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Aims

The spontaneous reports database is widely used for detecting signals of ADRs. We
have extended the methodology to include the detection of signals of ADRs that are
associated with drug—drug interactions (DDI). In particular, we have investigated two
different statistical assumptions for detecting signals of DDI.

Methods

Using the FDA's spontaneous reports database, we investigated two models, a mul-
tiplicative and an additive model, to detect signals of DDI. We applied the models to
four known DDlIs (methotrexate-diclofenac and bone marrow depression, simvastatin-
ciclosporin and myopathy, ketoconazole-terfenadine and torsades de pointes, and
cisapride-erythromycin and torsades de pointes) and to four drug-event combinations
where there is currently no evidence of a DDI (fexofenadine-ketoconazole and
torsades de pointes, methotrexade-rofecoxib and bone marrow depression, fluvastatin-
ciclosporin and myopathy, and cisapride-azithromycine and torsade de pointes) and
estimated the measure of interaction on the two scales.

Results

The additive model correctly identified all four known DDIs by giving a statistically
significant (P < 0.05) positive measure of interaction. The multiplicative model iden-
tified the first two of the known DDlIs as having a statistically significant or borderline
significant (P < 0.1) positive measure of interaction term, gave a nonsignificant positive
trend for the third interaction (P=0.27), and a negative trend for the last interaction.
Both models correctly identified the four known non interactions by estimating a
negative measure of interaction.

Conclusions

The spontaneous reports database is a valuable resource for detecting signals of DDls.
In particular, the additive model is more sensitive in detecting such signals. The
multiplicative model may further help qualify the strength of the signal detected by the
additive model.

Introduction

Drug—drug interactions (DDI) occur when one drug
influences the effects of another drug. This may subse-
quently cause a change in the pharmacodynamic or phar-
macokinetic parameters which may lead to lack of
efficacy or increased efficacy, or to an increase or a
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decrease in the number of reported adverse drug reac-
tions (ADRs). Usually, DDIs are investigated before
entry into the market by traditional clinical studies
investigating possible variations of pharmacokinetics; in
postmarketing, drug—drug interactions are reported to
spontaneous reporting systems for ADRs. However,
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drug—drug interactions, as such, are relatively rarely
reported and information about the pharmacokinetics of
the drug in the patient experiencing an AE due to a drug
interaction is usually lacking.

For signal detection regarding possible unexpected
ADRs, various measures of disproportionality can be
used, including proportional reporting ratios (PRRs) [1].
The basic principle of looking for disproportionality can
be extended to the detection of DDIs.

The objective of this investigation was to assess the
ability of statistical models to detect DDI signals in a
postmarketing setting.

Methods

Data

We used the FDA’s Adverse Events Reporting System
(AERS), which is a computerized information database
designed to support the FDA’s postmarketing safety sur-
veillance program for all approved drugs and therapeutic
biological products. The database comprises adverse
drug reaction reports sent by the manufacturers as
required by regulation. Health care professionals and
consumers send reports voluntarily through the Med-
Watch program.

The database consists of approximately 3 million
reports and over 5 million events reported on drugs. The
drugs of interest have been identified using generic and
trade names.

We used a commercially available software package
to access the database. The data were extracted in 2003
and 2004.

Definitions
A signal can be defined as an excess reporting of an
adverse reaction for a drug, which reaches statistical
significance, compared with all other drugs.

A signal for a DDI occurs when the risk of an adverse
reaction related to the exposure to one drug varies with
exposure to another drug.

Model

We applied both a multiplicative and an additive model
to generate signals of DDI. The multiplicative model
assumed the risk associated with a drug multiplies with
the background risk, whilst the additive model assumed
the risk associated with a drug adds to the background
risk. To our knowledge, such a comparison of both the
models, has not been studied before in the context of
signal generation of DDIs.

Formulation of methodology
Let risk(s sy denote the risk (e.g. incidence rate, odds of
developing the event, or percentage of subjects develop-
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ing a particular event) of an adverse reaction associated
with the two drugs A and B when given concomitantly.
Similarly, let risk( .o 5y denote the risk associated with
drug A only, riskmo ap) the risk with drug B only and,
riSKmor Anot By the risk in the absence of both A and B.

