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ABSTRACT The need to assess the randomness of a single
sequence, especially a finite sequence, is ubiquitous, yet is
unaddressed by axiomatic probability theory. Here, we assess
randomness via approximate entropy (ApEn), a computable
measure of sequential irregularity, applicable to single se-
quences of both (even very short) finite and infinite length. We
indicate the novelty and facility of the multidimensional
viewpoint taken by ApEn, in contrast to classical measures.
Furthermore and notably, for finite length, finite state se-
quences, one can identify maximally irregular sequences, and
then apply ApEn to quantify the extent to which given se-
quences differ from maximal irregularity, via a set of deficit
(defm) functions. The utility of these defm functions which we
show allows one to considerably refine the notions of proba-
bilistic independence and normality, is featured in several
studies, including (i) digits of e, p,=2, and=3, both in base
2 and in base 10, and (ii) sequences given by fractional parts
of multiples of irrationals. We prove companion analytic
results, which also feature in a discussion of the role and
validity of the almost sure properties from axiomatic proba-
bility theory insofar as they apply to specified sequences and
sets of sequences (in the physical world). We conclude by
relating the present results and perspective to both previous
and subsequent studies.

Suppose one were asked, ‘‘Are the digits in the decimal expansion
of =2 random?’’ We consider such a question problematic, as
discussed in refs. 1–4, and even epistemologically ill-posed, since
randomness as addressed by the study of axiomatic probability
theory (5, 6) is concerned with ensemble process behavior, rather
than the assessment of a specific sequence. In principle, we can
instead ask ‘‘Is =2 a normal number?,’’ since normality is a
well-defined sequence notion. Indeed, normality is an expected
characteristic of a real number, from a measure–theoretic per-
spective, since Borel showed that almost all numbers are normal
(7). However, Geiringer (ref. 8, p. 311) states the issue poignantly:
‘‘The fact that a set of nonnormal numbers is ofmeasure zero does
not help in any way in the extremely difficult problem of deciding
whether a given number is normal or not.’’
Moreover, and most importantly, in applications we use finite

segments of putatively random sequences, and hence we require
computable techniques to assess the ‘‘randomness’’ of such seg-
ments, to which neither axiomatic probability theory or normality
apply.
The purpose of this paper is to demonstrate, in several distinct

settings, the utility of a recently introduced notion of sequential
irregularity, approximate entropy (ApEn) (4, 9), withwhichwe can
evaluate, e.g., the extent of irregularity of decimal digits of=2. As
indicated in ref. 4, ApEn addresses and actually refines both the

classical probabilistic notion of randomness, and normality, from
a fundamentally different vantage point than either of these
notions. Specifically, the development of ApEn has the following
properties.
(i) It is combinatorial, rather than oriented toward almost sure

laws, which as discussed below, fail in a number of settings for
specified sequences.
(ii) It applies to single sequences of both (even very short) finite

and infinite length.
(iii) It is explicitly computable, in counterpoint to the develop-

ments of algorithmic complexity (10–13), and axiomatic proba-
bility theory.
(iv) In particular, in assigning an explicit measure of irregularity

to a sequence u: 5 (u(1), u(2), . . . u(N)) via ApEn, it avoids the
needs (a) to guess as to an underlying set of rules or process used
to generate the sequence, and (b) to identify and evaluate the
remainder of the sequence, i.e., {u(m), m . N}. The focus is to
evaluate the sequence ‘‘at hand.’’ For instance, a sequence of
length N5 100 could equally well represent either an algorithmi-
cally simple block of 100 contiguous digits of p, or an algorithmi-
cally complicated output from a 99th degree polynomial, and the
need for describing quantitative characteristics of this 100 point
sequence exists apart from the disclosure of which of these two (or
alternative) means were used to generate the sequence.
(v) ApEn(m, .) provides a family of functions that for m $ 1

assesses multidimensional dynamics of contiguous blocks (of run
length m 1 1).
(vi) It allows one to identify and quantify maximally irregular

finite sequences (which we prove below coincide with maximally
equidistributed sequences), for sequences with a finite state space
(e.g., binary and decimal digits). From this useful capability,
(vii) It allows one to quantify the extent to which nonrandom

sequences differ from maximal irregularity, i.e., to provide a
formulation of ‘‘closer to random,’’ via a set of deficit (defm)
functions.
(viii) Both process independence in classical probability theory

and normality reduce to a binary, YESyNO determination of
whether all of these defm functions converge to 0, implying an
asymptotic convergence to frequency equidistribution.
(ix) From viii, all study of the defm functions, beyond answering

theYESyNOquestion of convergence to 0, explicitly characterizes
the asymptotic behavior of sequential variation about (possible)
maximal equidistribution, and thus allows one to considerably
refine the notion of limiting equidistribution, or normality.

