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ABSTRACT Ionizable planar interfaces and linear poly-
electrolytes showmarkedly different proton-binding behavior.
Planar interfaces protonate in a single broad step, whereas
polyelectrolytes mostly undergo a two-step protonation. Such
contrasting behavior is explained using a discrete-charge
Ising model. This model is based on an approximation of the
ionizable groups by point charges that are treated within a
linearized Poisson–Boltzmann approximation. The underly-
ing reason as to why planar interfaces exhibit mean-field-like
behavior, whereas linear polyelectrolytes usually do not, is
related to the range of the site–site interaction potential. For
a planar interface, this interaction potential is much more
long ranged if compared with that of the cylindrical geometry
as appropriate to a linear polyelectrolyte. The model results
are in semi-quantitative agreement with experimental data
for fatty-acid monolayers, water-oxide interfaces, and various
linear polyelectrolytes.

Ionization of proteins, weak polyelectrolytes, or water–solid
interfaces is a central theme across many disciplines. The
understanding of such polyprotic systems is crucial for the
assessment of various important processes, such as buffering of
protons and metal ions, protein-folding mechanisms, antigen–
antibody interactions, formation of surfactant aggregates,
particle coagulation dynamics, and crystal growth. Based on
the seminal work of Tanford and Kirkwood (1, 2), much
progress has been made in the development of quantitative
models for the dissociation of ionizable residues in proteins.
The electrostatic interactions between charged residues are
treated using a Poisson–Boltzmann (or other) approximation,
which provides the basis for the evaluation of the thermal
statistics of protonation equilibria (3–6). Because the results of
such models sensitively depend on the primary, secondary, and
tertiary protein structure, the derived protonation patterns
appear to be rather protein-specific. The main reasons for this
behavior are the heterogeneities introduced by the different
proton affinities of different amino acid residues and the
specific effects due to geometrical arrangement of the ioniz-
able groups. Any generic features in the ionization process of
polyprotic protein systems are difficult to recognize.
Generic features in the ionization patterns can be recog-

nized, however, for simpler polyprotic systems such as planar
ionizable interfaces and weak linear polyelectrolytes, which
will be the focus of this paper. Such systems may involve a high
degree of homogeneity due to the presence of identical
ionizable groups and simpler geometrical structure. Moreover,
such systems often contain a large number of ionizable sites,
so that it is sufficient to consider the limit of an infinite number
of sites. The detailed description of the ionization process for

planar interfaces and linear polyelectrolytes represents an
essential step in the understanding of ionization of complex
polyprotic systems; a development that is not only of relevance
to biochemistry but to other disciplines as well. The fact that
the ionization patterns of planar interfaces and linear poly-
electrolytes are markedly different has been documented
repeatedly. A single, broad protonation step is observed for
planar interfaces, whereas linear polyelectrolytes show two
distinct protonation steps. This behavior is generic; it is
observed for systems that are entirely different chemically. For
planar interfaces such behavior has been documented for
cationic and anionic monolayers at the air–water interface, and
surfaces of latex or metal oxide particles (7–13). The corre-
sponding data for linear polyelectrolytes include polymaleic
acid, polyfumaric acid, poly(vinyl)amine, or poly(ethylene)-
imine (14–16).
The titration behavior of planar interfaces is commonly

approached with electrostatic double-layer models, such as the
constant capacitance model, diffuse layer model, or variants
thereof (11–13). Such models invoke a mean-field approxima-
tion for the interaction potential between the ionizable resi-
dues. The magnitude of this mean field increases monotoni-
cally with the degree of charging, and therefore this model
leads to a broad, featureless titration curve. Furthermore, the
overall strength of this mean field is rationalized within a
smearing-out approximation for the charge distribution at the
surface.
Such an approach usually fails for a linear polyelectrolyte; a

mean-field model cannot explain the two-step titration curve.
Titration behavior of weak polyelectrolytes is therefore inter-
preted on the basis of an Ising model on a linear chain. In this
model, one assigns to each site a two-valued state variable,
which indicates whether the site is protonated or not. Thermal
averages over all states are weighted by an interaction energy,
which is assumed to be dominated by nearest-neighbor repul-
sive (antiferromagnetic) pair interactions (15–20). Indeed, this
model implies the stabilization of an intermediate state of
alternating protonated and deprotonated groups, which leads
to an intermediate plateau in the titration curve. The two-step
protonation behavior of linear polyelectrolytes is thus ex-
plained.
What remains unexplained, however, is why the mean-field

