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Abstract
Dynamic PET (positron emission tomography) imaging technique allows image-wide quantification
of physiologic and biochemical parameters. Compartment modeling is the most popular approach
for receptor binding studies. However, current compartment-model based methods often either
require the accurate arterial blood measurements as the input function or assume the existence of a
reference region. To obviate the need for the input function or a reference region, in this paper, we
propose to estimate the input function and the kinetic parameters simultaneously. The initial estimate
of the input functions is obtained by the analysis of space intersections. Then both the input function
and the receptor parameters, thus the underlying distribution volume (DV) parametric image, are
estimated iteratively. The performance of the proposed scheme is examined by both simulations and
real brain PET data in obtaining the underlying parametric images.

I. INTRODUCTION
The fundamental aim of functional imaging such as positron emission tomography (PET) is to
extract quantitative information about physiological and biochemical functions. With the
recent development, PET imaging has found many clinical applications. Of particular interest
in this paper is medical parametric imaging of neuroreceptors with PET, which provides image-
wide quantification of the concentration of neuroreceptor.

For the purpose of neuroreceptor quantification, compartmental model-based approaches are
the most widely used for tracer kinetic modeling in dynamic imaging [2]. These compartmental
modeling approaches can be mainly classified into two categories, namely invasive and
noninvasive, on the basis of whether arterial blood sampling is required. Though invasive
models have some advantages such as assuming a simpler model, arterial plasma samples are
often difficult to obtain or measure accurately, and such invasive measurement represents a
limited, but not negligible risk of complications. Therefore, there has been increasing interest
in noninvasive techniques, which can be further classified depending on whether a reference
region is needed. Examples of reference region based methods include [3] where TAC from
certain region was used as an input function, and [4]. Another noninvasive research direction
is to estimate both the kinetic parameters and the input function simultaneously. Only a few
works for this purpose have been reported, such as [5], [6]. Most above research on estimating
also the input function has been the region of interest (ROI)-based. However the ROI-based
approach suffers from several problems. Briefly speaking, a shortcoming of ROI-based
approaches is that tissue response in a ROI is assumed homogeneous, also the homogeneous
ROIs must be drawn in advance.

The purpose of the present work is to validate the feasibility that no input function or reference
region is needed to obtain the DV parametric images. The basic idea is to estimate the integral
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of the plasma input function cp(t) by exploring the intersections of spaces, each of which is
spanned by two vectors representing the voxel (or voxel cluster) TACs and their integrals.
Based on the estimated input function, we then apply approaches which require the knowledge
of the input function to estimate the underlying parameters by linear regression analysis. Due
to its superior estimation performance, we will employ the multilinear analyses studied in [9]
to estimate the voxel-wise parameters.

II. SYSTEM MODEL AND FORMULATION
In the literature, the in vivo tracer kinetics are often represented by a serial compartmental
model [1], and measures such as binding potential (BP) and distribution volume (DV) are often
calculated based on the model parameters. A widely used compartment model is the three-
compartment model. For instance, in case of serotonin transporter imaging, brain regions
containing receptors have the minimal number of three components: one represents radioligand
concentration in arterial plasma, one displaceable binding to the receptor of interest (called
specific binding), and one nondisplaceable binding to all other tissue components (called
nonspecific binding). In this paper, we focus on this three-compartment model used in many
imaging studies, where cp(t) represents radiotracer concentration in arterial blood, cf (t) means
radioactivity in the nondisplaceable compartment, and cs(t) means radioactivity in specifically
bound compartment. Mathematically, this system can be represented by two linear constant
coefficient differential equations:

dcs(t)
dt

= k3cf (t) − k4cs(t);

dcf (t)
dt

= k1cp(t) − (k2 + k3)cf (t) + k4cs(t).
(1)

In real imaging, cs(t) and cf (t) can not be measured separately, while the observed receptor
activity in brain region is the total concentration c(t) = cs(t) + cf (t). This model can be extended
to the voxel-wise case by modeling each voxel i as a region of interest and its activity is
characterized by the parameters k1(i), k2(i), k3(i) and k4(i).

For the purpose of estimating the input function, we plan to introduce the graphical methods
fitting data to a compartment model. The graphical analysis (GA) plot introduced by Logan et
al. [8] allows the transformation of the data into new variables such that an asymptotically
linear relationship can be observed, as described by

∫0T c(t)dt
c(t) = VT

∫0T cp(t)dt
c(t) + b, (2)

where VT is the total distribution volume, and b is the intercept which becomes constant for
T > t*. This relationship (2) is valid for both the two-compartment and three-compartment
models. We will use this asymptotically linear property to estimate the input function cp(t).

III. PROPOSED SCHEME
In this section, the proposed scheme is described first, then efforts are taken to judge the validity
and effectiveness of the proposed scheme in estimating the input function by data simulations.
The basic principle of the proposed scheme is to explore the relationships between the spaces
characterized by cluster TACs, and use the intersection property to provide a solution to the
problem of estimating the input function.