Maximal Irregularity

We recall several definitions from ref. 4. Note that we separately
develop quantifications of irregularity for both finite sequences
and for infinite sequences via approximate entropy, ApEn.
Definition 1: Given a positive integerN and nonnegative integer

m, with m # N, a positive real number r, and a sequence of real
numbers u:5 (u(1), u(2), . . . , u(N)), let the distance between two
blocks x(i) and x(j), where x(i)5 (u(i), u(i1 1), . . . u(i1m2 1)),
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be defined by d(x(i), x(j))5 maxp51,2,. . . ,m (uu(i1 p2 1)2 u(j1
p 2 1)u). Then let Cim(r) 5 (number of j # N 2 m 1 1 such that
d(x(i), x(j)) # r)y(N 2 m 1 1). Now define

Fm~r! 5
1

N 2 m 1 1 O
i51

N2m11

logCi
m~r!,

and

ApEn~m, r,N!~u! 5 Fm~r! 2 Fm11~r!,m$ 1;

ApEn~0, r,N!~u! 5 2 F1~r!.

ApEn(m, r,N)(u) measures the logarithmic frequency with which
blocks of lengthm that are close together remain close together for
blocks augmented by one position, with larger values of ApEn
implying greater irregularity in u. Alternatively (9, 14),

ApEn~m, r, N!~u! < average over i of log [conditional

frequency that uu~j 1 m! 2 u~i 1 m!u # r,given that

uu~j 1 p! 2 u~i 1 p!u # r for p 5 0,1, . . ., m 2 1], [1]

with equality (for fixed m and r) in the limit as N3 `.
Herein, we consider sequences of base k integers, and as in ref.

4, set r , 1 as our measure of resolution. For this choice of r, we
can suppress the dependence of ApEn on r and make
Definition 2: A sequence of lengthN, u*(N), is said to be {m,N}-

irregular if ApEn(m,N) (u*(N))5maxuApEn(m,N) (u), where the
maximum is evaluated over all kN sequences of length N.
Definition 3: u*(N) is said to beN-irregular (N-random) if it is {m,

N}-irregular form5 0, 1, 2, . . . ,mcrit(N), withmcrit(N) defined by:
mcrit(N) 5 max(m: k2

m
# N).

The specification of mcrit(N) is discussed in ref. 4. Next, the
following gives a useful equivalence of maximally irregular ApEn
sequences, expressing that approximate stability of frequencies
alternatively characterizes N-random sequences.
THEOREM 1. A sequence u is N-random if and only if for each

1 # m # mcrit(N) 1 1, the expression

max{v1, v2, . . . , vm}u
1

N 2 m 1 1
~number of

{v1, v2, . . . , vm} blocks in the sequence u)2 1ykmu [2]

is a minimum (among length N sequences), where the max is
evaluated over all blocks {v1, v2, . . . , vm}where vi[ {0, 1, . . . , k-1}
for all 1 # i # m.
Proof: We observe that ApEn(0)5 2F1(r) must be maximized

(among all lengthN sequences), then recursively that ApEn(m)5
Fm(r) 2 Fm11(r) must be maximized, hence 2Fm11(r) must be
maximized for eachm#mcrit(N). The proof now follows at once,
upon recognition that

2 Fm~r! 5 2
1

N 2 m 1 1 ON2m11

i51
log Ci

m~r!

is the (discrete) entropy of the m-block empirical frequency
distribution, maximized when most equidistributed on m-
blocks, i.e., when Eq. 2 is satisfied.
Thus, maximal ApEn agrees with intuition for maximally equi-

distributed sequences, while allowing us to grade the remaining
sequences in terms of proximity to maximality. From Theorem 1
andEq. 1 it follows readily that for the k-state alphabet, asymptotic
ApEn values converge to log k for maximally random sequences.
Remark: One can produce sets of maximally equidistributed

(length p2 1) sequences via sequential digits formed by the base
k expansion of qyp, for any integer 0, q, p, when p is a k-ergodic
prime, as discussed in ref. 3. Recall the formulation of k-ergodic
primes. By Fermat’s little theorem (15), for p prime and not a
divisor of k, it follows that kp21 5 1 (mod p). Let d be the order

of k (mod p), i.e., the smallest positive integer for which kd 5 1
(mod p). By Theorem 88, ref. 15, d is a divisor of p 2 1. If as a
special case, d 5 p 2 1, we denote p as a k-ergodic prime. The
formulation of k-ergodic primes thus leads to a useful set of finite
‘‘most random’’ sequences. Nonetheless, the aforementioned pro-
cedure only applies to a relatively sparse collection of sequence
lengths—it is not even known if there are infinitelymany k-ergodic
primes for any given integer k . 1. As well, for general sequence
lengths, an important open problem is to determine efficient
procedures to generate all maximally irregular sequences.
We next recall the technology to quantify proximity of a finite

sequence to maximal irregularity.
Definition 4: For a length N sequence u(N), define defm[u(N)]:5

maxuvu5N ApEn(m, N) (v) 2 ApEn(m, N) (u(N)).
Finally, for infinite sequences u 5 (u(1), u(2), . . . ), u(i) [