approximation does work for the planar interface, while it is
inappropriate for linear polyelectrolytes. From the statistical
mechanical literature it is well known that the mean-field
approximation becomes more accurate as one increases the
system dimensionality or the range of the site–site interaction
potential (21). For a successful description of weak polyelec-
trolytes, on the other hand, the site–site interaction potential
(between the ionizable residues) must be very short ranged and
dominated by nearest-neighbor pair interactions. However, the
pronounced difference in the protonation behavior between a
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two-dimensional planar interface, where mean-field approxi-
mation applies, and the one-dimensional linear polyelectro-
lyte, where the same approximation fails, is startling. Indeed,
Monte Carlo simulations of antiferromagnetic Ising models
show that for a two-dimensional lattice with nearest-neighbor
pair interactions a mean-field description is poor (18). This
observation strongly indicates that in the ionization problem
the site–site interaction potential must be distinctly different
for the two geometries.
The major purpose of this paper is to show that this

difference between the site–site interaction potentials indeed
provides the fundamental reason for the contrasting ionization
behavior of the planar interface and linear polyelectrolyte. The
discrete-charge Ising model discussed here is entirely analo-
gous to the model of the ionization process of proteins
proposed by Kirkwood and Tanford (1, 2). The site–site
interaction potentials are deduced by treating the ionizable
groups as point charges. These charges are arranged within a
dielectric medium of low dielectric constant, which is in
contact with an electrolyte solution treated within the linear-
ized Poisson–Boltzmann equation. Whereas Kirkwood and
Tanford (1, 2) have considered a spherical dielectric cavity, we
shall discuss the analogous situations for planar and cylindrical
geometries to model the planar interface and the linear
polyelectrolyte (Fig. 1). Thus, the discrete-charge Ising model
treats both types of systems equally but distinguishes them
through their geometries. Clearly, such a model is too crude to
be quantitative. Due to its simplicity, however, it provides
much physical insight and captures the essence of the process
in a semi-quantitative fashion.
Qualitatively, the difference in the interaction potentials

between the planar and cylindrical geometries is readily un-
derstood (Fig. 2). The interaction potential between two point
charges in a dielectric medium is Coulombic, whereas in an
electrolyte it is both weaker (due to the high dielectric constant
of water) and short ranged (due to the screening by the
electrolyte ions). The interaction potential for the planar and
cylindrical geometry must lie between these two extremes.
Considering the relative volumes occupied by the dielectric
and the electrolyte, respectively, it follows that the interaction
potential for the planar interface lies closer to the potential in
a uniform dielectric, whereas the potential for the linear
polyelectrolyte lies closer to the potential in an electrolyte. As

we shall demonstrate, it is this difference between the inter-
action potentials for the planar interface and the linear
polyelectrolyte that is responsible for the contrasting proton
titration behavior of these two classes of system (Fig. 3).

Electrostatic Energy of Discrete-Charge Arrays

We now derive the electrostatic energy of an array of discrete
charges, in both the planar and linear geometries, treating the
electrolyte within the linearized Poisson–Boltzmann (Debye–
Hückel) approximation. As indicated in Fig. 1, we considered
an array of discrete charges of magnitude ji (measured in units
of elementary charge e) that are located at positions ri within
a dielectric medium of dielectric constant «d. This dielectric
medium is in contact with an aqueous electrolyte solution with
dielectric constant «w and Debye screening length k21 (k2 5
2be2csy«0«w, b215 kT is the thermal energy, «0 the permittivity
of vacuum, cs the concentration of monovalent electrolyte). To
model the planar interface, we assume the charges to be
located within the semi-infinite dielectric at a distance a from
the planar interface, while the linear polyelectrolyte is mod-
eled by discrete charges, which are aligned along the central
axis of an infinitely long cylinder of the same radius a.
The electrostatic energy of such an array of charges can be

obtained by solving for the electrostatic potential c(r). Within
the electrolyte the electrostatic potential is assumed to satisfy
the linearized Poisson–Boltzmann equation

¹2c 5 k2c. [1]

In the dielectric, the right-hand side of Eq. 1 vanishes for r Þ
ri. The boundary conditions at the dielectric–electrolyte in-
terface are stipulated by the continuity of the electrostatic
potential and the normal component of the electric displace-
ment.