Multiplicative model

When there is no interaction on the multiplicative scale,
the relative risk associated with drug A is the same in
both the absence and presence of exposure to drug B.
Formally,

riSk(A,not B)/ riSk(nol AnotB) = riSk(A,B)/ riSk(nol AB)
This equality implies:
riSk(A,B)/ TiSK (ot A not B)= T1SK (A not B) X T18K (noq A,B)/
118K (not A not B) X T1SK (not A not B)
i.e. RR,5=RR, X RRjy

where RR = 1iska not By/T1SKmot anot By 1S the relative risk
associated with drug A in the absence of drug B and
similarly for RRg and RRp.

Under the assumption of no interaction, the relative
risk associated with the drug combination is the same as
the product of the relative risks associated with each
drug in the absence of the other.

Thus if RRap/(RRs X RRp) is statistically different
from 1, there is evidence of an interaction. In particular,
whenever this measure is greater than 1, there is a posi-
tive interaction which is of interest from a safety per-
spective. In such a situation, the relative risk associated
with two drugs administered in combination is greater
than the product of the relative risks associated with
each drug separately.

The formal statistical testing of the interaction term is
achieved within the framework of log-linear regressions
(e.g. logistic or Poisson regressions) [8]:

Log(risk of event)
=0+ B(drug A) + y(drug B) + &(drug A and B)
+ othercovariates

Whenever, the coefficient d is statistically significantly
different from zero, there is evidence of an interaction.
Values of § greater than zero indicate a positive interac-
tion, i.e. the risk of the event for the combination is
greater than that predicted for the two drugs separately.
Values of & less than O indicate that the relative risk
associated with the two drugs together is less than that
predicted by the product of the relative risks for the two
individual drugs. The exponential of 3, exp(d), is the
factor by which the relative risk associated with the
combinations, A and B, exceeds that which is predicted
by the product of A alone and B alone. We defined this



term as the measure of interaction. When this measure of
interaction is statistically significantly different (i.e.
P <0.05) from 1, there is evidence of an interaction.
Whenever the term is significantly greater than 1, there
is evidence of a positive interaction, that is, the relative
risk for the combination is significantly greater than that
predicted by the product of the relative risks for drug A
alone and drug B alone.

Thus, values for exp(d) statistically significantly
greater than 1 indicate a positive measure of interaction
in the multiplicative model.

Additive model

Under the additive assumption, no interaction is estab-
lished when the excess risk associated with A in the
absence of B is same as the excess risk associated with
A in the presence of B:

118K (A, not B) = T18K (not A, not B) = T18K (4 B) — I1SK (n0¢ A B)
This equality implies:
RDAB = RDA + RDB

i.e. the excess risk associated with the combination is
the same as the sum of the excess risks associated with
each exposure in the absence of the other, where
RD,, = riska ) — risKuot A, not By 18 the excess risk associ-
ated with the two drugs in combination and similarly for
RD A and RDB

Thus, in the absence of an interaction under the addi-
tive assumption, the excess risk associated with the com-
bination is the same as the sum of the excess risk
associated with each drug separately.

When RDAg > RD4 + RDg (1e RDag — RD4 — RDg >
0) there is a potential interaction with an increased risk for
the combination compared with that expected based on
the individual drugs.

In modelling terminology, the following additive
model can be applied:

Risk of event
=0+ B(drug A) + y(drug B) + &(drug A and B)
+ other covariates

Again, the measure of interaction is given by the coef-
ficient §, which is the amount by which the risk differ-
ence associated with the combination, A and B together,
exceeds that which is predicated by the sum of A alone
and B alone. Of interest are the statistical departures of
4 from 0 and in particularly in values of & greater than 0
which indicate positive interactions.

Thus values for § statistically significantly greater
than O indicate a positive measure of interaction in the
additive model.

Detecting signals of drug—drug interactions I

Proportional reporting

In a spontaneous reporting environment we only have
events reported for a drug and not the total number of
subjects exposed to the drug. Consequently, it is not
possible to estimate the risk of an event associated with
a drug. Instead, we defined the ‘proportional reporting’
of an event of interest on the drug. That is, out of the
total number of events that are reported for the drug, we
computed the proportion representing the event of inter-
est. In modelling, proportional reporting is used to
replace the direct measure of risk. Whilst proportional
reporting may not always correlate with the true under-
lying risk of an adverse reaction, it is a well established
measure for detecting signals of ADRs [1].