{0, 1, . . . , k2 1} for all i, and r, 1, define u(N) 5 (u(1), u(2),
. . . , u(N)), and define ApEn(m, N)(u): 5 ApEn(m, N)(u(N)).
Then define ApEn(m)(u): 5 limN3` ApEn(m, N) (u(N)),
assuming this limit exists. Then
Definition 5: An infinite sequence u is called C-random if and

only if ApEn(m)(u) 5 log k for all m $ 0.
Notably, for an infinite sequence of random variables {Xi}, i$

1, with ‘‘probability’’ p5 1yk each of 0, 1, . . . , k2 1, an assumption
of joint independence as defined by classical probability theory
reduces to C-randomness of realizations with probability one.
Similarly, the normality of a number reduces to the condition that
ApEn(m)(u)5 log k, i.e., defm[u(N)]3 0 as N3 ` for allm$ 0.
Thus, both independence and normality are limit statements,
without rates of convergence, which further study via the defm
functions refine.

Chaitin Example

The following provides insight into the potential utility of assessing
irregularity via the analysis of blocks of contiguous points. Chaitin
(16) motivates the need for the development of algorithmic
complexity (10–13) by contrasting two binary sequences of length
N 5 20, (A) denoted ‘‘with an obvious pattern,’’ (B) ‘‘that seems
to be random’’:

(A) 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
(B) 0 1 1 0 1 1 0 0 1 1 0 1 1 1 1 0 0 0 1 0

He comments that in considering A and B, ‘‘each represents an
event with probability of 2220’’; he then notes that ‘‘The conclusion
is singularly unhelpful in distinguishing the random from the
orderly.’’ From the present perspective, if we think in terms of
aggregating 2-blocks, i.e., if we takea2-dimensional view,ApEn(1)
provides an immediate, computable difference: ApEn(1, 20) 5 0
for A, whereas ApEn(1, 20) 5 0.6774 for B. In particular, the
ApEn(1) 5 0 calculation for sequence A reflects the observation
that there are no length 2-blocks {0, 0} or {1, 1} anywhere in A.
[As an aside, Chaitin did rather well insofar as selecting a reason-
ably irregular sequence (B), recalling that max ApEn(1, 20)' log
2 5 0.693.]
Thus, ApEn allows a direct, computable alternative to the

severely noncomputational approach that algorithmic complexity
provides, insofar as identifying random sequences. Furthermore,
short data lengths readily sufficed to distinguish A from B above.

Digits of Irrationals

We next study ApEn(m, N) and defm for m 5 0, 1, and 2 for
(relatively) large values of N, for binary and decimal sequences
(expansions) of e, p, =2, and =3. Each of these numbers have
been hypothesized to be normal; thus, we anticipate approximate
equidistribution for large N. In base 2, we evaluated sequences of
lengthN# 300,000, produced fromMathematica, while in base 10,
we evaluated sequences of length N # 1,000,000, produced from
projectGutenberg. Figs. 1 and 2 display defm as a function ofN, Fig.
1 for base 2, Fig. 2 for base 10. To reiterate, the defm functions here
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for m 5 0, 1, and 2 quantify the divergence from maximal
equidistribution of singletons, pairs, and triples, respectively.¶
A number of points are evident from these figures. First, in base

2, differences among e,p,=2, and=3 are considerable, especially
for triples (3-blocks,m5 2). Note, e.g.,=3 is much less irregular
than p, for larger N, for both m 5 1 and m 5 2, as indicated by
the def1(N) and def2(N) functions—this difference is often nearly
two orders of magnitude.
From another, albeit coarser perspective, forN5 280,000 forp,

the most frequently occurring 3-block of contiguous points is {0,
0, 0}, with 35,035 occurrences, whereas the least frequently
occurring 3-block of contiguous points is {1, 1, 1}, with 34,944
occurrences—a difference of 91. In comparison, for N5 280,000,
for=3, themost frequently occurring 3-block of contiguous points
is {0, 0, 0}, with 35,374 occurrences, whereas the least frequently
occurring 3-block of contiguous points is {0, 1, 0}, with 34,615
occurrences—a difference of 759. Thus=3 is considerably further
frommaximal equidistribution than is p, for an extended range of
N. As well, one can recast such calculations to establish greater
conditional frequency ‘‘bias’’ for=3 than forp, based on pairs and
triples, for 100,000 # N # 300,000.
We emphasize that we do not have to validate the normality of

e, p,=2, and=3 to derive meaningful utility from this analysis—
defm(N) and ApEn(m, N) are well-defined functions associated
with these numbers (sequences).
Interestingly, as seen in Fig. 2, base 10 differences among these