Site–Site Interaction Potential

The total interaction energy can be obtained, through super-
position, by a summation of all pair interaction energies. The
electrostatic energy of two charges i and j is given by jijjW(r),

FIG. 1. Pictorial representation of the discrete-charge Ising model.
Solid circles represent the ionizable sites, which are assumed to be
arranged within dielectric medium with a dielectric constant «d. This
dielectric is in contact with an aqueous electrolyte solution with a
dielectric constant «w and a Debye screening length k21. (a) The
water–solid interface is modeled by a planar geometry with ionizable
sites arranged on a regular, two-dimensional lattice. (b) The linear
polyelectrolyte is modeled by arranging the ionizable sites equidis-
tantly along the cylinder axis.

FIG. 2. Accurate numerical results for the site–site interaction
potentialsW(r) between two elementary charges as a function of their
separation distance r in units of kT. The charges are located in a
dielectric with «d 5 3, which is in contact with aqueous electrolyte of
concentration cs 5 0.5 M (k21 . 0.43 nm) and with «w 5 80. The
interface is modeled as a semi-infinite planar dielectric with charges
at a depth of a5 0.25 nm from the dielectric–electrolyte interface. The
polyelectrolyte is approximated by a dielectric cylinder of radius a 5
0.25 nm, with charges arranged along its longitudinal axis. The limiting
law for small distances is the Coulomb potential in the dielectric; for
large distances the interaction potential decays like r23. For the
cylinder the large distance behavior is given by a screened Coulomb
law in water.
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where W(r) is the electrostatic energy of two elementary
charges separated by a distance r 5 uri 2 rju. In the following,
we shall refer to W(r) as the site–site interaction potential.
Let us first discuss the case of a planar interface. This

problem can be solved in a straightforward fashion by intro-
ducing a two-dimensional Fourier transform (23–25) leading
to the site–site interaction potential

W~r! 5
e2

4p«0«d F1r 2 E
0

` «wp 2 «dk
«wp 1 «dk

J0~kr!e22akdkG , [2]

where p 5 (k2 1 k2)1/2 introduces the dependence on the
Debye length and J0(z) is the zeroth-order Bessel function of
the first kind (26). The first term corresponds to a bare
Coulomb interaction in the dielectric medium, while the
second term represents the polarization term.
For the cylinder, which is used to model the linear poly-

electrolyte, the analogous problem can be solved by introduc-
ing a one-dimensional Fourier transform of the electrostatic
potential along the longitudinal axis of the cylinder and
expanding the angular contributions into a Fourier series (27).
The spirit of the calculation represents a combination of the
techniques applied in the analogous problem for a sphere (1,

2) and for a plane (23–25). The result can be simplified
considerably if the charges are placed at the center of a cylinder
of radius a, in which case the site–site interaction potential
becomes

W~r! 5
e2

4p«0«d

3 F1r 2
2
pE
0

` p«wK1~pa!K0~ka! 2 k«dK1~ka!K0~pa!
p«wK1~pa!I0~ka! 1 k«dI1~ka!K0~pa!

cos kr dkG,
[3]

where In(z) and Kn(z) are modified Bessel functions (26). Note
again the decoupling into bare Coulomb and polarization
terms.
The site–site interaction potential between two charges for

a planar interface and a linear polyelectrolyte (compare Eqs.
2 and 3) were evaluated numerically and are compared in Fig.
2. Indeed, the interaction potential is stronger and more long
ranged for a planar interface than for a linear polyelectrolyte.
At small separation distances, the polarization term gives a
constant contribution and thus both interaction potentials are
dominated by the bare Coulomb potential. Substantial differ-
ences arise at large distances, however. In this limit the
Coulomb contribution is almost canceled by the polarization
term, which causes the interaction potential to decay much
faster than the Coulomb potential. As evident from Fig. 2, this
decay at larger separations is significantly slower in the planar
than in the cylindrical geometry. For the plane, it can be shown
that this decay always scales as r23 by expanding the integrand
in Eq. 2. For the cylinder, the decay at larger separations is
dominated by the classical screened Coulomb potential, which
is proportional to e2kryr. The latter result derives from a
numerical analysis of Eq. 3. Qualitatively, this different be-
havior can be understood as follows. In the planar case, the
point charge inside the dielectric generates its image charge of
opposite sign in the electrolyte. The electrostatic potential
induced by these charges decays dipole-like at large distances.
For the model of a linear polyelectrolyte, on the other hand,
the very presence of the cylinder can be ignored at distances
that are much larger than cylinder radius, and the screened
Coulomb potential is obtained. For the linear polyelectrolyte
one thus obtains full screening at large distances, whereas for
the planar interface full screening is never obtained.

