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Abstract

As an accompanying manuscript to the release of the
honey bee genome, we report the entire sequence of
the nuclear (18S, 5.8S, 28S and 5S) and mitochondrial
(12S and 16S) ribosomal RNA (rRNA)-encoding gene
sequences (rDNA) and related internally and externally
transcribed spacer regions of 

 

Apis mellifera

 

 (Insecta:
Hymenoptera: Apocrita). Additionally, we predict
secondary structures for the mature rRNA molecules
based on comparative sequence analyses with other
arthropod taxa and reference to recently published
crystal structures of the ribosome. In general, the
structures of honey bee rRNAs are in agreement with
previously predicted rRNA models from other arthro-
pods in core regions of the rRNA, with little additional
expansion in non-conserved regions. Our multiple
sequence alignments are made available on several
public databases and provide a preliminary establish-
ment of a global structural model of all rRNAs from the
insects. Additionally, we provide conserved stretches
of sequences flanking the rDNA cistrons that comprise
the externally transcribed spacer regions (ETS) and
part of the intergenic spacer region (IGS), including

several repetitive motifs. Finally, we report the occur-
rence of retrotransposition in the nuclear large subunit
rDNA, as R2 elements are present in the usual inser-
tion points found in other arthropods. Interestingly,
functional R1 elements usually present in the genomes
of insects were not detected in the honey bee rRNA
genes. The reverse transcriptase products of the R2
elements are deduced from their putative open reading
frames and structurally aligned with those from another
hymenopteran insect, the jewel wasp 

 

Nasonia

 

 (Ptero-
malidae). Stretches of conserved amino acids shared
between 

 

Apis

 

 and 

 

Nasonia

 

 are illustrated and serve as
potential sites for primer design, as target amplicons
within these R2 elements may serve as novel phyloge-
netic markers for Hymenoptera. Given the impending
completion of the sequencing of the 

 

Nasonia

 

 genome,
we expect our report eventually to shed light on the
evolution of the hymenopteran genome within higher
insects, particularly regarding the relative maintenance
of conserved rDNA genes, related variable spacer
regions and retrotransposable elements.

Keywords: honey bee, 

 

Apis mellifera

 

, ribosomal RNA,
rRNA, rDNA, 18S, 5.8S, 28S, 5S, 16S, 12S, ITS-1, ITS-2,
ETS, IGS, secondary structure, alignment, retrotran-
sposition, R1, R2, R element, reverse transcriptase.

Introduction

 

Ribosomal RNA (rRNA)-encoding genes (rDNA) and related
genetic elements have been well studied for over six
decades (see Noller, 2005 for a recent review), with interests
ranging from pharmaceutical and biochemical investiga-
tions to comparative biological studies garnering a wealth
of information on the structural, functional and evolutionary
characteristics of these molecules. Phylogenetic studies, in
particular, have propagated a large number of rRNA gene
sequences on public genetic databases, as the organismal
universality and typically high gene copy number per cell
facilitate gene amplification and sequencing (e.g. Woese,
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1987; Woese 

 

et al

 

., 1990; Winker & Woese, 1991). Within
rRNA genes, varying evolutionary rates of base substitution
can be localized to conserved core rRNA sequences
(e.g. Gutell 

 

et al

 

., 1985; Van de Peer 

 

et al

 

., 1993; Vawter &
Brown, 1993; Sullivan 

 

et al

 

., 1995; Cannone 

 

et al

 

., 2002;
Misof 

 

et al

 

., 2002; Baele 

 

et al

 

., 2006) as well as rapidly
evolving variable regions and expansion segments (e.g.
Hassouna 

 

et al

 

., 1984; Gerbi, 1985, 1996; Gorski 

 

et al

 

., 1987;
Neefs & De Wachter, 1990; Hancock, 1995; Schnare 

 

et al

 

.,
1996). Rates of substitution are even faster in transcribed
spacer regions and non-coding spacer regions, which can
reveal high levels of divergence even when compared
across closely related species (e.g. Long & Dawid, 1980;
Hillis & Dixon, 1991; Osorio 

 

et al

 

., 2005), as well as within
individual genomes (e.g. Gruendler 

 

et al

 

., 1991; Lanadu

 

et al

 

., 1992; Lakshmikumaran & Negi, 1994; Rocheford,
1994). These conserved and variable regions of rRNA genes
have not only been useful for recovering phylogenetic
relationships (e.g. Woese 

 

et al

 

., 1990; Friedrich & Tautz,
1997a,b), but also for understanding the structural and
functional constraints of both the coding and the non-
coding organizational sequences within rRNA genes (see
Noller, 2005).

Recent crystal structures of the ribosome (Cate 

 

et al

 

.,
1999; Ban 

 

et al

 

., 2000; Schluenzen 

 

et al

 

., 2000; Wimberly

 

et al

 

., 2000; Spahn 

 

et al

 

., 2001; Yusupov 

 

et al

 

., 2001) have
verified many of the long-standing structures of the rRNAs
that were predicted by comparative sequence analysis
(Woese 

 

et al

 

., 1980; Noller & Woese, 1981; Noller 

 

et al

 

., 1981;
Brimacombe 

 

et al

 

., 1983; Gutell 

 

et al

 

., 1985, 1986; Woese
& Pace, 1993) or substantiated with site-directed or random
mutagenesis (e.g. Musters 

 

et al

 

., 1989, 1991; Sweeney &
Yao, 1989; Green 

 

et al

 

., 1990). Still, these three-dimensional
models have yielded further information on the organiza-
tion of the small and large subunits (SSU and LSU, respec-
tively) with the numerous ribosomal proteins comprising
the mature ribosome. In particular, new information on
enzymatic function (e.g. Nissen 

 

et al

 

., 2000), non-canonical
base pairing (e.g. Leontis & Westhof, 2003; Lee & Gutell,
2004; Lescoute 

 

et al

 

., 2005), tertiary interactions via coaxial
stacking (e.g. Elgavish 

 

et al

 

., 2001; Ogle 

 

et al

 

., 2001), RNA
turn motifs (e.g. Gutell 

 

et al

 

., 2000; Klein 

 

et al

 

., 2001),
rRNA–protein interactions (e.g. Brodersen 

 

et al

 

., 2002;
Hoang 

 

et al

 

., 2004; Klein 

 

et al

 

., 2004a; Noller, 2004), metal
ions and rRNA–rRNA packing interactions (Klein 

 

et al

 

.,
2004b), lone pair triloops (Lee 

 

et al

 

., 2003) and dynamism
(Carter 

 

et al

 

., 2001; Harms 

 

et al

 

., 2001; Noller & Baucom,
2001) has been elicited from observations of tertiary models
not easily obtained from comparative sequence analysis.
It is essential that these characteristics be incorporated
into multiple sequence alignments to improve the assign-
ment of structurally and functionally homologous bases, as
well as to verify that generated sequences are indeed
functional rRNA genes and not paralogues and/or pseudo-

genes (e.g. Buckler 

 

et al

 

., 1997; Muir 

 

et al

 

., 2001; Bailey

 

et al

 

., 2003; Márquez 

 

et al

 

., 2003) or artefacts of the
sequencing process (see Clark & Whittam, 1992; States,
1992; Hickson 

 

et al

 

., 1996; Gillespie 

 

et al

 

., 2005a).
In this study, we predict entire secondary and some

tertiary structures of the nuclear (nl) and mitochondrial (mt)
SSU and LSU rRNAs from the honey bee, 

 

Apis mellifera

 

, as
the recent compilation of its genome (The Honey Bee
Genome Sequencing Consortium, 2006) has provided
sequences spanning the entire rDNA region. Wherever
possible, we include information from published crystal
structures of the ribosome and chemical probing studies to
annotate and update diagrams of arthropod nl and mt rRNA
structure. These diagrams (and related multiple sequence
alignments) will be valuable for related studies on the
phylogeny of arthropods, as well as the evolution of the
structure and function of eukaryotic and organellar rRNAs.

With the completion of the honey bee genome comes the
opportunity to begin analysing the intragenomic variation
associated with repetitive sequence motifs, particularly
those associated with multicopy genes. Here, we make an
attempt to characterize the sequences associated with the
externally transcribed spacer regions (ETS) and intergenic
spacers (IGS) that are conserved across all rDNA cistrons
in the honey bee genome. We describe several repeat
regions that occur in the 5

 

′

 

- and 3

 

′

 

-ends of the IGS regions.
Our preliminary mapping of these complete ETS sequences
and partial IGS sequences will be useful for future studies
that attempt to span the further repetitive motifs of the
honey bee rRNA genes that occur in the central portion of
the IGS, including promoter and enhancer regions.