four irrationals aremuch less pronounced, especially in dimensions
2 and 3; thus, base 10 and base 2 sequence properties are
‘‘incommensurate,’’ insofar as persistence (across bases) of grada-
tion by irregularity. Furthermore, in reconsidering Fig. 1, espe-
cially B and C, there is no separation along the lines of algebraic
numbers versus transcendental numbers as one might have hy-
pothesized. Namely, whereas p is consistently more irregular than
=3 in the range 100,000#N# 300,000,=2 is intermediate, with
both def1 and def2 for=2 between corresponding function values

forp and e for the vast preponderance of this range.Wemust infer
that the rapidity of rational approximations in the classical number
theoretic sense does not appear to directly manifest itself in the
degree to which sequential digits in a given base are irregular.
Additionally, distinct representational forms of a number can

produce sequences of completely different character. For example,
consider the continued fraction expansion representations=2 5
[1, 2, 2, 2, . . . ];=3 5 [1, 1, 2, 1, 2, 1, 2, . . . ]; and 1 1 =5

2
5 [1, 1,

1, 1, . . . ]. (We denote the continued fraction a0 1
1
a11

1
a21

. . .
1
an
by [a0, a1, . . . , an], calling a0, a1, . . . , an the partial

quotients of the continued fraction.) Ignoring the first digit of each
of these three sequences, and applying ApEn to the remaining
terms (i.e., to the sequence {a1, . . . , an, . . .} of the partial
quotients), we conclude that the continued fraction expansions for
each of these three quadratic surds are quite regular, with
ApEn (m)5 0 for allm$ 0 for=2 and 1 1 =5

2
, and withApEn (m)

5 0 for all m $ 1 for =3. So the irregularity of one representa-
tion of a number says little about the irregularity of the number in
another representation. The point is to evaluate the sequence at
hand, rather than the simplicity of a (typically unknown) under-
lying generation technique.
The overall message in the above, that cannot be overstated, is

that we prefer to assess the randomness of a sequence, either finite
or infinite, by the behavior of a countable sequence of computable
functions defm. These deficit functions provide much richer detail
than does a simple YES or NO to the question ‘‘Do all these
functions defm necessarily converge to 0?,’’ which is all that
normality reduces to, even ignoring the virtually nil set of tech-
niques available to establish (possible) normality.

Multiples of Irrationals

One-Dimensional Deficit.We next consider sequences given by
fractional parts of multiples of irrationals. For u real, let v(u) 5
{u(1), u(2), . . . }, with u(n): 5{nu}, where { } denotes fractional
part, i.e., nu mod 1. Such sequences have received considerable
study since the beginning of the twentieth century. A famous
theorem concerning v(u), that some take as an alternative char-
acterization of irrational numbers, is the following, discussed and
reconsidered in refs. 1 and 2.
GLEICHVERTEILUNGSSATZ Weyl (17). Let u be a real number

and consider the family Su of points on the unit interval given by

¶As amechanical, yet notable aside, ApEn(m,N) and defm(N) calculations
were made via a linear-time (in N) algorithm, which consumed about 2
min for 1,000,000 points on a Macintosh Power PC. The discreteness of
the state space affords the possibility of such linear-time calculations, in
contrast with inherently quadratic-time (in N) ApEn algorithms for
continuous state space.

FIG. 1. Deficit from maximal irregularity for base 2 sequence expansions of e, p, =2, and =3: (A) def0(N), (B) def1(N), (C) def2(N).

FIG. 2. Deficit from maximal irregularity for base 10 sequence expansions of e, p, =2, and =3: (A) def0(N), (B) def1(N), (C) def2(N).
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Su: 5 {nu mod 1: n 5 1, 2, . . . , N}. The points in Su are
equidistributed (uniformly distributed) on [0, 1] in the limit N3
` if and only if u is irrational.
Of course, sequences v(u) are inadequate candidates for ‘‘ran-

dom’’ output, since contiguous points u(i) in the sequence differ by
u, manifested in 2-dimensional correlation. In the next subsection,
we apply ApEn(1) as a direct means to reject randomness of v(u).
Nonetheless, Weyl’s Theorem is useful in response to a funda-
mental need in statistics: how to generate a collection of points
uniformly distributed on [0, 1].
Now Weyl’s Theorem says nothing about the rate of conver-