We now describe the basic motivation in estimating the input function cp(t). In the voxel
domain, we denote the TAC for voxel i, i =1, ..., N, as ci(T), and correspondingly have the
parameters VT (i) and b(i). From (2), we could rearrange to yield:
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∫0T cp(t)dt = cp
int1(T ) = − b(i)

VT (i) ci(T ) − 1
b ∫0T ci(t)dt

≜ a1(i)ci(T ) + a2(i)ci
int1(T ).

(3)

At the sampling time vector t, we define the discrete version of ci(t), cp(t) and their integrals
as vectors ci, ci

int1 and cp
int1, respectively. Therefore, supposing that ci and ci

int1 are noise-

free, we could see that the vector cp
int1 is within a space spanned by two vectors, namely ci

and ci
int1. Since for any pair (i,j), where i ≠ j, ideally the vector cp

int1 should belong to both

the space spanned by ci and ci
int1 and the space spanned by ci and c j

int1. Equivalently, this

observation means that the vector cp
int1 is within the intersection of the two spaces. Under the

ideal situation assuming the model is perfect and the measurements are noise-free, the
intersection of the spaces spanned by ci and ci

int1 for i = 1, ..., N is not empty and it defines

cp
int1. This observation motivates us to estimate the vector cp

int1, which is defined as the integral
of the input function (i.e. the plasma tracer concentration), by exploring the intersection of
spaces each of which is spanned by ci and its single integral ci

int1.

However, in practice ci(t)'s are noisy measurements, and thus the integral of ci(t) appears as a
noise source too. The noisy nature of ci(t) certainly will affect the precision of the spaces
spanned by ci and its integral ci

int1 and thus the intersection of spaces. To yield a feasible
intersection of spaces, it is desirable to reduce the noise level in voxel TACs. To achieve this
purpose, we plan to cluster the voxel TACs into M clusters. Based on M cluster TACs, for each
cluster pair i and j, we could obtain the intersection of the spaces. Due to noise effect, the
intersections may not coincide with each other. Additional efforts should be taken to find the
vector cp

int1 optimizing the distance to all cp
int1 candidates estimated by exploring the above

intersections.

We notice that each voxel TAC is a function of the same input function cp(t), as a general
assumption in parametric imaging applications. To further improve the accuracy of estimating
cp
int1, we need to explore this property. In a discrete fashion, write the observation matrix C

= [c1, ..., cN], S = cp
int1, c1

int1, …, cN
int1 , the coefficient matrix A with A(1, i) = –VT (i)/b(i),

A(i + 1, i) = 1/b(i) and all other elements being zero, and the noise matrix N = [n1, ..., nN],
where the noise term ni contains the direct measurement noise, the linear combinations of the
integrations of the measurement error, and the model mis-match error due to the asymptotically
linearization assumption. We have the block formulation as

C = SA + N. (4)

The problem addressed here is the joint estimation of the signal (the input function integral)
and the matrix A (the coefficients {VT (i), b(i)}), a problem similar to the blind channel
estimation and decoding problem in communications. The least-square (LS) estimation yields
the following minimization problem

cp
int1,

min
{VT (i), b(i)} C − SA F

2. (5)

The optimal global minimization is computational prohibitive even for modest-size problems.
To achieve an affordable computational cost, similar to solve communication problems [11],
we apply the concept of iterative least square by taking advantage of the observation that the
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LS estimator being separable in the variables S and A. The basic idea is to visit the
measurements C iteratively until a best fit with the signal of interest (i.e. cp

int1) and the
coefficients in A is obtained. Specifically, the iterative algorithm is described as follows: at
each iteration, we

1. Given cp
int1 (thus S), estimate the coefficients in A.

2. Using the currently estimate of A, update the estimate of cp
int1.

The process is repeated until the results converge. As in any iterative algorithm, a good
initialization is important for providing an accurate estimate. In our scheme, the intersection-
based algorithm is employed to obtain the initial estimate of cp

int1.

Therefore, in summary the following steps are taken in estimating the input function cp:
• Initialization: We apply the space-intersection-based algorithm to obtain the initial

estimate of cp
int. More specifically

– Normalize the voxel TACs ci's (i.e. making sure that ∑ j ci(tj)2 is a constant)
and then cluster ci's into M clusters. Record the cluster TACs as xj, j = 1, ...,
M, and their single integrals as x j

int1.

– For each pair (i, j), where i, j ∈ [1,M], find the intersection of the space
spanned by xi and xi

int and the space spanned by xj and x j
int. We thus get

the normalized vector cp
int1.

– Based on the above candidate set of cp
int1, find one cp

int1 which minimizes
the summation of the distances to the candidates.

• Refinement: With the initial estimate of cp
int1, the iterative algorithm is applied to

further improve the estimation accuracy. At each iteration,
– Given cp

int1, for each pixel i, estimate the coefficients VT (i) and b(i).

– Given the coefficients {VT (i), b(i)}, update the estimate of cp
int1.

• Based on the estimate of cp
int1, obtain its first order derivative cp.

Therefore, both the input cp
int1 and the DV {VT (i)} are estimated. The result will be compared

with the case when the input function is measured.