As a result of the compilation of all rRNA genes in the
honey bee genome, we were able to assess the degree of
rRNA gene inactivation by the insertion of retrotransposa-
ble elements. Two types of retrotransposable elements, R1
and R2, can disrupt the complete transcription of arthropod
rRNA genes by inserting into conserved sequences of the
nl LSU rDNA (e.g. Long & Dawid, 1979; Jamrich & Miller,
1984; Jakubczak 

 

et al

 

., 1990, 1991; Burke 

 

et al

 

., 1993,
1999; Eickbush, 2002). Our analysis of R1 and R2 element
retrotransposition in the honey bee rRNA genes is some-
what consistent with other studies on arthropod retrotrans-
position, and we provide here the predicted open reading
frame (ORF) of an R2 element retrotransposase (RT).

 

Results and discussion

 

Predicted rRNA secondary structures

 

Our results are presented within the typical organization
and pattern of transcription of eukaryotic rRNA genes. A
schematic diagram illustrates the composition of typical
arthropod rRNA genes within the nuclear and mitochon-
drial genomes (Fig. 1). Within the honey bee genome, the
nl rRNA gene arrays have been identified as occurring on
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two different chromosomes (Beye & Moritz, 1993) subse-
quently localized to linkage groups 6 and 12 (Aquino-Perez,
unpublished data), while the mt rRNA genes are organized
in the ancestral arthropod position (see Boore 

 

et al

 

., 1995;
Boore, 1999) within the mitochondrial genome (Crozier &
Crozier, 1993). In insects, pioneering structural studies of
rRNA molecules were conducted on flies (Diptera) (Clary &
Wolstenholme, 1985, 1987; Gutell & Fox, 1988; Hancock &
Dover, 1988; Hancock 

 

et al

 

., 1988; Tautz 

 

et al

 

., 1988) and
one beetle (Coleoptera) (Hendriks 

 

et al

 

., 1988a). While these
studies predicted structures mostly from comparisons with
other early published complete rDNA sequences from
bacteria (Glotz & Brimacombe, 1980; Woese 

 

et al

 

., 1980;
Noller & Woese, 1981; Noller 

 

et al

 

., 1981; Stiegler 

 

et al

 

.,
1981; Zwieb 

 

et al

 

., 1981), yeast (Veldman 

 

et al

 

., 1981), frog
(Ware 

 

et al

 

., 1983; Clark 

 

et al

 

., 1984; Dunon-Bluteau &
Brun, 1986), rodent (Bibb 

 

et al

 

., 1981; Hassouna 

 

et al

 

., 1984;
Michot 

 

et al

 

., 1984; Gutell 

 

et al

 

., 1985), cow (Gutell 

 

et al

 

.,
1985), human (Gorski 

 

et al

 

., 1987) and other mammals
(Hixson & Brown, 1986; Wool, 1986), they were lacking a

larger collection of arthropod sequences to make thorough
comparisons of most of the variable regions outside of the
core rRNA [although see the early structural model of the
mt LSU rRNA of the bird spider (Hendriks 

 

et al

 

., 1988b)].
Thus, the following sections review subsequent structural
studies that were performed with comparisons across
several to many arthropod/insect rDNA sequences.

 

Nuclear SSU rRNA. 

 

This model (Fig. 2A) is in concord-
ance with the conserved 16S (prokaryote) and 16S-like
(eukaryote) structures of the SSU rRNA from the literature
(Woese 

 

et al.

 

, 1980; Noller & Woese, 1981; Stiegler 

 

et al.

 

,
1981; Gutell 

 

et al.

 

, 1985; Huysmans & De Wachter, 1986;
Dams 

 

et al.

 

, 1988; Neefs 

 

et al.

 

, 1990, 1991, 1993; De Rijk

 

et al.

 

, 1992; Gutell, 1994, 1996; Van de Peer 

 

et al.

 

, 1994,
1996, 1997, 1998, 1999; De Rijk 

 

et al.

 

, 1998; Wuyts 

 

et al.

 

,
2004) and is based on an updated model of 

 

Drosophila
melanogaster

 

 (Gutell, 1993, 1994; Van de Peer 

 

et al.

 

,
2000; Cannone 

 

et al.

 

, 2002). Aside from 

 

D. melanogaster

 

,
structural models of five insect taxa have been published,

Figure 1. Organization of the rRNA genes within the honey bee genome. (A) Typical organization of the nuclear rRNA genes of eukaryotes. IGS, intergenic 
spacer; SSU, small subunit; LSU, large subunit. (B) Position of the rRNA genes (shaded) within the honey bee mitochondrial genome (top) and the ancestral 
arthropod mitochondrial genome (bottom). Rearrangements in the honey bee genome are depicted with solid lines. See Clary & Wolstenholme (1985, 1987) 
and Crozier & Crozier (1993) for information on honey bee mitochondrial genes.
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Figure 2. The secondary structure model of the nuclear rRNA (18S + 5.8S + 28S + 5S) from the honey bee, Apis mellifera. Variable regions are enclosed within 
dashed boxes and the naming follows either Schnare et al. (1996), Van de Peer et al. (1999) or Gillespie et al. (2005a,b,c). Helix numbering follows the system 
of Cannone et al. (2002), except for variable region 4 (V4) for which the notation of Wuyts et al. (2000) and Gillespie et al. (2005a) is used. Helices aligned across 
all sampled panarthropods are boxed in grey. Tertiary interactions (where there is strong comparative support) and base triples are shown connected by 
continuous lines. Base pairing is indicated as follows: standard canonical pairs by lines (C-G, G-C, A-U, U-A); wobble G·U pairs by dots (G·U); A·G pairs by 
open circles (A�G); other non-canonical pairs by filled circles (e.g. C�A). (A) Domains I–III of SSU rRNA (18S). Regions with alternative structures are boxed. 
(B) Domains I–III of LSU rRNA (5.8S + 28S). (C) Domains IV-VI of LSU rRNA (28S). (D) 5S rRNA. Diagrams were generated using the program XRNA (Weiser, 
B. & Noller, H., University of California at Santa Cruz) with manual adjustment.
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Figure 2. (Continued)
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Figure 2. (Continued)
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including Tenebrio molitor (Coleoptera) (Hendriks et al.,
1988a), Acyrthosiphon pisum (Heteroptera) (Kwon et al.,
1991), peloridiid Hemiptera (Ouvrard et al., 2000), Loricera
foveata (Coleoptera) (Van de Peer et al., 2000) and ichneu-
monoid Hymenoptera (Gillespie et al., 2005c). Our model
is based loosely on these earlier models, and relies more
heavily on the structure predictions from three recent
studies wherein the 18S rRNA secondary structure was
predicted across most insect orders (Kjer, 2004; Gillespie
et al., 2005a; Yoshizawa & Johnson, 2005) as well as
evidence from SSU rRNA crystal structures (Schluenzen
et al., 2000; Wimberly et al., 2000; Yusupov et al., 2001). For
referencing purposes, our new model follows the convention
(variable region nomenclature, helix numbering, etc.) put
forth by Gillespie et al. (2005a). The SSU rRNA contains 65
helices that are conserved across arthropods (Fig. 2A).

The predicted structure of most regions of the 18S rRNA
from honey bee are consistent with structures of the
major lineages of Arthropoda, and differences between
the nl SSU rRNA model of Gillespie et al. (2005a) and that
presented here are illustrated on the jRNA website (see
Experimental procedures). Variable region four (V4) (Neefs
& De Wachter, 1990; Van de Peer et al., 1999) is shown
with refinements to the double pseudoknot model of Wuyts
et al. (2000), such that their proposed base triple is removed
in place of the recently predicted tertiary interaction between
the hairpin loop of the second pseudoknot and an unpaired
sequence in variable region 2 (V2) (Alkemar & Nygård,
2003, 2004). Our alignment across arthropod V4 sequences
spanning most orders shows strong support for the internal
seven base pairs of this helix (HV2–V4); however, base
pairs 1 and 9 are minimally supported with covariation
evidence across arthropods (CRW Site bp frequency tables;
Gillespie et al., 2005a).

