (29), cellular
respiration (7)

7.86 � 10�9

S2D 24 chromatin (20) 7.47 � 10�48

S2E 26 cell cycle (5) 2.49 � 10�7

S2F 35 response to auxin stimulus (24) 3.63 � 10�41

S2G 19 regulation of ethylene mediated
signaling pathway (4)

1.28 � 10�10

S2H 13 cytokinin mediated signaling (7) 1.79 � 10�17

S2I 44 flower development (5) 9.67 � 10�6

S2J 42 cellulose biosynthesis (3),
epidermal cell
differentiation (3)

1.73 � 10�4

S2K 39 flavonoid biosynthesis (8) 4.92 � 10�15

S2L 18 wax metabolism (3) 5.42 � 10�8

S2M 17 superoxide dismutase
activity (4)

3.01 � 10�11

S2N 104 jasmonic acid and
ethylene-dependent systemic
resistance (8)

1.74 � 10�7

S2O 57 jasmonic acid and
ethylene-dependent systemic
resistance (10)

1.09 � 10�12

S2P 86 salicylic acid metabolism and pathogen
response

S2Q 63 response to biotic stimulus (18) 2.43 � 10�13

S2R 68 response to heat (29) 9.35 � 10�55

The sub-networks are identified by their positions in Figures 4 and 5 or
Supplemental Figure S2. Listed are the numbers of genes in the subnet-
work, the major GO terms (with the corresponding gene number), and
the P-value. The P-values quantify the presence by chance that, in a
highlighted subnetwork, the number of genes associated with the major
GO is equal to or larger than the reported number, calculated based on
hypergeometric distribution.
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common or ubiquitous stress-response genes (Glazebrook et al.
2003). Several genes related to calcium (AT4G27280,
AT3G25600, PBP1, and TCH2) and ethylene signaling (ACS6),

and several zinc finger functions (STZ, C2H2, AT3G46620,
AT3G55980, and AT1G20823) appeared in this subnetwork. Many
of these genes have been found to be induced by a calcium burst in

Figure 4. Subnetworks extracted from the expanded network. The examples are centered on (A) APR1; (B) SQD1; (C) DIN4; (D) TRP1; (E) NIA2; and
(F) SBE2.1. Symbols as in Figure 2.
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Arabidopsis. Their expression is also strongly responsive to ROS-
based signals (Kaplan et al. 2006; Mittler et al. 2006).

Figure 6D included genes rapidly induced predominantly by
cold stress and, somewhat less pronounced, by salinity, osmotic
stress, and ABA. Included were multiple PP2Cs (ABI1, ABI2,
HAB1, AT1G07430), two homeobox genes (ATHB7 and ATHB12),
and NCED3, whose functions in ABA metabolism and response
have amply been demonstrated. Interestingly, these genes were

connected to AFP (AT1G69260), a nega-
tive regulator in ABA signaling, promot-
ing ABI5 protein degradation (Lopez-
Molina et al. 2003). Also connected was
AT1G60190, encoding an U-box-con-
taining protein that may have similar
functions in terminating ABA signaling.
AT1G60190 is extremely highly up-
regulated by various stresses (Genevesti-
gator) (Zimmermann et al. 2004), simi-
lar to the demonstration of protein
degradation catalyzed by an E3-ligase
(AT5G13530/AT5G13540) as a compo-
nent of ABA signaling (Stone et al. 2006).
A similar collection of known cold re-
sponse and abiotic stress markers (Fig.
6E) included the functionally unknown
COR47, LTI29, LTI30, COR15A, KIN1,
and AT2G42530 (COR15B), which were
indirectly connected to the key cold re-
sponse transcription factors.

Other cold stress-induced functions
included genes related to the regulation
of circadian rhythm (Fig. 6F), TOC1,
APRR5, ELF3, ELF4, COL9, and GI
(Fig. 6A for GI). The subgraph identi-
fied other CONSTANS-like zinc finger
proteins, AT1G07050, AT1G78600, and
AT5G48250. Their placement into a
separate subcluster might indicate regu-
lation different from that of other cold
stress-regulated genes, possibly con-
nected to a diurnal cycle. Indeed, cold
treatments have been shown to alter the
expression of genes involved in the cir-
cadian rhythm (Kreps and Simon 1997)
and clock and cold regulation has been
reported, e.g., for CBF1, CBF2, and
DREB1A (Fowler et al. 2005).

Comparison of GGM with a
relevance network

Relevance networks based on standard
Pearson correlation establish relation-
ships different from GGM, without ref-
erence to other genes (Schäfer and Strim-
mer 2005c). Two genes may demon-
strate the difference. ST3 and ST4 list the
top 30 genes with the highest Pearson
correlation in relationship to genes
SQD2, a sulfolipid synthase (Fig. 4B),
and AT1G26880, encoding the ribo-
somal protein RPL34 that does not ap-
pear in the GGM network. Notably, gene

AT1G26880 showed Pearson correlation coefficients higher than
0.86 with 26 other ribosomal proteins, while the highest Pearson
correlation coefficient of SQD2 with other genes was 0.69. While
SQD2 would be excluded from a stringent relevance network, the
GGM placed SQD2 with genes related to phosphate metabolism.