IV. SIMULATION RESULTS
In this section, we evaluate the estimation performance of the proposed scheme due to statistical
noise. The simulation of ideal error-free PET TACs are performed as follows. First, using the
measured plasma input function, we apply the multilinear analysis described in [9] to a real
brain PET receptor study, and estimate the kinetic parameters. Then, using the input function
and the estimated kinetic parameter values from 200 different voxels, the voxel TACs could
be reconstructed according to equation (1).

We now examine the noise impact on the voxel TAC observations which are generated by
adding noise terms into the ideal noise-free TACs {c(i)}. We consider a realistic noise model.
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As suggested in [7], the measurement error variance σ2(i, tj) is proportional to the imaged
radioactivity concentration and is inversely proportional to the scan duration. Let ci(tj) be the

noise-free simulated voxel TAC, and define the percent noise level as E ( ∑ j=1
n σ 2(i, t, j)

∑ j=1
n ci(tj)2 ).

The range of the percent noise level is from 5% to 25%, which covers the range of TAC noise
observed in a moderately sized ROI to that of a voxel.

The proposed scheme should locate the organ heterogeneity characterization reasonably
accurate, meaning that it should estimate the parametric images accurately. Considering a
measure of adherence to this objective, we calculate the correlation coefficient (CC) between
the estimated parametric image (e.g. the distribution volume {V̂T (i)} and the true one. Also,
due to the lack of the existing schemes in the literature of estimating both the input function
and the kinetic parameters, we compare our results to that of the algorithms requiring
knowledge of the input function. We study one parametric image, namely the total DV {VT
(i)}. Table I shows the empirical means and standard deviations of CC based on the estimate
of the parametric images from 100 simulation runs. The proposed algorithm is compared with
the method LS-MA1, which is referred as solving the linear regression MA1 model in [9] by
LS approach. We note that the proposed scheme provides good performance in estimating the
underlying DV images which demonstrate the spatial heterogeneity.

One examples of the estimated input function integral is illustrated in Fig. 1, where points 18
to 31 are used in estimation. It is noted that the estimated input function yields a consistent
curve pattern, where only small variation is observed cross simulation runs. Clearly the
estimated cp(t) integral matches well with the measured cp(t) integral at the late time points.

V. REAL DATASETS
We now examine the PET studies of healthy control subjects obtained after intravenous
injection of C-11 labeled DASB, a radioligand used for imaging the serotonin transporter
(SERT). Results from a typical subject are presented here. A dynamic PET study was performed
with a GE Advance PET camera with an axial resolution (FWHM) of 5.8 mm, and an in plane
resolution of 5.4 mm. 18 serial dynamic PET images were acquired during the first 95 minutes
after injection using the following image sequence: four 15 sec, three 1 min, three 2 min, three
5 min, three 10 min, and two 20 min frames. All PET data were corrected for attenuation,
injected dose and radionuclide decay. Arterial blood samples were withdrawn every 5−7
seconds during the first two minutes, then with increasing time intervals until the end of 95
minutes post injection.

We examine the study of simultaneously estimating the input function and the parametric image
by applying the proposed algorithm. As an example, we analyze single slices with number 15
and number 20 and show the VT images, where a median postfilter (with mask size is 3 × 3)
was applied. For comparison with the case of measuring the input function, we report the
estimated VT parametric images in Fig. 2 for Slice 15, compared with the LS-MA1 scheme;
and in Fig. 3 for slice 20. The two images look similar in both cases. For example, slice 20
shows high specific binding in the basal ganglia and midbrain, consistent with high density of
the serotonin transporter in these structures. We also calculated the correlation coefficient
between these two DV images. It was found that the CC is as high as 0.99 and 0.97 for slice
15 and slice 20, respectively. These high CC indicates the good match between the proposed
scheme and LS-MA1. However, it is worth emphasizing that the LS-MA1 algorithm requires
the blood input function, therefore it serves as a performance bound.
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We show two examples of the estimated integral of the input function in Fig. 4. One can see
that the pattern is matched to the pattern observed in the measured input function. It is worth
mentioning that similar results were observed when the proposed schemes were applied to PET
brain images of other control subjects.

VI. CONCLUSION
Of interest is the estimation of parametric images describing neuroreceptor kinetics when the
knowledge of the plasma input function is not available. We proposed a novel approach in
estimating the input function and parametric images, by taking advantages of the specific space
structure. Simulations are carried out to examine the results of the proposed scheme in
estimating the input function and in revealing the underlying spatial heterogeneous structures.
We also studied real brain PET data, and good performance was observed.
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Fig 1.
Integral version of measured input function and estimated input function in simulation, where
the noise level is 25%
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Fig 2.
Estimated VT parametric images after median filtering from slice number 20 of the brain PET
study. (Right) when applying the proposed scheme with simultaneous estimation of the input
function, and (left) when applying LS-MA1 algorithm.
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Fig 3.
Estimated VT parametric images after median filtering from slice number 20 of the brain PET
study. (Left) when applying the proposed scheme with simultaneous estimation of the input
function, and (right) when applying LS-MA1 algorithm.
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Fig 4.
Integral version of measured input function and estimated input function in simulation, where
noise level is 25%
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