Accurate structural models of arthropod V4 are of particu-
lar interest because this region of 18S rRNA is the most
commonly sequenced marker for higher level arthropod
phylogeny estimation (reviewed in Kjer, 2004). Still, multiple
structural predictions exist for this large variable region of
SSU rRNA. For instance, Ouvrard et al. (2000) proposed a
secondary structure model for insect V4 based on the com-
parative analysis of 22 insect sequences. That same year,
Wuyts et al. (2000) presented a refined model with the 3′-
half of this variable region consisting of two pseudoknots.
One of the pseudoknots was previously predicted (Neefs &
De Wachter, 1990), while the other, a rare type of pseudo-
knot similar to that found in plant viruses (van Batenburg
et al., 2000), was newly reported. Within these two con-
trasting models of the 3′-half of arthropod V4, 32 nucleo-
tides form different base pairs (Fig. 3A). Six nucleotides
form the same base pairs but within different structural con-
texts (grey dashed lines in Fig. 3A). Interestingly, across
most eukaryotes this region alternates the number of base
pairs within helices E23-13 and E23-14 (Wuyts et al., 2000).

Our analysis of honey bee (and most arthropod) 18S rRNA
sequences is consistent with an expanded helix E23-13 (6–
11 bp) and a contracted helix E23-14 (11–3 bp) (Fig. 3B).
A base pair frequency table (available at the jRNA website)
suggests that the model of Wuyts et al. (2000), including
HV2–V4 (Alkemar & Nygård, 2003, 2004), is more probable
based on more covariation at the positions in the proposed
base pairs; however, a minimal amount of compensatory
base change evidence supports the Ouvrard et al. (2000)
model such that a dynamic nature of this region of nl SSU
rRNA cannot be disproved. These findings are consistent
with a recent comparison of the Wuyts et al. (2000) and
Alkemar & Nygård (2003, 2004) models in the V2 region
across most insect lineages (Gillespie et al., 2005a; see
table 3).

Of the remaining regions of insect 18S rRNA, domain I
(including variable regions V1–V3) is sequenced less fre-
quently than domain III (including variable regions V6–V9)
(Cannone et al., 2002). Variable regions V1, V3, V6 and V8
(and V5 of domain II) are considerably smaller in size than
V4 and yield little phylogenetic information (Gillespie et al.,
2005a). The V2 region is difficult to align with confidence
due to length variation. Studies on arthropod V7 have
divulged a region characteristic of extraordinary variation in
the length of helices (Crease & Colbourne, 1998; Crease &
Taylor, 1998; McTaggart & Crease, 2005). Sequence align-
ments of V7 across divergent insect taxa contain many
variable positions, yet structure is necessary to guide the
alignment. This is because, while only one helix is present
in nearly all non-holometabolous orders, as well as in
Amphiesmenoptera (Lepidoptera + Trichoptera) (Gillespie
et al., 2005a), the remaining seven (minus Thysanoptera)
holometabolous orders contain a second helix within V7.
Additionally, this smaller less-conserved helix, H1118b-2
(Gillespie et al., 2005a), can be present or absent within
these orders, with its base pairs often containing minimal
comparative support. Finally, sometimes it is difficult to predict
base pairing in the V9 at the end of the penultimate helix
because many of the published sequences are missing the
extreme 3′-end of the 18S rRNA (Cannone et al., 2002).

Nuclear LSU rRNA. This model is in concordance with
the conserved 23S (prokaryote) and 23S-like (eukaryote)
structures of the LSU rRNA from the literature (Noller et al.,
1981; Wool, 1986; Gutell & Fox, 1988; Gutell et al., 1990,
1992, 1993; Larsen, 1992; De Rijk et al., 1994, 1997, 2000;
Gutell, 1996; Schnare et al., 1996; Wuyts et al., 2001,
2002, 2004). With existing predicted structure models
for Aedes albopictus (Kjer et al., 1994), D. melanogaster
(Schnare et al., 1996; others therein), Acyrthosiphon pisum
(Amako et al., 1996), Tenebrio sp. (Gillespie et al., 2004) and
ichneumonoid Hymenoptera (Gillespie et al., 2005b), this is
the sixth predicted structure of a complete or nearly com-
plete insect nl LSU rRNA (Fig. 2B,C). To date, complete
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comparative models (alignments) for insect 28S rRNA
have not been published, so we present our model following
the nearly complete model of ichneumonoid Hymenoptera
(Gillespie et al., 2005b) with adherence to LSU rRNA crystal
structures (Cate et al., 1999; Ban et al., 2000; Spahn et al.,
2001; Yusupov et al., 2001). Eukaryotic nl LSU rRNA is
interrupted by an internally transcribed spacer region (ITS-
2) in the terminal loop of helix H150 that separates the LSU
into 5.8S and 28S rRNAs (Veldman et al., 1981; Michot et al.,
1982). Flies (Diptera) have a second ITS in the nl LSU that
occurs within the terminal loop of helix H131 (Tautz et al.,
1988). The A. mellifera LSU rRNA (minus 5S rRNA) structure
model contains 143 helices (133 in the 28S rRNA and five in
the 5.8S rRNA, with five helices comprised of both 28S and
5.8S rRNAs) that are conserved across arthropods (Fig. 2B,C).

Thirteen regions previously described as extremely vari-
able or expansion segments (Clark et al., 1984) of the 28S

rRNA sequence are difficult to align across the arthropods
(e.g. Hwang et al., 1998). These regions of honey bee rRNA
have the typical variation seen across insect orders and
families. Regarding Hymenoptera, the structures for two of
the largest of these regions, expansion segments D2 and
D3, were recently predicted in studies of 349 ichneumonoid
wasps (Gillespie et al., 2005c; Wharton et al., 2006) and are
comparable to the model predicted across 527 chalcidoid
wasps (Gillespie et al., 2005b) and 60 evanioid wasps
(Deans et al., 2006). Two other studies have used secondary
structure as an alignment guide for phylogeny estimation of
hymenopteran D2 sequences but did not produce global
structural models (Belshaw & Quicke, 1997, 2002). While
expansion segment D2 is phylogenetically informative
within orders and families of arthropods (for a comparison
of our model with Coleoptera see Gillespie et al., 2004), the
alignment of these sequences across highly divergent taxa

 

Figure 3. An illustration of several proposed secondary structural models for variable region V4 (V4) of arthropod 18S rRNA. (A) A comparison of the Wuyts 
et al. (2000) model (left) with the Ouvrard et al. (2000) model. Nucleotides in the 3′-half of V4 that are base paired in both models are shaded. Shaded nucleotides 
forming different base pairs in each model are connected with dashed lines. Shaded nucleotides forming the same base pairs in both models are connected 
with solid lines. The region within the dashed box is illustrated in (B). (B) An example of a possible dynamic relationship between three proposed models for the 
18S�V4. See Fig. 2 legend for explanations of base pair symbols, helix numbering and reference for software used to construct structure diagrams.



Nuclear and mitochondrial rRNA genes of honey bee 665

© 2006 The Authors
Journal compilation © 2006 The Royal Entomological Society, Insect Molecular Biology, 15, 657–686

(i.e. class and phylum levels) is extraordinarily difficult (see
Schnare et al., 1996). However, the expansion segment D3
is conserved enough in its secondary structure to be of
practical use in arthropod phylogeny estimation (e.g. Whiting
et al., 1997; Wheeler et al., 2001; Hovmöller et al., 2002),
although its phylogenetic signal is weak when analysed
without other data partitions (see Kjer, 2004).

As expansion segments D2 and D3 of the 28S rRNA can
be amplified in one PCR reaction, and because they usu-
ally contain characteristic variation in sequence length and
base composition that is informative across family, genus
and species levels, this region of nl LSU rRNA has become
one of the most common phylogenetic markers (e.g.
Gillespie et al., 2003; Schulmeister, 2003). Thus, the major-
ity of published insect nl LSU rRNA sequences are com-
prised of expansion segments D2 and D3 and related core
sequences (Cannone et al., 2002). Some insect phyloge-
netic studies have generated sequences for expansion
segments D4 to D10 (e.g. Hwang et al., 1998; Belshaw &
Quicke, 2002; Wiegmann et al., 2003); however, in-depth
structural predictions with reference to previous models
were not provided. This lack of structural information from
these studies, coupled with limited sequences covering the
majority of the 3′-half of the 28S rRNA, makes it difficult to
propose models that are thoroughly supported with base
pair covariation. Therefore, our proposed structures for this
region of the nl LSU rRNA, particularly expansion seg-
ments D7, D10, D12 and R2832, should not be considered
well supported. Our labs are currently generating more
sequences from the 3′-half of the 28S rRNA from a wide
range of insect taxa that should improve these preliminary
structure predications.