Application of the models

We applied both the additive and multiplicative models
retrospectively to investigate four known DDIs and four
drug-event combinations where there is currently no evi-
dence of an interaction. We used the SAS procedure
‘proc genmod’ with the log-link function for the multi-
plicative model and the identity-link function for the
additive model both under the assumption that the
observed proportion follows a binomial distribution. We
included, as covariates, the two drugs and their interac-
tion term in the model. Table I summarizes the drug—
drug interactions studied and Table 2 displays the
corresponding data used for the analyses.

Results

The measure of interaction on both multiplicative and
additive scales for the eight drug—drug-event combina-
tions investigated is summarized in Table 3. All four
known DDIs were correctly identified by the additive
model, since the measure of the interaction terms were
statistically significantly greater than 0.

Under the multiplicative assumption, two of the four
known interactions were identified as having the
measure of interaction terms statistically (P < 0.05) or
borderline (P < 0.1) significantly greater than 1. Further-
more, the model provided evidence of a trend towards a
positive interaction for ketoconazole-tefenadine and
torsade de pointes where the measure of interactions was
1.71 (P = 0.27). The multiplicative model, however, did
not provide evidence of a positive interaction between
cisapride-erythromycin and torsade de pointes.

All four examples of known non-DDIs were correctly
predicted by the additive and multiplicative models,
where the measure of interaction terms were either less
than 1 (multiplicative model) or less then O (additive
model), i.e., in concordance with current knowledge, the
models provided no evidence of a positive interaction.
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Drug-Drug Event

Mechanism of interaction

Table 1
Examples of known and no known

Known interaction

Methotrexate-diclofenac Bone marrow depression

drug—drug interactions

Inhibition of renal elimination of

methotrexate

Simvastatin-ciclosporin
Ketoconazole-terfenadine
Cisapride-erythromycin

Myopathy
Torsade de pointes
Torsade de pointes

No known interaction
Fexofenadine-ketoconazole
Methotrexate-rofecoxib
Fluvastatin-ciclosporin
Cisapride-azithromycin

Torsade de pointes -
Bone marrow depression  —
Myopathy =
Torsade de pointes -

CYP450 inhibition
CYP450 inhibition
CYP450 inhibition

Table 2

Proportion of event of interests on all combinations of the two drugs

No A, no B A no B No A B A and B
Simvastatin(A)-ciclosporin(B) and MYP 2740/4869677 187/65940 113/45327 25/1342
Methotrexate(A)-diclofenac(B) and BMD 3732/4874109 282/63620 57/42612 27/1945
Ketoconazole(A)-terfenadine(B) and TdP 1497/4947013 12/11088 54/23683 7/502
Cisapride(A)-erythromycin(B) and TdP 1182/4900646 271/43497 101/37416 16/727
Methotrexate(A)-rofecoxib(B) and BMD 3767/4861514 310/63259 19/54795 2/2718
Fluvastatin(A)-ciclosporin(B) and MYP 2889/4925704 38/9913 137/46473 1/196
Cisapride(A)-azithromycin(B) and TdP 1518/5490501 293/44322 39/40140 2/776
Fexofenadine(A)-ketoconazole(B) and TdP 1540/4956019 11/14677 19/11544 0/46

BMD bone marrow depression; MYP myopathy; TdP Torsades de pointes.

Discussion

A knowledge of drug—drug interactions is acquired
during the life cycle of a drug starting with preclinical
testing, through clinical development and postmarketing
surveillance/experience. During the development cycle
of a drug, the potential for drug—drug interactions cannot
be exhaustively evaluated in phase 1 due to the limited
number of drugs usually investigated at this stage. Fur-
thermore, while published case reports provide useful
general information, the case study approach still does
not offer an adequate mechanistic understanding of
potential clinical drug—drug interactions. As suggested
in a recent publication [11], a population based approach
can be used retrospectively to confirm known drug—drug
interactions in a relevant patient population instead of
healthy subjects and further characterize the anticipated
interactions, although the outcome may be affected by,
for example, limited sample size of patients on concomi-
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tant drug(s) of interest. However, the interaction profile
of a drug may not be fully understood for several years
after it is introduced onto the market. Studies looking at
the frequency of interactions have reported incidences
ranging from 4 to 20% [4, 5]. This wide range of results
is mostly due to differences in the methodology of the
studies (e.g. differences in study design, definition,
source of the population). Consistent findings, however,
indicate that populations at risk for drug interactions are
likely to be those from primary health care and elderly
patients [6, 7].