The complete Arabidopsis data set that had generated the
GGM network was then used to construct a relevance network
(Supplemental Data File S2). This analysis recovered 134,594

Figure 5. Subnetworks for cell wall biosynthesis. (A) Genes centered on CESA6 (note: this subnet-
work is drawn from edges with pcor >0.08, i.e., lower stringency). (B) Genes centered on CESA8.
Symbols as in Figure 2.
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Figure 6. Subnetworks for cold stress responses. (A) Overview of the subnetwork centered on CBF1, CBF2, RAV1, and DREB1A. (B–F) Enlargement of
different parts of the subnetwork shown in A. Symbols as in Figure 2.
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gene-pair interactions among 5745 genes with Pearson correla-
tion coefficients larger or equal to 0.80. We excluded 12 negative
interactions, lower than �0.80, in this analysis. Figure 7 shows
the intersection between the two models. Among the ∼18,000
interactions in the GGM network, 4279 (22.9%) exhibited Pear-
son correlation coefficients larger than or equal to 0.8, while the
majority of the interactions (96.8%) reported in the relevance
network did not appear in the GGM network. One possibility is
that a large number of the interactions revealed by relevance
networks disappear when only those are considered that show
the most robust correlation after excluding all other genes. The
stringency achieved using higher order partial correlation ap-
peared to generate networks with high biological support.

The relevance network showed node distribution more simi-
lar to power-law (Supplemental Fig. S3), but many highly con-
nected nodes in this relevance network were connected inter-
nally. Supplemental Figure S4A shows a subnetwork for the 100
most connected nodes, with 1939 interactions. Among these in-
teractions, 1936 were assigned pcors lower than 0.10 and deemed
insignificant in GGM, because the corresponding gene pairs
shared expression patterns with many other genes, which then
explained the low number of highly connected nodes in the
GGM network. Additionally, GGM required high similarity in
expression pattern for a gene to become connected with a highly
populated node. As observed, this constraint in highly connected
nodes generated the truncated power-law distribution for the
whole network (Amaral et al. 2000). However, GGM continued to
identify potential hubs, as shown by the 100 most highly con-
nected nodes. The relevance network sorted these nodes into
three potential hubs, while GGM arrived at a much higher num-
ber (Supplemental Fig. S4).

The model used is based on a shrinkage approach (Schäfer
and Strimmer 2005c) that expanded classical GGM and per-
formed well for the data set with P slightly larger than n, but was
still limited, in that large transcriptomes could not be analyzed.
By using iterations coupled with random sampling, our proce-
dure allowed for expanding coverage to the genome level for
Arabidopsis. The permutation experiments further indicated a
low false discovery rate in this expanded network, whose biologi-
cal significance was supported by case studies. We note, however,
that the final pcor closely approached the 1998th-order partial
correlation rather than a full partial correlation, because, in each
iteration, only effects of 1998 other genes were removed for every
gene pair. We present this GGM as an exploratory tool and heu-
ristic model, whose significance is supported by the case studies
outlined.

GGM-based gene network structures at the genome level for
Arabidopsis have not been presented before, but networks for se-
lected pathways have been constructed (Wille et al. 2004; Niki-
forova et al. 2005; Li and Gui 2006; Gutierrez et al. 2007). The

models presented here, when queried for nodes in these path-
ways, revealed significant overlap (data not shown). Recently,
coexpression patterns based on Pearson correlation coefficients
to infer gene function have been a highly active field in Arabi-
dopsis research, with approaches expanding into two directions.
For one, focus on coexpression of genes in selected functions,
such as glucosinolate biosynthesis, primary carbon and nitrogen,
or secondary metabolism, showed considerable overlap with this
GGM network (Williams and Bowles 2004; Gachon et al. 2005;
Wei et al. 2006; Hirai et al. 2007). Typically, these studies relied
heavily on prior knowledge, such as biochemically established
pathway structures, which is not a requirement for the GGM
presented here. A second approach established databases that
may be queried with individual genes to extract information
about coexpressed genes (Zimmermann et al. 2004; Aoki et al.
2007; Obayashi et al. 2007). For one example, the database
ATTED-II (Obayashi et al. 2007) lists highly coexpressed genes for
every gene. Querying our GGM to the extent of one edge from
the seed gene will only reveal a few of the connections identified
by ATTED-II, while additional connections appear when the
query is extended to include additional edges. Interestingly,
these models, based on Pearson correlations alone, have not pre-
sented a network for the entire genome, possibly because such a
structure would be dominated by genes related to a few domi-
nant functional categories, such as ribosome structure, photo-
synthesis and carbon fixation, or flowering, while networks of
metabolism would be hidden within the immensity of interac-
tions.