Sequences beyond the D3 in domain II include expansion
segments D4–D6, which are relatively small for candidate
phylogenetic markers (Fig. 2B). Earlier predicted struc-
tures for these regions in insects (Hancock et al., 1988; Kjer
et al., 1994; Hwang et al., 1998) have recently been modi-
fied based on a more thorough taxon sampling (Gillespie
et al., 2005c). In domain IV, a notable expansion segment,
D7a, has been identified as the region of metazoan nl LSU
rRNA wherein an internally processed cleavage site termed
the ‘hidden break’ occurs. As originally characterized in the
dipteran Sciara coprophila (Ware et al., 1985), this cleav-
age site separates the 28S rRNA into α and β fragments
of roughly equal size (Applebaum et al., 1966; Balazas &
Agosin, 1968; Greenberg, 1969; Ishikawa & Newburgh,
1972; Ishikawa, 1977; de Lanversin & Jacq, 1989). Aside
from pea aphid (Acyrthosiphon pisum) 28S rRNA (Ogino
et al., 1990); which does not separate into α and β frag-
ments, most insects contain this hidden break (e.g. Shine
& Dalgarno, 1973; Park & Fallon, 1990), which was specu-
lated to occur near an unpaired 5′-UAAU-3′ sequence
within expansion segment D7 (Ware et al., 1985). Despite
this prevalent pattern, the proposed cleavage signal is

absent in many hymenopteran 28S rDNA sequences
(Gillespie et al., 2005c), including the honey bee. However,
it is probable that this region of the D7a contains a cleavage
site in the 28S rRNA, given that the loop formed by helix
D7a-3 is extraordinarily variable in sequence length and
base composition and contains no detectable conserved
secondary structural elements across arthropods (e.g.
Gillespie et al., 2005c) or other metazoan taxa studied (e.g.
van Keulen et al., 1991; Zarlenga & Dame, 1992). Also, some
insect D7a sequences contain repeated microsatellite
motifs (Gillespie et al., 2005c) that are indicative of slippage
events during replication of the rRNA gene array (Levinson
& Gutman, 1987; Hancock & Dover, 1988), further suggest-
ing that this portion of the 28S rRNA is non-functional and
likely cleaved out of the mature rRNA molecule. This obser-
vation is consistent with site-directed mutagenesis studies
on the yeast Saccharomyces cerevisiae, which show that
the D7a variable region of the 26S LSU rRNA is dispensa-
ble (Musters et al., 1991). Recently, Basile-Borgia et al.
(2005) provided evidence for the possible involvement of a
highly conserved eukaryotic processing machinery respon-
sible for cleavage of the α and β fragments in LSU rRNA,
as microinjected Sciara coprophila (fungus fly) rDNA into
Xenopus laevis oocytes resulted in transcription and pre28S
rRNA fragmentation. Still, without a characterized process-
ing machinery, an autocatalytic nature of the cleavage of
cytoplasmic LSU rRNA cannot be ruled out.

Nearly half of domain IV of arthropod 28S rRNA is com-
prised of expansion segment D8 (Fig. 2C). Site-directed
mutagenesis studies have implicated the D8 region with
ribosome function (Sweeney et al., 1994), and it is likely
that small nucleolar RNA E2 interacts with D8 in the human
LSU rRNA (Rimoldi et al., 1993). Gillespie et al. (2005c)
have characterized the structure of expansion segment D8
across aculeate Hymenoptera, and our analyses of more
diverse taxa support their predicted structure. Domain V of
arthropod 28S rRNA contains expansion segments D9,
which is small and highly conserved in many Hymenoptera,
including the honey bee, and D10, which is larger and
highly variable in sequence composition but conserved in
secondary structure (Gillespie et al., 2005c). As more
sequences accumulate on genetic databases, it is likely
that expansion segment D10 will become a more com-
monly used marker for phylogeny estimation, especially
because it can be amplified in some arthropod taxa with all
of expansion segment D12 (Gillespie, unpublished data).

Expansion segment D11 is positioned between domains
V and VI in cytoplasmic LSU rRNA (Fig. 4C) and is typically
short and without base pairing (Schnare et al., 1996). The
remaining variable regions of arthropod 28S rRNA are expan-
sion segments D12 and R2832, for which little information
on base pairing can be derived given the paucity of
published arthropod sequences spanning these regions
(Cannone et al., 2002). We found minimal compensatory
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base change support for the four helices within expansion
segment D12, and the remainder of the structured bases
within this region should be considered preliminary at best.
Similarly, despite having a complete 28S rRNA sequence for
the honey bee, our prediction of variable region R2832 is
supported minimally because most ‘complete’ published
arthropod rDNA sequences are nearly complete, having
the 3′-primer designed from the D. melanogaster sequence
(it is no coincidence that the majority of published arthro-
pod sequences containing complete or nearly complete
R2832 sequences are flies). The difficulty in sequencing
the entire 3′-half of the 28S rDNA is a consequence of the
extreme variability within the IGS region that immediately
flanks the last nucleotides of the 28S rDNA (see below).

The nuclear-encoded cytoplasmic large subunit of the
ribosome contains a 5S rRNA in Archaea, Bacteria and

Eukaryota, and while chloroplast and plant mitochondria
also have a 5S rRNA in their large ribosomal subunit, the
mitochondria in fungi, animals and many protists do not
(Bullerwell et al., 2003). Our predicted structure of the
nuclear-encoded honey bee 5S rRNA (Fig. 2D) is similar to
other published structures of arthropod 5S rRNA (e.g.
Barciszewska et al., 1995; Paques et al., 1995), and we
confirmed our model with a recent interpretation (Szymanski
et al., 2002) of the crystal structure of the LSU rRNA of the
halophile archaea Haloarcula marismortui (Ban et al., 2000).
We have no supporting evidence that this 5S rRNA, or an
additional 5S rRNA encoded in the nucleus, is imported
into mitochondria; however, evidence suggests that nuclear-
encoded 5S rRNA is a constituent of mt ribosomes in
several eukaryotes, including trypanostomatids (Mahapatra
et al., 1994; Tan et al., 2002), yeast (Entelis et al., 2002)

Figure 4. The secondary structure model of the mitochondrial rRNA (12S + 16S) from the honey bee, Apis mellifera. Differences between our sequence and 
previously published A. mellifera sequences (U65190 and U65191) are in bold, with insertions (dark arrows), deletions (open arrows) and substitutions 
(parentheses) shown. Helices aligned across all sampled panarthropods are boxed in grey. Tertiary interactions (where there is strong comparative support) 
and base triples are shown connected by continuous lines. (A) SSU rRNA (12S). Misaligned sequences 1 and 2 (discussed in text) are within dashed boxes 
and connected to redrawn structures from Hickson et al. (1996) and Page (2000) with dashed lines. (B) LSU rRNA (16S). See Fig. 2 legend for explanations of 
base pair symbols, helix numbering and reference for software used to construct structure diagrams.
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and mammals (Yoshionari et al., 1994; Magalhães et al.,
1998; Entelis et al., 2001).

Mitochondrial SSU rRNA. In most insects, the 12S rRNA
gene is flanked on the 5′-side by the non-coding portion of
the mitochondrial genome that contains the control region
and on the 3′-side by the valine transfer RNA (tRNA-Val).
The honey bee 12S rRNA gene follows this conserved
arrangement of the rRNA genes, despite seven gene re-
arrangements within the mitochondrial genome (Crozier &
Crozier, 1993). Our structural model (Fig. 4A) follows the
Drosophila virilis model of Cannone et al. (2002) with minor
modifications made based on an alignment of 83 neopteran
12S rRNA sequences. Our numbering system follows the
convention established at the CRW Site (see Experimental
procedures). There are 30 helices within insect 12S rRNA
that are supported by compensatory base change evidence
across our alignment.