gence of the points in Su to uniformity. We consider one aspect of
this convergence, by study of the binary sequence B(u) 5 {b(1),
b(2), . . . } derived from v(u) by the following rule: b(i)5 0 if u(i)
, 1y2, b(i)5 1 if u(i)$ 1y2, for u 5 =2. FromWeyl’s Theorem,
limN3`ApEn(0,N) {B(u)}5 log 2, i.e., limN3` def0(N){B(u)}5
0, since in the limit, b(i) 5 1 with asymptotic frequency 1y2. But
consider Fig. 3, which compares def0(N){B(=2)} to def0 for the
binary digits e and=2. For {B(=2)}, the def0 function is generally
several orders of magnitude smaller than for the binary digit
expansions of e and=2. Alternatively, forN5 150,000, {B(=2)},
there are 75,002occurrences of {0}, and74,998occurrences of {1},
a difference of 4, whereas among the first 150,000 binary digits of
e, there are 74,618 occurrences of {0}, and 75,382 occurrences of
{1}, a difference of 764. Thus, def0(N) delineates {B(=2)} as
decidedly more 1-dimensionally equidistributed than the se-
quences of binary digits of e and=2 for nearly the entire range of
N# 300,000. Below, we supply theory to guarantee the very rapid
convergence of def0(N) to 0 for{B(=2)} and related sequences,
which raises resultant fundamental issues.
Correlation in Two Dimensions.Here we reject randomness of

v(=2) by considering the associated binary sequence B(=2)
specified above. If v(=2) were random, B(=2) would necessarily
beC-random,withApEn(1){B(=2)}5 log 2'0.693, andwith the
limiting frequencies of the four 2-blocks of contiguous observa-
tions (0, 1), (1, 0), (1, 1), and (0, 0) each 5 1y4. Now denote the
limiting frequencies of {0} and {1} in B(=2) by f0 and f1, and the
limiting frequencies of the 2-blocks {0, 0}, {0, 1}, {1, 0}, and {1,
1} by f0, 0, f0, 1, f1, 0, and f1, 1, respectively. Recalling the notation of
Definition 1, it follows that limN3`ApEn(0,N) {B(=2)}5 limN3`

2 F15 2 {f0 log f01 f1 log f1}, and limN3`ApEn(1,N) {B(=2)}
5 limN3` F1 2 F2 5 {f0 log f0 1 f1 log f1} 2 {f0, 0 log f0, 0 1 f0,
1 log f0, 1 1 f1, 0 log f1, 0 1 f1, 1 log f1, 1 }. As indicated above, f0 5
f1 5 1y2, hence ApEn(0){B(=2)} 5 log 2. To calculate f0, 0, we
note that b(n)5 0 and b(n1 1)5 0 if and only if u(n)5 {n=2}
satisfies 0 # u(n) , 1.5 2 =2. We immediately deduce that f0, 0
5 1.52 =2' 0.086, by the uniformity of the limiting distribution

of u on [0, 1]. Since f0, 01 f0, 15 f05 1y2, it follows that f0, 15 =2
2 1' 0.414. A symmetric argument establishes that f1, 1 5 1.52
=2, and f1, 0 5 =2 2 1. Direct evaluation now gives that
ApEn(1){B(=2)} 5 limN3` ApEn(1, N) {B(=2)} ' 0.458.
Similarly, wedetermine that limN3`ApEn(2,N)5 0.423, rather

than log 2,manifesting the correlation among triples or 3-blocks of
B(=2). Most vividly, for three contiguous measurements, asymp-
totic equidistribution is seen to be impossible—neither the triple
{0, 0, 0} nor {1, 1, 1} can ever occur in B(=2), as seen by
elementary arithmetic case analyses.
Finally,we comment that virtually the identical technique canbe

used to reject C-randomness of v(u) for any other choice of u.
Analytics: Asymptotic Variation of B(=2). To address the

asymptotic variationof the binary sequenceB(=2) associatedwith
v(=2),we consider thenotionofdiscrepancy (18–20).LetUbe the
unit interval [0, 1], and u:5 {u(1), u(2), . . . } be any sequence of
numbers in this interval. Given an a in U and a positive integer N,
we define Z(N, a) as the number of integers i with 1# i# N and
0 # u(i) , a, and we put D(N, a): 5 u Z(N, a) 2 Na u. The
discrepancy D(N) is defined by D(N): 5 supa[U D(N, a). The
sequence u is called uniformly distributed (on [0, 1]) if D(N) is
o(N).
VanAardenne-Ehrenfest first showed thatD(N) cannot remain

bounded for any sequence, and subsequently she proved that there
are infinitely many integers N with D(N) . c loglog Nylogloglog
N, where c. 0 is an absolute constant (21). Schmidt (20) improved
on this and showed that for any sequence, there is some constant
k such that D(N). k log N for infinitely many values of N (a best
possible rate, given Eq. 3 below).
For sequences of fractional parts of multiples of an irrational u,

the following asymptotic bound has been known for some time:
Ostrowski (22) and Hardy and Littlewood (23) showed that for
such sequences v(u) 5 {{u}, {2u}, . . . }, with u(n): 5 {nu}, the
function

S~N!: 5 ON
i51

~u~i! 2 1y2!

satisfies uS(N)u . c log N for infinitely many N. Most impor-
tantly, for sequences v(u), Ostrowski (22) also showed that