Drug—drug interactions, as such, are relatively rarely
reported to spontaneous reporting systems for ADRs.
Hence, we applied a method by which signals for
drug—drug interactions can be detected using events in
a spontaneous reporting system (the FDA-database).
Multiplicative and additive models were fitted
retrospectively to four known interactions and to four
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Table 3
Summary of interactions

Measure of interaction

Multiplicative model
Additive model

Measure of interaction & P-value Measure of interaction & P-value
Known interaction
Simvastatin-ciclosporin and MYP 1.48 0.089 0.014 0.0002
Methotrexate-diclofenac and BMD 1.79 0.015 0.009 0.001
Ketoconazole-terfenadine and TdP 1.71 0.27 0.011 0.038
Cisapride-erythromycin and TdP 0.32 0.0001 0.013 0.014
No known interaction
Methotrexate-rofecoxib and BMD 0.34 0.14 -0.004 0.0001
Fluvastatin-ciclosporin and MYP 0.26 0.19 -0.002 0.83
Cisapride-azithromycin and TdP 0.11 0.002 -0.0047 0.01
Fexofenadine-ketoconazole and TdP 0 o -0.002 0.0001

*Pvalue not estimated as one cell contains 0. BMD bone marrow depression;, MYP myopathy; TdP Torsades de Pointes.

known non-DDI. For all known interactions, the addi-
tive model correctly provided statistical evidence of an
increased reporting for the combination compared with
that predicted for the two drugs separately. Thus, the
additive model had 100% sensitivity in detecting
signals of DDIs for the examples used. Similarly, the
additive model correctly provided no evidence of
increased reporting for the four drug associations not
known to interact, thus suggesting 100% specificity.
However, these results are based on only a small
number of examples.

The multiplicative model provided evidence for two
out of the four known interactions. For ketoconazole-
terfenadine, whilst the interaction term showed a trend,
it did not reach statistical significance (P = 0.27). This
might have been due to the limited number of cases that
were reported for the two drugs in combination using
this model. Indeed, whilst over 10 000 events were
reported for ketoconazole and over 20 000 for terfena-
dine, only about 500 events were reported for the com-
bination. This, in turn, may reflect the cautious use of the
two drugs together. For cisapride-erythromycin and
torsade de pointes, the multiplicative model did not
show a trend. The lack of evidence may again be due to
the small number of events reported for the combination
(about 700) reflecting good clinical practice. However,
reporting proportions of torsades de pointes were 0.2 per
1000 reports (background drugs), 6.2 per 1000 (for
cisapride), 2.7 per 1000 (for erythromycin) and 22.0 per
1000 (cisapride and erythromycin in combination) sug-

gesting an absolute increase in the reporting of torsades
de pointes with the combination. In order to have a
multiplicative interaction, the reporting proportion of
torsades would need to be in the order of 84 per 1000
reports on the combination. The multiplicative model
correctly identified the four known non-DDIs.

Taking into account that the two models were applied
to a limited number of DDIs, it appears that the additive
model had better sensitivity for detecting signals for
DDIs based on our data. This may be due to the lower
threshold for the reporting rate to reach an interaction on
the additive scale. However, due to the complex relation-
ship between pharmacological and statistical interac-
tions, it was thought important to apply both additive
and multiplicative models for detecting signals. Indeed,
positive signals with the multiplicative model would
indicate a stronger signal as illustrated by the examples.
Furthermore, it can be shown that when both drugs are
positively associated with the event (or both drugs are
negatively associated) then a positive interaction on the
multiplicative scale will imply a positive interaction on
the additive scale. Furthermore, algebraically it can also
be shown that the only time there is a positive interaction
on the multiplicative scale but not on the additive scale is
when one drug is positively associated (say drug A) with
the event, the other negatively (say drug B), and the risk
of the two drugs together is less than that of drug A. Such
scenarios, however, may be difficult to find in the
context of drug therapy where the risk on the two drugs
together is likely to be at least as high as that of the
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individual drugs. Thus from a signal detection perspec-
tive, a positive interaction on the multiplicative scale
would also imply a positive interaction on the additive
scale. The converse, however, is not always true as we
have seen from the examples.