Ising Model

In the statistical mechanics literature the Ising model is
commonly used for the description of magnets or gas adsorp-
tion phenomena (21). However, the very same model repre-
sents the proper framework for the description of proton-
binding equilibria in polyprotic systems (1–6, 15–22). The
protonation state of an ionizable site i can be characterized by
its charge ji. Assuming all sites are equivalent, this variable can
attain only two values, namely ji 5 z if the site is deprotonated
and ji 5 z 1 1 when the site is protonated. The ionization
properties can now be derived from a free energy, which has
the form of a classical Ising Hamiltonian (21)

^~j1,. . .,jN! 5 2 mO
i

ji 1
1
2 OiÞjW~uri 2 rju!jijj, [4]

where the repulsive (antiferromagnetic) pair interaction en-
ergies are given either by Eq. 2 or Eq. 3. The chemical potential
m can be expressed as bmyln 105 pK2 pH, where pK and pH
are the negative common logarithms of the intrinsic dissocia-
tion constant of the ionizable group and of the proton activity,
respectively.

FIG. 3. Titration curves derived from discrete-charge Ising models.
Comparison ofMonte Carlo simulations (symbols) with themean-field
approximation (solid line, Eq. 5). Parameters are the same as in Fig.
2. The sites have pK5 10 and are uncharged in the deprotonated state.
(a) Ionizable sites are arranged within a planar interface on a square
lattice with lattice spacing of 1.1 nm, and (b) along the axis arranged
along the axis of the cylinder with a spacing of 0.35 nm. The broken
line represents the result without interactions. In b, the thin line is the
analytical solution of the Ising model on a linear chain with nearest-
neighbor pair interactions.
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Thermal averages are obtained by summing over all possible
ionization states and weighting each configuration according
to the Ising Hamiltonian, Eq. 4. The titration (magnetization)
curve is given by the average charge j plotted as a function of
the chemical potential m (magnetic field), or more commonly,
the pH. The average degree of protonation u 5 j 2 z is often
reported instead.

Mean-Field Approximation

In the mean-field approximation, one replaces all of the state
variables ji by their average j. In the present context of
ionization equilibria, the mean-field approximation leads to
the classical constant capacitance model (11, 12)

pH5 pK9 2 «u 1 log10
1 2 u

u
, [5]

where pK9 5 pK 1 z« and « 5 bEyln 10. Whereas for E 5 0
the classical titration curve of noninteracting sites is recovered,
in the general case, this parameter characterizes the overall
strength of the mean field and is given by

E 5
1
N O
iÞj
W~uri 2 rju! 5 rE g~r!W~r!d2r. [6]

The right-hand side of the equation applies to a planar
interface only. Thereby, r is the interfacial site density (per
unit area) and g(r) is the pair distribution function of the sites
in the interface. An analogous expression also applies for the
linear arrangement. One simply replaces r by the line site
density (per unit length) and the integral by a one-dimensional
integral along the cylinder axis.

Monte Carlo Simulations

Without introducing any approximations, thermal averages for
the Ising model with a general form of site–site interaction
potential can be obtained by the Monte Carlo simulation
technique (21). We have used this technique to evaluate
titration curves of ionizable sites on planar interfaces and
linear polyelectrolyte with the interaction potentials discussed
earlier (see Fig. 2). In both cases, we have assumed all groups
to be neutral in the deprotonated state (z 5 0) and charac-
terized by pK5 10. For both geometries, the resulting titration
curves are compared with the mean-field approximation in
Fig. 3. Note that within our linearized model, the titration
curves retain their shape for other values of z and pK; changes
of these parameters will only cause a horizontal displacement
of the curves.
For the planar interface, which is here modeled by a square

lattice with a lattice constant of 1.1 nm (r . 0.8 nm22), the
agreement between Monte Carlo results and the mean-field
approximation is very good (see Fig. 3a). In spite of the strong
effect of interactions, the mean-field model remains a good
approximation if we change the lattice spacings or use differ-
ent, physically realistic interaction potential parameters. The
same has been verified for other types of lattices (e.g., hon-
eycomb, triangular) and is expected to hold for a disordered
(glass-like) arrangement of sites. For the planar interface, we
were unable to find a realistic situation where the mean-field
approximation breaks down.
On the other hand, the mean-field approximation fails