D~N! # 36 A log N, [3]
if the partial quotients in the continued fraction expansion of u do
not exceed A.
For the sequence v(=2), we now apply Eq. 3 with A5 2, since

the continued fraction expansion of =2 5 [1, 2, 2, 2, . . . ], and
deduce thatD(N)# 72 logN. Observe that uZ(N, a)2Nau 5D(N,
a)# D(N) for all a, in particular for a5 1y2 thus, for all N, uZ(N,
1y2) 2 Ny2u # 72 log N.
Now note that Z(N, 1y2) 5 number of integers i with 1 #

i # N and b(i) 5 0. Setting

TN : 5 O
i51

N

~b~i! 2 1/2!,

we then infer that for all N,
uTNu # 72 log N. [4]

We complete this analysis by relating Eq. 4 to def0 (N){B(=2)}.
Recall from ref. 4 the following definition of excess, for a binary
sequence u: {excess of ‘‘0’’ over ‘‘1’’}N (u)5max(0, #0s in u(N) 2
#1s in u(N)), and symmetrically for {excess of ‘‘1’’ over ‘‘0’’}N (u).
LetEXCN(u)5max ({excess of ‘‘0’’ over ‘‘1’’}N (u)}, {excess of ‘‘1’’
over ‘‘0’’}N (u)}). Observe that uTNu 5 1y2EXCN({B(=2)}). Thus,
from Eq. 4, we deduce that EXCN({B(=2)}) # 144 log N for all
N. Now, as in ref. 4, p. 2086, there is an easily derived relationship
between def0 and EXC (for small values of def0) applied here as
def0(N){B(=2)} '

1
2 SEXCN~$B~Ï2!%!

N D 2.
Therefore as N3 `, def0(N){B(=2)} is

FIG. 3. One-dimensional deficit frommaximal irregularity def0(N)
for base 2 sequence expansions of e,=2, and for the binary sequence
{B=2}, derived from fractional parts of multiples of=2, all compared
with loglogNyN, where this last function is the asymptotic convergence
rate of def0 for sequences satisfying the law of the iterated logarithm.
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OS log NN D 2.
Almost Sure and Distributional Properties
of Random Variables

In the context of the present analysis, we raise an important
question: How generic are the almost sure properties of indepen-
dent identically distributed random variables, e.g., the law of the
iterated logarithm (LIL) and the central limit theorem (CLT), for
specified (sets of) sequences? Recall that for standardized binary
sequences {Xi}, the LIL requires that almost surely lim supN3` SN
is asymptotic to (2N loglog N)1/2, where SN:5 X11 . . .1 XN. We
consider the following:
(i) In ref. 4 it was shown that for a binary alphabet the LIL

mandate is equivalent to requiring that lim supN3` def0[u(N)] 5
(loglog N)yN, which is simply one subclass from the set of all
C-random sequences. From Theorem 3, ref. 4, large classes of
normal, C-random numbers violating the LIL were constructed
from a single normal number, with rates of convergence of lim
supN3` def0 at least as slow as gb(N)5 N-b, for arbitrarily small b
. 0. For these normal numbers, def0 is much larger than (loglog
N)yN, manifested in binary sequences with a remarkably slow
convergence of the frequency of {0}s to 1y2.
(ii)TheLILdoesnot describe the limiting asymptotic single digit

variation for the binary sequence B(=2) associated with v(=2),
fractional parts of multiples of=2 (suggested by Fig. 3). To satisfy
an LIL, the quotient function Q(N):5 def0(N){B(=2)}y{(loglog
N)yN} would need to approach an upper bound bound of 1
infinitely often for large N. We analytically establish that Q(N)3
0 as N3 `: since def0(N){B(=2)} is

OS log NN D 2,
shown above, Q(N)is

OHS log NN D 2y$~loglog N!yN%J ,
which is

OS 1NDS log
2 N

loglog ND .
Thus, B(=2) provides a counterpoint to the classes of non-LIL
sequences indicated in i above. Specifically, for B(=2), the one-
dimensional LIL is not satisfied because all initial sequence
segments are remarkably nearly maximally equidistributed, much
more so than LIL allows, whereas for the sequences indicated in
i, the deviations of initial segments fromequidistribution aremuch
greater than those allowedbyLIL, even though the correct limiting
frequencies of 1y2 for both {0} and {1} are satisfied in all cases.
Notably, by a nearly identical argument, the corresponding