The examples (Figs. 4–6; Supplemental Fig. S2) showed
GGM revealing subnetworks that were strongly associated with
established biological knowledge, while they invariably incorpo-
rated genes with unknown functions. Many modules identified
functions that play important roles in the response to various
stress conditions and in biochemical pathways. Although the
procedures leading to this model generated a gene network that
is substantially different from other types of networks, we suggest
that in combination with these other models, GGM, which is
accessible through the script that is included, could provide hy-
potheses for future studies.

Methods

Microarray data
All microarray data derived from Affymetrix ATH1 slides.
The “Super Bulk Gene Download,” a file with all genes and ex-
periments, was downloaded from NASCarrays (http://
affymetrix.arabidopsis.info/narrays/help/usefulfiles.html). By
August 2006, the file contained data from 2466 slides recorded as
raw intensities. The corresponding experiments are summarized
in Table 1. Six slides with missing data were removed and the
remaining 2460 slides were subjected to quantile normalization.

A method based on “deleted residuals” was used to screen
for potential outlier chips (Persson et al. 2005). Briefly, studen-
tized deleted residuals d* are calculated for each probe set in
every chip. The d* from the same chip were expected to ob-
serve a t distribution. Problematic chips were featured with sig-
nificant deviation from t distribution of d*, which should be
excluded. The Kolmogorov-Smirnov (K-S) goodness-of-fit test
was used to calculate the K-S D-value to decide whether the d*
from a chip fit the t distribution. With the K-S D value set at 0.10,
we identified 415 chips, around 17% of all chips, as potential
outliers.

Figure 7. Venn diagram outlining overlap and differences between the
GGM and relevance network approaches. Numbers indicate the number
of interactions recovered by the two methods.
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The raw intensity data (after quantile normalization) from
the remaining 2045 chips were rounded to integers (for values
�10) or to the first digit after the decimal (for values <10), and
used for analysis. Of 22,810 Affymetrix ATH1 probe sets, 22,266
were annotated as actual Arabidopsis genes. Data from these
22,266 probe sets were used for the GGM network construction,
including both the pilot experiment and the expanded network.
We treated each probe set as an individual gene. For probe sets
matching more than one gene, we used the name of one of the
matched genes. Supplemental Table 2 lists probe sets, corre-
sponding gene names, and annotations.

The pilot experiment
The shrinkage approach (Schäfer and Strimmer 2005c) was used
to estimate partial correlation coefficients (pcor) of gene pairs
among 2000 chosen genes. The highest 0.01% and lowest 0.01%
of pcors were excluded when building the null model. All calcu-
lations were conducted via the software package “GeneNet”, ver-
sion 1.0.1 (Schäfer et al. 2006). Genes used in pilot experiments
are listed in Supplemental Table 3.

The GGM network for the entire Arabidopsis genome
In total, 2000 iterations with random sampling were used to ex-
pand the network to cover the whole genome. Iteratively, 2000
genes were randomly selected and the “ggm.estmate.pcor” in
GeneNet package 1.0.1 was used to estimate the pcor between
gene pairs. Pcors from all iterations were recorded. With an av-
erage of 3 min, 10 sec per iteration on a PC (Intel Core2 E6420
processor), one round of 2000 iterations consumes ∼4 d. For each
gene pair the pcor with the lowest absolute value was chosen as
the final value. Supplemental Table 4 lists the significant inter-
actions with absolute values of estimated pcors larger or equal to
0.10 used to construct the network.

Permutation experiment
The raw intensity data set (after quantile normalization) with
22,266 genes from 2045 chips was used. For permutations of a
gene, the intensity values for that gene in all 2045 chips were
collected, and then randomly and nonrepeatedly assigned as the
intensity values for that gene among the 2045 chips. In one ex-
periment, the entire 22,266 genes were permutated, while in a
second, 1000 randomly selected genes were permutated. The per-
mutated data set were then subjected to the analysis procedure
described before.

Network layout and visualization
Three methods were used. For the complete network (Fig. 3B),
layout and visualizations were carried out using the tYNA
platform (Yip et al. 2006) with the aiSee graph visualization soft-
ware (http://www.aisee.com). Subnetworks were extracted by
specifying seed node and number of connecting steps by
which the subnetwork was expected to expand from the seed
node. The extracted subnetworks were saved as dot files, which
were visualized with the fdp program (Figs. 2, 4, 5; Supplemental
Fig. S2) or the neato program (Fig. 6), both included in the
software package Graphviz 2.8 (Gansner and North 2000). When
using neato, the algorithm “Stress Majorization,” designed
for large size, was used (Gansner et al. 2004). An R script for
network query and visualization is included (Supplemental data
file S1).
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