entirely for the linear polyelectrolyte (see Fig. 3b). Before a full
discussion of this situation is given, we note first that if we
arrange ionizable sites along the polyelectrolyte with the same
spacing as we have used for the planar interface (1.1 nm), there
is a minimal effect due to interactions. This feature is imme-
diately understandable from the differences between the cy-

lindrical and planar scenarios—the site–site interaction po-
tential along the polyelectrolyte decays considerably faster
than the planar analog and, moreover, there are fewer nearest
neighbors in the polyelectrolyte. Therefore, the overall
strength of the interactions will be much weaker in the
polyelectrolyte than in the planar interface for a given inter-
group distance. To observe appreciable effects of interactions
in the polyelectrolyte case, we must thus reduce the intersite
separation relative to that in the set-up for the planar interface.
For a polyelectrolyte with sites at smaller separation dis-

tances—we have used 0.35 nm in this case—the Monte Carlo
data are poorly described by the mean-field model (see Fig.
3b). Variation of parameters shows that this behavior is again
rather typical for most situations. Only for larger intergroup
spacing and, particularly, at lower ionic strengths, can mean-
field behavior also be observed for the linear geometry. In such
situations, however, the overall effect of interactions is only
moderate.
As further shown in Fig. 3b, we have also compared the

resulting titration curve with the linear nearest-neighbor Ising
model (15–21). This simple model reproduces theMonte Carlo
results reasonably well. Neglecting all but nearest-neighbor
interactions is a reasonable approximation for the linear
polyelectrolyte; for the planar interface the same approxima-
tion would fail entirely.

Smearing-Out Approximation

For mathematical convenience one often invokes the approx-
imation that the charges are not discrete but uniformly
smeared out. The mean-field model discussed here reduces
precisely to this situation if spatial correlations between the
ionizable sites are neglected.
Consider the planar geometry first. Setting g(r) 5 1 in Eq.

6 and using Eq. 2 we recover the usual smeared-charge result
for the plane (11–13)

Esm 5 e2rC21, [7]

where C is the capacitance per unit area. This capacitance can
be interpreted as arising from two parallel plate capacitors in
series

C21 5 Cdl
21 1 Cin

21, [8]

where Cdl 5 k«0«w originates from the diffuse layer, while Cin
5 «0«dya arises from the dielectric medium between the
smeared-out charge and the planar interface. In the double-
layer model (12), the second contribution in Eq. 8 is neglected
and the capacitance is given by the double-layer capacitance
Cdl only.
As known from the electrochemical literature (28), the

smearing-out approximation does fail for a lattice, where
substantial (excluded volume type) correlations exist. The
strength of the mean field E depends on the geometrical
arrangement through the pair correlation function g(r) in a
nontrivial fashion and thus this parameter will depend on the
lattice geometry. For the square lattice (the situation shown in
Fig. 3) from Eq. 6 we obtain « . 7.37. For other lattices with
the same site density, the corresponding lattice sums give « .
7.23 for a triangular lattice and « . 7.71 for a honeycomb
lattice. The strength of the mean field is poorly estimated by
the smeared-out charge model, which predicts «sm . 22.4
(overestimate), as well as the classical double-layer model,
which yields «dl . 1.37 (underestimate).
For the linear polyelectrolyte, as we have shown, the mean-

field approximation is poor. However, one could still employ
the smearing-out approximation to estimate the overall effect
of the interaction (i.e., strength of the mean field). In this case,
the capacitance entering Eq. 7 must be interpreted per unit
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length and r replaced by the line density. Moreover, smearing
out the charges along the longitudinal axis of a cylinder leads
to a divergence of the electrostatic energy. Thus, we can only
meaningfully discuss the contribution of the diffuse layer (29).
From our treatment we recover the double-layer capacitance
per unit length Cdl 5 2p«0«wakK1(ka)yK0(ka). For the case
shown in Fig. 3b, the mean-field interaction energy is charac-
terized by a pair interaction parameter « . 8.27. Smearing the
charges along the cylinder axis we obtain «sm 3 `, whereas
smearing the charges on the cylinder surface gives «dl . 1.76.
As in the planar case, both approximations bound the correct
value but do not provide useful estimates of the effect of the
interactions.