Whilst for drugs most commonly co-administered,
interactions are detected by performing routine pharma-
cology studies, methodology based on spontaneous
reports is the primary tool for detection of DDI for
combination therapy less commonly administered. With
the latter method, the additive model would be unlikely
to trigger numerous signals based on the paucity of
reports expected. However the additive model has a
clear potential to identify a signal earlier than the mul-
tiplicative model. Such a technical signal would need
further evaluation for understanding a possible associa-
tion of an AE with a DDI and of their clinical relevance.
It is also important to note that lack of a statistical
interaction may not always mean lack of clinical rel-
evance. Therefore, one should use these methods with
some caution, particularly, when there is some prior
clinical evidence of an interaction (e.g. from other drugs
in the same class).

Whilst the possibility of report duplications cannot be
ruled out, the purpose of assessing DDIs is to investigate
the excess reporting of an event of interest on a combi-
nation of two drugs together which is beyond that pre-
dicted by each individual drug. It is unlikely that such a
measure would bear any systematic bias due to duplica-
tion as it would apply to the denominator as well.
Recently, however, a more sophisticated program has
been developed, which will allow investigation of
various duplication algorithms.

There have been two recent publications applying
methodology for the retrospective detection of DDIs
using a database for spontaneous adverse reactions [2,
3]. The method used a multiplicative model which dem-
onstrated an interaction on both occasions. The first
publication demonstrated a multiplicative interaction
between oral contraceptives and itraconazole for the
reporting of delayed withdrawal bleeding. The second
paper demonstrated a multiplicative interaction between
diuretics and NSAIDS for the reporting of decreased
efficacy of diuretics. From the published data, we
applied the additive model methodology and showed
that it provided strong evidence of an interaction
(P <0.001). More recently, there has been interest in
using empirical Bayesian methods for signal generation.
The advantage is that the estimate of the risk of an
association between a test drug and the reporting of an
AE (e.g. the ratio of observed to expected number of
events for a drug) and its corresponding statistical sig-
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nificance is combined into one estimate using Bayesian
smoothing methods. These methods have been extended
to investigate potential DDIs [9, 10]. The authors defined
rules based on the smoothed estimates and their 90%
confidence intervals to define an interaction. That is, the
lower limit of the 90% CI of the estimate for the two
drugs together must be greater than the upper limit of the
90% CI estimate for each of the two drugs. The method
is formulated on the multiplicative assumption. It is not
clear how these rules would be compatible with the
classical definition of interaction which we have used to
formulate our methodology.

Whilst the confidence intervals of the estimates can be
easily calculated by hand or by a statistical program such
as SAS, we decided to focus on the estimate and
P values for proposing an objective threshold for detect-
ing a DDI signal. It is difficult to interpret the confidence
interval for such an estimate from spontaneous reports in
the context of public health impact. Also the 95% CI
may encourage researchers to define a less conservative
threshold based on the lower limit of the interval thereby
missing potential signals for important, but rare events.
The 95% CI for an estimate which did not reach statis-
tical significance would indicate that the risk of the
signal is currently low.

We have developed our methodology using the same or
asimilar dataset to these authors. However, we have taken
the methodology slightly further by considering the pos-
sibility of an additive interaction. Additive models have a
clear advantage in that they help interpret a public health
impact of adverse events. Indeed, it is possible that major
interactions could be missed when data are only looked at
in the multiplicative model. The importance of using the
additive models for detecting signals of DDIs is further
illustrated in the following example. Let us suppose the
following risks (probabilities) are associated with drugs
A and B regarding an adverse event:

0.1(no A, no B), 0.25(A and no B), 0.55(B and no A),
0.85(A and B).

It is clear that the risk for the combination is consider-
ably higher than that for the individual drugs. For a
commonly used drug, such a scenario could have a
major public health impact. However, the measure of
interaction on the multiplicative term is 0.62, suggesting
no interaction (being less than 1). The measure of inter-
action on the additive scale is 0.15 which suggests a
positive interaction (being greater than 0).

The population based approach suggests an alterna-
tive method for signal detection of DDIs using a pro-
spectively designed population-based analysis as an
add-on to phase 2 and phase 3 studies coupled with an



organized, systemic approach to data collection [11].
This approach would fill in the gap between the
traditional method used in phase 1 and our proposed
signal detection method applied to spontaneous cases.
In conclusion, our proposed methodology provides a
framework for the detection of DDIs in the setting of
post marketing spontaneous reports. In particular, the
additive assumption complements the existing method-
ology by providing a more sensitive approach. The mul-
tiplicative model may further help qualify the strength of
the signal detected by the additive model. However, its
sengitivity is limited by the number of events reported.

We thank Chris Preston for reviewing the article.
Competing interests: None declared.
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