Other than Drosophila spp. (Clary & Wolstenholme, 1985,
1987), the first structural models for insect 12S rRNA were
based on comparisons with other mt SSU rRNA models,

such as mouse (Bibb et al., 1981), frog (Dunon-Bluteau &
Brun, 1986), primate (Dunon-Bluteau & Brun, 1986; Hixson
& Brown, 1986) and sea anemone (Pont-Kingdon et al.,
1994). Initially used for large-scale phylogenetic analyses
(e.g. Pace et al., 1986; Field et al., 1988), it soon after
became clear that the phylogenetic utility of SSU mt rRNA
genes was limited to lower level divergences (Thomas
et al., 1989; Simon et al., 1990). Thus, a plethora of lower
level studies within Insecta utilizing 12S rDNA sequences
emerged. Some sequences were collected in various struc-
tural compilations (Dams et al., 1988; Neefs et al., 1993;
Gutell, 1994), and together with more in-depth models on
birds (Cooper, 1994), vertebrate classes (Hickson, 1993),
rodents (Sullivan et al., 1995) and insects (Simon et al.,
1990, 1994; Simon, 1991), Hickson et al. (1996) presented
a refined model of animal 12S rRNA that differed from pre-
vious models in that several variable regions were adjusted
from the global SSU rRNA model to fit a custom animal
model [results also reached by Kjer (1995, 1997) in his
analysis of amphibians]. Of particular note, the honey bee
12S rRNA sequence confounded the alignment of helix

 

 
 

 

 

Figure 4. (Continued)
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H1047 [helix 38 of Hickson et al. (1996)] due to its high AT
bias. This resulted in the proposal for a radical structure for
this helix in honey bee. Analysing the secondary structure
of 225 insect 12S rRNA sequences using maximum
weighted matching, Page (2000) predicted a structure for
domain III of honey bee 12S rRNA that was in more agree-
ment with earlier insect models (e.g. Gutell, 1994). Our pre-
dicted model for domain III of honey bee 12S rRNA is more
consistent with the model of Page (2000) than that of Hickson
et al. (1996), and we have identified two regions within
the alignment of Hickson et al. (1996) that were misaligned,
causing the majority of domain III to be predicted inaccu-
rately (Fig. 4A, boxed sequences 1 and 2). The second mis-
aligned sequence (5′-GAA-3′) was noted by Page (2000)
as being misaligned, prompting a follow-up note about the
dangers of relying on conserved motifs to anchor align-
ments (Page, 2001). Our realignment of the first sequence
(5′-AUUUAUGU-3′) further suggests that caution should be
used when anchoring variable regions with thermodynamic
evidence rather than support from crystal structures, as
helix H1047 contains several non-canonical base pairs in
its proximal region across many arthropod taxa (Cannone
et al., 2002). As with Page (2001), we note that, despite its
misalignment in Hickson et al. (1996), the honey bee 12S
rDNA sequence likely did not affect the analysis by Hickson
et al. (2000), wherein their structural alignment was used to
evaluate the performance of a suite of automated align-
ment programs.

Despite the continued use of 12S rDNA sequences, few
recent studies have presented structural predictions. The
predicted structures for lice (Phthiraptera) (Page et al., 2002),
Trirhabda leaf beetles (Coleoptera: Chrysomelidae) (Swigo-
nova & Kjer, 2004), species in the taxon Arthropleona
(Collembola) (Carapelli et al., 2004) and burnet moths
(Lepidoptera) (Niehuis et al., 2006) all slightly differ from
our model in that they are refined for the lower taxonomic
levels analysed in each study. This latter study is interesting
because, while nearly all previous studies of 12S rRNA
structure and evolution have focused primarily on domain
III, Niehuis et al. (2006) predict a structure of the entire 12S
rRNA molecule, providing primers to amplify the less com-
mon sequence domains I and II. Hopefully more studies will
utilize this information, as well as our 12S rRNA structural
diagram and related alignments, to compile more sequences
of domains I and II from diverse taxa to improve our know-
ledge of this seldom-sequenced region of arthropod 12S
rRNA (Cannone et al., 2002).

Mitochondrial LSU rRNA. In most insects, the 16S rRNA
gene is flanked on the 5′-side by the tRNA-Val gene, and on
the 3′-side by the tRNA-LeuCUN gene. Like the 12S rRNA
gene, the honey bee 16S rRNA gene follows this conserved
arrangement (Fig. 1). Our secondary structure model
(Fig. 4B) follows the D. melanogaster model of Cannone

et al. (2002) with minor modifications made based on an
alignment of 244 neopteran 16S rRNA sequences. Our
numbering system follows the convention established at
the CRW Site (see Experimental procedures). There are 49
helices within insect 16S rRNA that are supported by com-
pensatory base changes across our alignment. Despite the
presence of a complete sequence for nearly 20 years
(Vlasak et al., 1987), we believe that this is the first published
secondary structural model for honey bee mitochondrial
16S rRNA.

Since the earliest structural predictions for arthropod
16S rRNA, namely those from Drosophila yakuba (Clary
& Wolstenholme, 1985), Locusta spp. (Uhlenbusch et al.,
1987), D. melanogaster (Gutell & Fox, 1988) and gypsy
moth, Lymantria dispar (Davis et al., 1994), more refined
models have been proposed based on larger comparisons
across divergent taxa, e.g. Deltocephalus-like leafhoppers
(Fang et al., 1993), families of Hymenoptera (Dowton &
Austin, 1994), families of Dermaptera (Kambhampati et al.,
1996), families of Orthoptera (Flook & Rowell, 1997) and
groups of spiders (Smith & Bond, 2003). These studies
have undoubtedly prompted refinements to older structural
diagrams present on the CRW Site and other rRNA sec-
ondary structure databases.

Buckley et al. (2000) analysed 16S rRNA secondary
structure from over 400 taxa representing 13 insect orders.
We assume that honey bee was included in their study;
however, no secondary structure diagram was included for
honey bee, and no honey bee sequence was present in
their condensed alignment (Buckley et al., 2000). Aside
from minor deviances, the authors noted several major
differences between their predicted insect model and pre-
vious structures proposed by Gutell (unpublished then,
now compiled on the CRW Site) and De Rijk et al. (1997).
Specifically, helices 84 and 91 (our H2347 and H2520) were
proposed to form different base pairs within their models
than in the older models, and these structures are drawn as
alternatives in our 16S rRNA structural diagram (Fig. 4B).
Our search across 244 neopteran 16S rDNA sequences
did not yield a high amount of compensatory substitutions
supporting these alternative structures (data not shown).

Consistent with most structural and phylogenetic studies
on 12S rRNA (see above), nearly all studies on 16S rRNA
have analysed only a portion of the 3′-half of the molecule,
representing conserved domains IV and V (Fig. 4B). Recently,
however, Misof & Fleck (2003) analysed domains I, II, IV
and V of 16S rRNA across major groups of dragonflies and
damselflies (Odonata), predicting a nearly complete model
for this large insect group (domain III is absent in arthro-
pods and domain VI is rarely sequenced due to the position
of the universal 3′-primer). Much of the odonate model is
consistent with our predicted 16S rRNA structure presented
here, with the major differences resulting from additional base
pairs proposed in regions left unpaired in our model, for
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example the region in domain II that interacts with ribosomal
protein 11 (Fig. 4B; discussed below), and helices H1–H3
in domain I proposed by Misof & Fleck (2003). Additionally,
as with Buckley et al. (2000), helices H2347 and H2520 of
our model are different in the Misof & Fleck (2003) model.
Interestingly, many of the regions in the odonate model that
differ from our model, likely by being more odonate-based,
do not reflect phylogenetic information consistent with
expected relationships within Odonata (Misof & Fleck,
2003; see Hypsa, 2006).

Mitochondrial rRNA structural conservation. Arthropod mt
rRNA has a characteristic structure (Fig. 4) that may be
correlated with genome reduction in mitochondria (e.g.
Lang et al., 1997) such that many features common to
rRNA from all domains of life are absent in the organellar
rRNA structure. A lack of recombination in the mitochondria
(e.g. Lynch, 1995) likely contributes to a high level of non-
canonical base pairs or unstructured regions that are highly
conserved in non-organellar rRNAs of other organisms.
The highly oxidative nature of the mitochondria is probably
responsible for mutational loads not seen in most regions of
the nucleus (e.g. Martin & Palumbi, 1993), particularly in
nuclear coding sequences. Rates of evolution within the
mitochondrial genome are typically much faster than genes
within the nucleus (e.g. Crozier et al., 1989; Dowton & Austin,
1995; Sullivan et al., 1995; Lynch, 1997; Page et al., 1998;
Lin & Danforth, 2004), a possible consequence of the lack
of recombination and proofreading, and high oxidative envi-
ronment. Studies showing gene rearrangement in arthro-
pod mtDNA are growing (e.g. Boore et al., 1995; Black &
Roehrdanz, 1998; Campbell & Barker, 1998, 1999; Dowton
& Austin, 1999; Masta, 2000; Dowton & Campbell, 2001;
Shao et al., 2001a,b; Shao & Barker, 2003; Masta & Boore,
2004; Covacin et al., 2006), and it has recently been dem-
onstrated that mt genes in arthropods show a positive
correlation between high rates of nucleotide substitution
and gene rearrangement (Shao et al., 2003). While once
considered stable in their position within the arthropod
mitochondrial genome, evidence for rearrangements of the
rRNA genes is growing (e.g. Masta, 2000; Shao & Barker,
2003; Covacin et al., 2006). It is interesting that, despite
some of the highest levels of rates of substitution and AT
bias (Crozier et al., 1989; Crozier & Crozier, 1993), the honey
bee mt rRNA genes are arranged in the conserved ancestral
manner of most other arthropods (Fig. 1B).