Q(N)3 0 as N3 ` for all quadratic surds u, since the resultant
continued fraction sequence [a0, a1, . . . , an, . . . ] is periodic (15),
hence necessarily bounded, thus implying that Eq. 3 applies (for
some A , `). Hence, the LIL is also qualitatively invalid insofar
as describing single-digit deviations from centrality for B(u) for u
any irrational root of a quadratic equation with integral coeffi-
cients, a very ‘‘nice’’ class of 1-dimensionally irregular sequences.
(iii) In ref. 3, sequences of 0s and 1s in the binary expansion of

kyq were studied, for 0 , k , q, for q the 2-ergodic prime 4093.
An empirically natural state space, which we denote by Vq,N, was
then formed as the collection of expansions (sequences) of length
N of kyq for all 0 , k , q. As a consequence of the selection of
q as an 2-ergodic prime, for large N, any such sequence in Vq,N is
nearly maximally irregular. In the language of the above analysis,
def0 is small for allmembers of this state space. Thus, for Vq,N, in
stark contrast to the Bernoulli process, there are no occurrences
or tails of rare events (e.g., of a sequence of all 0s or of all 1s);
instead, there are strict cut-offs in the distributional characteristics
of sequences, shown graphically in figures 5.4 and 5.5 of ref. 3.

Furthermore, these same two figures strongly suggest that the
distribution function of the frequency of 1s, while increasingly
tightly centered about 0.5 as N 3 `, not only is decidedly
nonnormal, but indeed may be singular (to Lebesgue measure),
i.e., there may be no density function for a limit law. We conclude
that for the set of sequences given by the state spaceVq,N, the CLT
does not hold for large N.
Given these examples, we infer that whereas the almost sure

laws and distributional properties are verifiable within axiomatic
probability theory, the validity of these laws as they apply to
specified sequences, or sets of sequences, must be determined ex
nihilo on a case-by-case basis. Of course, these laws remain useful
in that they allow one to pose reasonable, quantitative hypotheses
about sequential characteristics that often are valid, e.g., the
possibility that base 2 (and undisplayed base 10) digit expansions
of e and =2 satisfy the LIL, as suggested by Fig. 3. As well, the
importantKac–ErdosGaussian lawof errors for additive functions
allows one to prove that asymptotically, the renormalized density
of v(n), the number of distinct prime divisors of the integer n,
satisfies the CLT (24). This theorem is foundational in what has
come to be known as probabilistic number theory, for which CLTs
have now been established in a range of thematically similar
settings to that considered byKac andErdos (25, 26). Nonetheless,
the point remains that any prescribed collection of almost sure
properties will hold for certain (sets of) sequences and fail for
others.
Perspective and Future Direction

(i)Wenow clarify the punctuation in the title.Whilewe do not aim
to elucidate a vague notion of a specific ‘‘Random’’ infinite
sequence, we do have an explicit, computable, frequency-based
formulation of C-randomness. Moreover, we do not need to
determine whether such numbers as e, p,=2, and=3 are indeed
C-random, hence the ‘‘(possibly)’’ of the title, to provide consid-
erable information, via ApEn(m,N) and defm(N), on (large-scale)
proximity of finite initial segments to maximal frequency equid-
istribution and C-randomness.
(ii) It is remarkable that while relative frequencies play a

fundamental role in the intuitive justification of theories of both
probability and statistics, the evolution of formal theories explicitly
derived from a frequency-based foundation diverged dramatically
from those given by the axiomatic theory, and at least as ex-
pounded by von Mises (27), have basically disappeared from
(advanced) mathematical research. History should remind us that
the formulation of a framework to study randomness remained
controversial for a long time after the introduction of axiomatic
probability theory by Kolmogorov (28).
De facto, we are taking (‘‘reviving’’?), a frequentist approach to

randomness, albeit from a considerably different perspective from
that of vonMises, insofar as we feature (a) an entropy-like concept
(in the aggregation of block data to form a single measure of
irregularity); (b) explicit multi-dimensional or m-block evalua-
tions; (c) applicability to small length datasets, e.g., sequences of
length N $ 5 (4), also seen as in the Chaitin example above, and
as in a number of clinical, medical applications (29–31), for length
N $ 60 datasets. Pragmatically, c may be especially important—
quite possibly, vonMises’ distaste for small sample theory (ref. 27,
pp. 158–159) alienated a large potential group of otherwise
supportive end-users.
(iii) Historically, the randomness of a long finite alphabet

sequence has often been assessed by whether or not the sequence
passed a collection of, e.g., the following tests: x2, Kolmogorov–
Smirnov, serial, poker, gap, run, as theoretically discussed in ref. 32
and applied, e.g., by Stoneham (33). However, in essence, the
aforementioned tests presume the almost sure laws, and in par-
ticular, underlying binomial or normal distributions. As discussed
above, since neither the almost sure laws nor a specified limiting
distribution need be satisfied for specific C-random sequences,
interpretation of these tests insofar as establishing a notion of
randomness is problematic.
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Furthermore, these tests are binary—‘‘possibly random’’ or
‘‘nonrandom’’—rather than providing a linear relation (as in, e.g.,
proximity to maximal irregularity). The utility of grading several
nonrandom sequences in order of increasing irregularity is appar-
ent in considering the myriad claims of chaos in time-series data,
as discussed in refs. 9 and 34.
(iv) To highlight the concern with possible over interpretation