Comparison with Experiment

In a semi-quantitative fashion, numerous experimental data
sets support the picture put forward here. Experimental
titration curves reveal the same generic trends as predicted by
the discrete-charge Ising model. In the case of planar inter-
faces, the effect of site–site interactions is pronounced even at
site separations of approximately 1 nm (see Fig. 3a). The
resulting titration curves are of the mean-field type and in
semi-quantitative agreement with the ionization behavior of
ionizable monolayers or latex particles (7–10). At smaller
separations, the effect of site–site interactions is so strong that
the linearized Poisson–Boltzmann breaks down and it becomes
impossible to titrate a given site fully within the experimentally
accessible pH window; water–oxide interfaces with intergroup
distances below 0.5 nm are the primary examples of this
behavior (13).
For polyelectrolytes, on the other hand, interaction effects

set in at smaller distances. These interactions become only
dominant for rather small separations between ionizable
groups (below 0.5 nm), and one observes marked deviations
from the mean-field behavior and a characteristic plateau in
the titration curve around u 5 1y2 (see Fig. 3b). Various linear
polyelectrolytes with closely spaced ionizable groups behave in
this fashion, for example, poly(maleic acid), poly(fumaric acid)
poly(vinylamine) or poly(ethyleneimine) (14–16). For linear
polyelectrolytes, at intergroup distances somewhere below 1
nm, effects of interactions become observable. This situation
is exemplified by polyacrylic acid and hyaluronic acid, where
the effects of interactions are weak and titration curves are of
the mean-field type, as also revealed by the discrete-charge
Ising model (14, 30, 31).
Even though all of these generic features are reproduced by

our model semi-quantitatively, no quantitative comparisons
were attempted. For obvious reasons, the model is too crude
to explain the behavior of individual systems in detail. Within
the Poisson–Boltzmann approximation, a certain level of
molecular detail can be introduced by solving for the electro-
static energies of realistic geometries. This approach has
reached a substantial degree of sophistication for proteins
(3–6). However, a quantitative treatment calls for the consid-
eration of additional effects: (i) accurate estimation of intrinsic
microscopic pK values of ionizable groups in the appropriate
molecular environment (3, 4,); (ii) possible breakdown of the
linear or nonlinear Poisson–Boltzmann approximation, Stern-
layer, and dielectric saturation effects (4, 6, 11–13); (iii)
contributions from conformational degrees of freedom (31,
32).

Conclusion

Typical differences between the ionization properties of planar
interfaces and linear polyelectrolytes (as displayed in Fig. 3)
have their origin in the marked contrast between the site–site
interaction potentials of two point charges near a planar

interface and close to a polymer backbone. The interaction
potential between two point charges is stronger and more long
ranged for the planar interface than for the cylinder (see Fig.
2). This difference originates from the contrasting behavior of
the interaction potentials at large separations: for the plane,
the potential decays as r23, while for the linear polyelectrolyte
as e2kryr. If we now consider the protonation of such systems,
the range and strength of the site–site interaction potential
plays a key role. In this case, the range of the interaction
potential primarily determines whether the system will behave
in a mean-field like fashion or not. For the planar interface the
interaction potential is long ranged and, therefore, the system
behaves mean-field-like. For the polyelectrolyte, the interac-
tions are short ranged and most important for nearest neigh-
bors; for this one-dimensional system the mean-field approx-
imation fails. Similar reasoning applies to the overall strength
of the interactions. For a given distance between ionizable
sites, the effect of interactions is much stronger for the planar
interface than for the linear polyelectrolyte.
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22. Jäger, I. (1991) Surf. Sci. 254, 300–308.
23. Stillinger, F. H. (1961) J. Chem. Phys. 35, 1584–1589.
24. Richmond, P. (1974) J. Chem. Soc. Faraday Trans. 2 70, 1067–

1073.
25. Medina-Noyolam, M. & Ivlev, B. I. (1995) Phys. Rev. E 52,

6281–6288.
26. Gradsteyn, I. S. & Ryzhik, I. M. (1980) Table of Integrals, Series,

and Products (Academic, New York).
27. Soumpasis, D. (1978) J. Chem. Phys., 69, 3190–3196.
28. Barlow, C. A. & Macdonald, J. R. (1967) Adv. Electrochem.

Electrochem. Eng. 6, 1–199.
29. Hill, T. L. (1955) Arch. Biochem. Biophys. 57, 229–239.
30. Cleland, R. L. (1982) Macromolecules 15, 386–395.
31. Ullner, M., Jönsson, B. & Peterson, C. (1996) J. Chem. Phys. 104,

3048–3057.
32. Figueirido, F., Del Buono, G. S. & Levy, R. M. (1996) J. Phys.

Chem., 100, 6389–6392.

Chemistry: Borkovec et al. Proc. Natl. Acad. Sci. USA 94 (1997) 3503