The paucity of crystal structures of mt rRNAs, coupled
with the difficulty of aligning their variable regions due to a
high AT bias, does not permit us to evaluate accurately the
regions of mt rRNAs that are truncated or deleted relative
to the cytoplasmic rRNAs. Ideally, significant differences
from our conserved structural model, i.e. the louse 12S
rRNA model (Page et al., 2002) or the odonate 16S rRNA
model (Misof & Fleck, 2003), should be evaluated across all

published arthropod mt rRNA sequences to determine the
base pairings with the strongest positional covariation.
Unfortunately, this difficult task is beyond the scope of our
current investigation. However, we stress that regions of
insect mt rRNA that differ across diverse taxa in both base
composition and predicted secondary structures, may in
fact be conserved in tertiary interactions within the ribosome.
For example, the ribosomal protein 11 binding-domain
within domain II of LSU rRNA (Fig. 4B) and associated
ribosomal protein 11 (L11) is one of three structural
domains that are proximal on the 50S subunit, forming the
GTPase-associated centre (Wimberly et al., 1999). Recent
evidence suggests that the structure of the LSU rRNA
stabilized by the C-terminal domain of L11 is necessary to
alleviate elongation factor G (EF-G) binding in the post-
translocation state of the ribosome (Bowen et al., 2005). In
arthropod 16S rRNA sequences between the L11 binding-
domain and helix H991, which are shorter and closer to the
core rRNA due to the loss of pseudoknot H1005 and helices
H1011 and H1030, nucleotides must remain unpaired
and in a ‘stretched’ conformation in order for the L11–L11
binding domain to proximally interact with two other struc-
tural domains in the GTPase-associated centre of the LSU
rRNA. Thus, base pairing in these regions, even if sup-
ported by compensatory base change evidence (which by
chance alone would outperform unpaired sites; see mfold
structure in Fig. 4B), would be deleterious to ribosome
assembly and function, as recently suggested for mamma-
lian 16S rRNA (Mears et al., 2006). Given this, we doubt
the formation of secondary structure in this region of 16S
rRNA, although, as in the case of V4 of 18S rRNA (Fig. 3),
it cannot be ruled out that base pairing in these regions may
be temporary, ultimately dissolving during the tertiary inter-
actions formed before and during translation. However,
unlike the V4 region of 18S rRNA, transitionally less optimal
structures are so far not supported across all arthropod
sequences, and hence cannot support a hypothetical
dynamic nature of this region of LSU rRNA.

Taxon-specific structures in mt rRNA variable regions
would seemingly imply changes to associated ribosomal
proteins and other ribosome cofactors, such that all of
these molecules would coevolve to maintain the structural
integrity and function of the mt ribosome. This is unlikely as
ribosomal proteins are usually highly conserved across
deep levels of divergence (e.g. Graybeal, 1994; Koonin et al.,
2004; Stuart & Berry, 2004). Studies characterizing the
coevolution of mitochondrial ribosomal proteins and their
variable rRNA counterparts are needed to determine, if any,
the secondary structures that are homologous across insects.

Characterization of IGS- and ETS-rDNA boundaries

Despite the growing number of sequenced eukaryotic
genomes, few studies have predicted full sequences
spanning the entire IGS, especially in arthropods. Usually, only
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those studies that sequence clones report complete IGS
sequences, as intergenomic variation compounds other
simpler methods. For genome sequencing studies, two
main problems confound the accurate assemblage of IGS
sequences: variation in subrepeat number, and the pres-
ence of multiple subrepeats that are not contiguous (i.e.
separated by conserved or other repetitive sequences).
This second problem is critical because if the variation
within subrepeats is high then multiple non-contiguous sub-
repeats can be spuriously assembled in the wrong locale
of the IGS, ultimately compounding the rebuilding of the
accurate IGS sequence. Methods for accommodating these
problems are in great need, as IGS regions contain the
rDNA promoter region, as well as enhancer sequences
that facilitate transcription of arthropod rRNA genes (e.g.
Hayward & Glover, 1988). These regions are also useful for
species identification in arthropods (e.g. McLain et al.,
1989; Pepera et al., 1998; Mukha et al., 2000; Whang
et al., 2002; Ohnishi & Yamamoto, 2004) and assessing the
fitness and the evolutionary ecology of organisms (e.g.
Cluster et al., 1987; Weider et al., 2005).

Relative to coding regions of the rRNA genes, complete
IGS sequences from arthropods have only been charac-
terized for a few taxa, and many of these are dipterans:
D. melanogaster (Simeone et al., 1985; Tautz et al., 1987;
Hayward & Glover, 1988; Tautz et al., 1988), D. orena, D. virilis,
D. hydei (Tautz et al., 1987), Aedes albopictus (Baldridge &
Fallon, 1992), A. aegypti (Wu & Fallon, 1998), Anopheles
sinensis (Whang et al., 2002), the tstetse fly, Glossina sp.
(Glossinidae) (Cross & Dover, 1987a,b), the black fly,
Simulium sanctipauli (Simuliidae) (Morales-Hojas et al., 2002)
and several species of Chironomus midges (Chironomidae)
(Degelmann et al., 1979; Israelewski & Schmidt, 1982;
Israelewski, 1983). Other published arthropod complete
IGS sequences are from the German cockroach Blattella
germanica (Blattaria: Blattellidae) (Mukha et al., 2002), the
bulldog ant, Myrmecia croslandi (Hymenoptera: Formici-
dae) (Ohnishi & Yamamoto, 2004) and the crustaceans
Daphnia pulex (Cladocera) (Crease, 1993) and Tigriopus
californicus (Copepoda) (Burton et al., 2005). Much of the
IGS and ETS have also been characterized for the pea
aphid, Acyrthosiphon pisum (Kwon & Ishikawa, 1992)
and the silkmoth, Bombyx mori (Fujiwara & Ishikawa, 1987).
In agreement with complete IGS sequences from other
eukaryotes, including the nematode Caenorhabditis elegans
(Ellis et al., 1986), several diverse plants (Gruendler et al.,
1991; Lanadu et al., 1992; Lakshmikumaran & Negi, 1994;
Rocheford, 1994; Chiang et al., 1998; Fernández et al., 2000;
Macas et al., 2003; Hsieh et al., 2004) and trypanostomatids
(Schnare et al., 2000; Orlando et al., 2002; Boucher et al.,
2004), IGS sequences contain one to several ‘types’ of
repeat regions that are variable within species and difficult
to compare across even closely related species (e.g. Murtif
& Rae, 1985). Because these repetitive regions are asso-

ciated with the rDNA transcription promoter, it is no surprise
that RNA polymerase I complexes of one species fail to
transcribe the rRNA genes of another (e.g. Dover & Flavell,
1984; Dover & Tautz, 1986).

IGS. We predicted the sequence and structure of the con-
served regions flanking the 3′-end of the 28S rDNA (473 nts
of the IGS) and the 5′-end of the 18S rDNA (2042 nts of the
IGS + ETS) mostly from the repeat reads of assembly 3
(Fig. 5). While a distinct boundary between the IGS and
ETS was not determined, we treat the description of the
ETS separately (next section). Immediately flanking the
boundary of the 28S rDNA and the IGS we predict a helix
of eight base pairs that can also form in the bulldog ant (S1
in Fig. 5). Interestingly, Ohnishi & Yamamoto (2004) pre-
dicted a compound helical region in this same position in
bulldog ant consisting of over 639 nts. While not experimen-
tally proven, it is possible that this region of the IGS fosters
a helical element; however, structural prediction in honey
bee yielded nothing substantially significant other than
helix S1 (data not shown). The remaining nts of the IGS
flanking the 3′-end of the 28S rDNA contain six conserved
repetitive (CRp) regions, three variable repetitive (VRp)
regions, one A-rich region, one T-rich region and a sub-
repetitive (SRp) region (Fig. 5). This first SRp region, SRp1,
is estimated to repeat from four to 11 times in the honey bee
genome, but could likely exceed this range. Due to the vari-
ability in sequence length and base composition of SRp1,
we could not accurately predict sequences flanking the
3′-end (dashed line in Fig. 5).