of such tests, one need look no further than classical studies of both
von Neumann et al. (35) and Fisher and Yates (36). In the former,
the first 2,000 decimal digits of e were assessed by a x2 test, with
x2 5 1.11. This was remarked to be ‘‘very conspicuous,’’ with ‘‘a
significance level of about 1:1250.’’ The comment was then made
‘‘thus something number-theoretically significant may be occur-
ring at about n 5 2,000.’’ But Stoneham (table 1 in ref. 33)
established that this very low x2 value was singular among the first
60,000 digits of e—von Neumann’s observation simply indicates
that at the precise cut-point N 5 2,000, there is nearly one-
dimensional maximal equidistribution of the digits 0, 1, . . . 9. And
upon reconsideration of Figs. 1 and 2, it is clear that e is not
consistently especially better equidistributed, as a function of
sequence lengthN, than the other irrationals studied, either 1-, 2-,
or 3-dimensionally, in either base 10 or base 2. Indeed, in base 10,
for the range 75,000# N# 250,000, e has the poorest single-digit
equidistribution among=3,=2, e, p, as seen in Fig. 2A. As well,
in base 2, short initial segments of e are not remarkably equidis-
tributed, with a relative ranking frommost to least 1-dimensionally
equidistributed for N 5 400 of =3, =2, e, p, and for N 5 2,000
of =3, =2, p, e.
Fisher andYates (ref. 36, pp. 18–19) observed that there was an

‘‘excess of sixes’’ in their attempts to construct ‘‘random’’ numbers
by selecting digits from the 15–19 places of a table of 20 place
logarithms to the base 10; they quantified this via a x2 value of
15.63, ‘‘which corresponds to a probability of 0.075.’’ They then
went on ‘‘to reduce the number of sixes so as to give amore normal
sample’’ (for a resultant standard random number table), which
was done by ‘‘picking out 50 of the sixes strictly at random and
replacing each of them by one of the other 9 digits selected at
random.’’ Disregarding the obvious objection to the means of the
at random procedures of the last sentence, the more serious
objection concerns the need to meddle with a well-defined initial
table of reasonably, yet notmaximally irregular numbers, simply to
achieve a resultant more typical value of x2 .
(v) Within algorithmic complexity, there is considerable con-

cern that both a sequence and all properly chosen subsequences
should all be ‘‘random,’’ for the appellation of randomness to be
conferred (12). We believe that it is imperative, particularly for
finite sequences, to separate two very distinct issues: (A) how does
one quantify the regularity of a presented sequence?; (B)what are
the properly chosen subsequences ?, to each of which one can then
ask A. Evidently, the development of ApEn is directed at A. There
is no consensus on B, since a response to B is typically application-
specific. Nonetheless, we propose the following response to the
aforementioned concern: A lengthN sequence u(N) is denoted « 2
random w.r.t. {Appl}, if for all subsequences usub of u(N) in a
specified collection {Appl}, De[usub], «, recalling Definition 8 in
ref. 4. Thus, all flagged subsequences would be nearly maximally
irregular.
(vi) An evaluation of cryptosystems via ApEn could prove

productive. Specifically, relationships between the size of Ap-
En(m) values and each of (a) predictability of sequential output
and (b) reconstructability of a key are important, yet unaddressed
topics. Studies should include reevaluation of the pseudorandom
number generators specified in sections 2 and 7 of ref. 37 (en
passant, assessing the topicality of, e.g., the factoring and discrete
logarithm problems), and especially of Shannon’s classic treatise
on this topic (38). As well, heavily studied bit generators such as
RSA, modified Rabin, and discrete exponential methods (ref. 37,
pp. 130–136) all require a source of uniform samples, a vagueness
and deficiency given the above analysis. Indeed, a presumption of

the availability of (a source of) ‘‘truly random bits’’ is central to a
vast array of cryptosystems (39).
(vii) As developed above, the notions of both maximal irregu-

larity of ApEn(m, N), and of defm(N) require a finite state space.
A corresponding treatment for the reals is forthcoming, featuring
maximal irregularity at a prescribed resolution level r, i.e., maximal
ApEn(m, r, N). Consideration of the flip-flop pair of processes
(40) indicates that such relative (to resolution level) maximality is
the best that one can do. For the reals, a related notion to
normality, denoted`-distributed,was introducedbyFranklin in an
interesting paper (41), which obtains results about the distribution
properties of many special sequences. However, ref. 41 is con-
cerned exclusively with infinite length sequences, and importantly,
as for normality, there is a nearly nonexistent collection of
explicitly known `-distributed reals, the (relatively) easiest and
first construction given byKnuth (42), related toChampernowne’s
proof that .1234567891011. . . is normal (43).

We thank Margherita Pierantoni for her assistance in creating and
providing the files for the base 2 and base 10 digits of e, p, =2, and
=3, analyzed above.
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