As with the region of the IGS flanking the 3′-end of the
28S rDNA, the region of the IGS adjacent to the ETS can-
not be predicted beyond a SRp region (Fig. 5). This second
SRp region, SRp2, is more complicated than SRp1 because
it is repeated at least twice within conserved stretches of
sequence. SRp2 is present from three to six times (and
likely more), and is then interrupted by a conserved sequence
containing two CRp regions and two VRp regions (Fig. 5).
SRp2 then repeats again from two to four times before
flanking a conserved stretch of 1113 nts that is likely com-
prised mostly of the ETS. It is difficult to predict the compo-
sition and structure of the internal region of the IGS flanked
by SRp1 and SRp2 for two reasons. First, the number
of SRp regions vary in arthropods, ranging from one in
the pea aphid (Kwon & Ishikawa, 1992) to three in
D. melanogaster (Tautz et al., 1988). Thus, although we
identified two distinct SRp regions in honey bee IGS, a third
(or more) SRp region may exist in the central portion of the
spacer. It is interesting, however, that the bulldog ant
has two SRp regions, and this may be a characteristic of
hymenopteran IGS sequences. Second, the composition of
the central portion of the IGS in arthropods is variable, in
that it can be comprised entirely of repetitive regions (e.g.
bulldog ant) or alternating conserved and repetitive regions
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Figure 5. Regions of the IGS and ETS flanking the 3′-half of the 28S rDNA and the 5′-half of the 18S rDNA in the honey bee. Diagram depicts a consensus of 
assembled contigs, with infrequent insertions (filled arrows) and deletions (open arrows) shown in conserved regions of the alignment, as well as in conserved 
repetitive (CRp) regions. Length variation within variable repetitive (VRp) regions is given as ranges. Variation in sequence length and base composition is not 
provided for sub-repetitive (SRp) regions. All repetitive regions, as well as single-base length variable regions, are boxed and contiguous (SRp) regions are darkly 
shaded. The region of the IGS for which sequence identity was not possible due to intragenomic heterogeniety is depicted with a dashed line linking two large 
(SRp) regions. A putative promoter sequence, as predicted with the Neural Network Promoter Prediction tool (Reese, 2001) at the Berkeley Drosophila Genome 
project (http://www.fruitfly.org/seq_tools/promoter.html) is within a dashed box, with the bolded nucleotide depicting the predicted transcription start site. 
Conserved rRNA helices flanking the IGS (H2808) and ETS (H9) are within vertical bars (|). Regions with putative secondary structures (S1–S3) are lightly 
shaded, with structural diagrams shown below the alignment. The structure for S1 is shown with variable bases in a related hymenopteran, Myrmecia croslandi, 
shown in parentheses. Alignments are available at the jRNA website.

http://www.fruitfly.org/seq_tools/promoter.html
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(e.g. A. sinensis). While we have not reported a complete
sequence for the IGS from honey bee, we predict that our
characterization of the conserved sequences flanking two
SRp regions will allow for primer design and sequencing of
the remaining internal sequence.

ETS. Three CRp regions and one VRp region occur within
a highly conserved stretch of nts that contains the rDNA
gene promoter and probable transcription enhancer ele-
ments. Spacer and gene promoters have been determined
for several arthropods (listed in Crease, 1993), with a con-
sensus sequence of 5′-TA-TATANGRRRR-3′ accounting for
the variation across diverse taxa. We did not find a sequence
within the putative ETS region of honey bee that matched
this motif; however, using the Neural Network Promoter
Prediction tool (Reese, 2001) at the Berkeley Drosophila
Genome project (http://www.fruitfly.org/seq_tools/
promoter.html), a promoter sequence 5′-ATATATATATATATA-
TATAGTCGATCGGTGAGGGGGCACCGACGACGAAA-3′
was predicted with a score of 1.0 (Fig. 5). A second pro-
moter sequence 5′-ATTATATATATATATATATATATATATAGTC-
GATCGGTGAGGGGGCACCG-3′, shifted nine nts upstream
from the first predicted promoter, was predicted with a
score of 0.93. The bold nucleotide in each sequence is the
predicted transcription initiation site (TIS), and the predicted
TIS in the more optimal promoter is shaded in Fig. 5. Despite
high scores, these promoter sequences are likely too close
to the start of the 18S rDNA, especially when compared to
the location of promoters in other arthropod ETS sequences.
These putative promoter sequences and TIS should be
taken with caution, as it will be necessary to determine the
true promoter and TIS with S1 nuclease mapping.

Despite the high level of variation across ETS regions
from different taxa, some characteristics are conserved
and may allude to functional constraints not easily identifi-
able from primary sequence comparison. For instance, the
GC content within the putative ETS region of honey bee is
35.3% and similar to other holometabolous insects; e.g.
B. mori (36.7%) (Fujiwara & Ishikawa, 1987), D. melanogaster
(24%) and D. orena (23.7%) (Tautz et al., 1987) and tsetse
fly, Glossina morsitans (28%) (Cross & Dover, 1987a). The
GC content of a non-holometabolous insect, the pea aphid,
is 69% (Kwon & Ishikawa, 1992), indicating a possible cor-
relation between base composition in the ETS and phylo-
geny. Helical elements have been predicted within the ETS
region in other eukaryotes (Fernández et al., 2000; Schnare
et al., 2000; Orlando et al., 2002; Boucher et al., 2004) and
likely have an important role in the regulation of transcrip-
tion and processing of rRNA. Using secondary structure,
these regions can be aligned across closely related spe-
cies (Fernández et al., 2000; Schnare et al., 2000; Orlando
et al., 2002), providing information on putative rRNA
processing sites (Schnare et al., 2000). Within the honey
bee ETS region we calculated two putative helices using

mfold (Mathews et al., 1999; Zuker, 2003) that warrant
further validation from closely related hymenopteran taxa
(Fig. 5). We were unable to identify these helices in the bull-
dog ant; however, given the variability present in other ETS
helical elements, e.g. in legumes (Fernández et al., 2000)
or trypanostomatids (Schnare et al., 2000), the bulldog ant
and honey bee may have very divergent structures involved
in the processing of the ETS region.

Retrotransposition in 28S rDNA sequences

R2-element insertion sites. We report the presence of
three distinct R2 elements inserted into the 28S rDNA at
the typical target sites described for other arthropods (e.g.
Long & Dawid, 1979; Jamrich & Miller, 1984; Jakubczak
et al., 1990, 1991; Burke et al., 1993, 1999; Eickbush,
2002). In general, most arthropod R2 elements insert
between nucleotides 1928 and 1929 of the lonepair triloop
(LPTR) H1925, however, R2 elements have also been
shown to insert in helices H1835a and H1906 (Jakubczak
et al., 1991). It now appears that only the initial nick in the
target 28S rDNA sequence is conserved across arthro-
pods, with the cleavage of the second strand highly variable
such that the 5′-junctions of the R2 element and 28S rDNA
are highly variable in sequence length and base composi-
tion, even within species (Burke et al., 1999). Indeed, our
findings suggest at least two types of R2 element insert
within nucleotides 1928 and 1929 of LPTR H1925 (Fig. 6A, B).
Type 1 R2 elements are more conserved at their 5′-junction
with the 28S rDNA and have a putative 5′-untranslated
region (5′-UTR) of approximately 335 nts (Fig. 6E). In con-
trast, type 2 R2 elements are extraordinarily variable in their
junction with the 28S rDNA and have a putative 5′-UTR of
approximately 1039 nts (Fig. 6D,E). The 3′-region of this
larger 5′-UTR from type 2 R2 elements is nearly identical
with the entire 5′-UTR of type 1 R2 elements (Fig. 6E), sug-
gesting that the additional nucleotides in the 5′-half of the
5′-UTR of type 2 R2 elements are not likely contributing to
the structure and function of the conserved 5′-UTR. The
ultimate 3′-nucleotides of the 5′-UTR in all type 1 and type 2
R2 elements from honey bee flank a predicted start codon
of the putative ORF of the RT protein (Figs 6E and 7A).

We also discovered a third type of R2 element in honey
bee 28S rDNA. Type 3 R2 elements were found to insert in
an unusual position in the 28S rDNA, helix H1935 (Fig. 6A,B),
and did not reveal a typical ORF of other arthropod R2
elements (Fig. 6G). This, coupled with a lack of a 3′-junction
with the 28S rDNA, and the fact that we only detected a few
copies of type 3 R2 elements, led us to doubt that this posi-
tion in honey bee 28S rDNA fosters the insertion of R
elements. It could also be that this particular region of 28S
rDNA was erroneously assembled in the building of the
genome. Still, as the number of arthropod genome sequences
continue to grow, it is likely that new insertion sites in 28S
rDNA will be discovered, especially within this region of

http://www.fruitfly.org/seq_tools/
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Figure 6. R1 and R2 element insertion sites in honey bee 28S rDNA sequences, and variable R2 element 5′-UTRs. (A) Predicted secondary structure of domain 
IV of honey bee 28S rRNA, with asterisks depicting R1 and R2 element insertion sites. (B) Variable 5′-junction of R2 element insertion sites. Shaded region in 
type II elements depict conserved regions flanking a highly variable junction. (C) Three-prime junction of partial putative R1 element in honey bee 28S rDNA. 
Shaded sequence depicts 28S rDNA. Note: no 5′-junction was recovered for this partial R1 element (see text). (D) Conserved 758 nts in the 5′-UTR of type II 
R2 elements. Boxed sequence contains variation across unassembled reads. (E) Conserved 335 nts of the 5′-UTR of type I and type II R2 elements. See 
Fig. 2 legend for explanations of base pair symbols, helix numbering and reference for software used to construct structure diagrams.
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Figure 7. Characteristics of the honey bee R2 element ORF, 3′-UTR and potential imprecise insertion site. Bold amino acid residues are conserved across 
80% or more arthropod R2 elements (Burke et al., 1999). Boxed aligned regions depict highly conserved sequence across parasitic Hymenoptera. Single-boxed 
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residues depict codons with IUPAC ambiguity codes with the alternative nucleotide causing a stop codon. (A) Non-conserved 5′ sequence of the ORF with the 
putative initiation codon Met. (B) Comparison of jewel wasp B sequence (Nasonia sp., Pteromalidae) (GENBANK accession no. AF090145) to honey bee in the 
conserved amino-terminal domains. Shaded regions depict conserved motifs of DNA-binding proteins, with dashed boxes showing the three residues believed 
to interact with the α-helical region of DNA. CCHH, Cys-His motifs; c-myb, proto-oncogene protein. (C) Non-conserved sequence flanked by the conserved 
amino-terminal motifs and the 5′-end of the RT domain. Note: the jewel wasp B sequence contains 255 amino acid residues compared to the 178 of the honey 
bee. The shaded glycine residue was recovered in only one unassembled read. (D) Comparison of jewel wasp sp. B and honey bee in the highly conserved 
reverse transcriptase (RT) domain, including the fingers/palm and thumb motifs. The 11 shaded regions depict motifs conserved in the RTs of all retroelements 
(Xiong & Eickbush, 1990; Burke et al., 1999). (E) Comparison of jewel wasp B and honey bee in the conserved carboxyl-terminal domains. The DNA-binding 
motif CCHC and the KPDI sequence (ENDO) are shaded and within dashed boxes, representing the endonculease domain. Other shaded motifs depict 
conserved residues in arthropods (Burke et al., 1999). (F) Predicted 3′-UTR. The shaded sequence is the 3′-junction with the 28S rDNA (see Fig. 5), with the 
space depicting the potential imprecise insertion site of R2 element type 3. (G) Consensus sequence of R2 element type 3, which seemingly inserts 12 
nucleotides downstream from the typical R2 insertion site. No ORF has been predicted for this element (see text).
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domain IV, given that it is one of the most interrupted regions
of rDNA across all domains of life (Jackson et al., 2002).

Predicted R2-element ORF and 3′-UTR. Given that ORFs
for the RT of R2 elements have been predicted for a variety
of arthropods (e.g. Burke et al., 1999; Kojima & Fujiwara,
2004, 2005; Bunikis & Barbour, 2005), we aligned and
predicted the domain structures for honey bee R2-RT
sequences by comparison with another hymenopteran insect,
the jewel wasp Nasonia sp. (Chalcidoidea: Pteromalidae)
(Fig. 7B,D,E). Nasonia sp. is remarkable because it con-
tains two different types of R2 elements: one that is com-
parable to most other arthropod R2 elements (type A), and
a second that differs mainly in the presence of two addi-
tional zinc-finger domains in the amino-terminal region
(type B) (Burke et al., 1999). Only one other arthropod, the
horseshoe crab Limulus polyphemus, has a type B R2
element (Burke et al., 1999). Interestingly, not only does our
analysis of the honey bee genome identify the presence of
a type B R2 element similar to horseshoe crab and Nasonia
sp. type B elements (a finding consistent with Kojima &
Fujiwara, 2005) (Fig. 7B), it also suggests that the honey bee
does not have the more common type A R2 element. Within
a phylogenetic context of Hymenoptera (e.g. Dowton &
Austin, 1994), wherein Chalcidoidea is derived in regards
to a more primitive Apidae, this implies that Nasonia sp. has
retained both A and B type R2 elements, whereas honey
bee has lost the more typical A type but retained the less
frequent B type, which is likely a more primitive parasite of
arthropod genomes (Kojima & Fujiwara, 2005). Two types
of R2 elements have been detected in the cicada killer,
Sphecius speciosus (Sphecoidea; Sphecidae); however,
the limited portion of the published sequence cannot lead
us to determine if this insect contains type A or B R2
elements (or both). In response to this, we have identified
several regions within the ORF alignment of Nasonia sp. B
and honey bee R2 elements that are highly conserved for
the design of PCR and sequencing primers (Fig. 7). We are
currently using primers from these regions to determine
the presence or absence of type B R2 elements across
hymenopteran families. Given that R2 elements typically
evolve at rates similar to their rDNA hosts (Eickbush &
Eickbush, 1995; Eickbush et al., 1995), we expect our
investigation to yield a reasonable estimate of the evolution
of R2 elements across Hymenoptera, and the degree of
vertical and horizontal transmission of these mobile elements.

The remaining conserved domains of the honey bee R2
element ORF, namely the RT domain with fingers/palm and
thumb motifs (Fig. 7D) and the carboxyl-terminal domains
that include the CCHC DNA-binding motif and endonu-
clease domain (Fig. 7E), are highly conserved across honey
bee and jewel wasp. The sequence between the ORF stop
codon (UGA) and the 3′-junction of the 28S rDNA, or 3′-UTR,
is more conserved than the 5′-UTR and comprises 504 nts.

Thus, it is similar in size to the Nasonia spp. 3′-UTR, which
is 594 nts (Burke et al., 1999). While predicted secondary
structures exist for R2 element-3′-UTRs from several arthro-
pods, including the lepidopterans Bombyx mori (silkmoth),
Samia cynthia (Ailanthus silkmoth), Callosamia promethea
(Promethea silkmoth), Coscinocera hercules (Hercules
moth) and Saturnia pyri (great peacock moth), the earwig
(Forficula auricularia) and several Drosophila spp. (Mathews
et al., 1997; Ruschak et al., 2004), no secondary structures
have been predicted for hymenopteran insects. This is likely
due to the large size of the hymenopteran R2 element-
3′-UTR as compared to other arthropods, but also due to a
lack of more sequences to facilitate the comparative method
for predicting structure. Even using the Nasonia spp. (A and
B) for comparative analysis, our attempts at predicting a
secondary structure for honey bee R2 element-3′-UTR
were futile.

While non-LTR retrotransposable elements are likely
highly abundant in arthropod genomes (Perez-Gonzalez &
Eickbush, 2001), most copies are likely defective elements
that drift with their inactivated rRNA gene hosts (e.g.
Jamrich & Miller, 1984; Weiner et al., 1986; Luan & Eickbush,
1996; Sassaman et al., 1997). Subject to the process of
concerted evolution or biased gene conversion of rDNA
arrays (Bigot et al., 1992; Jakubczak et al., 1992), non-
functional R2 elements within inactivated rRNA genes are
rapidly eliminated from arthropod genomes (Perez-Gonzalez
& Eickbush, 2001, 2002). Despite the likely non-functional
putative type 3 R2 element described above, we found
limited evidence for non-functional R2 elements within the
rRNA genes of the honey bee. This is probably an artefact
of our method for constructing the R2 element sequences
from conserved flanking regions of 28S rDNA, as the
majority of non-functional R2 elements would likely reside
within heavily mutated 28S rDNA sequences, which would
not have been sampled in our procedure. Of the conserved
R2 elements with putatively functional ORFs, we identified
four nucleotide positions that contain variation in excess of
single nucleotide polymorphisms (SNPs). All four cases
pertain to either first or third codon positions of predicted
amino acids, with the state in less frequency resulting in a
stop codon (Fig. 7C,D). These variable positions likely indi-
cate the presence of some non-functional R2 elements that
have yet to be pruned out of the genome by concerted
evolution of rRNA genes.

Lack of functional R1 elements in the honey bee genome:
R1 elements are found in arthropod 28S rRNA genes in a
conserved insertion site 74 nts downstream of the R2
insertion site (Roiha et al., 1981) (Fig. 6A). Our search for
R1 elements within the honey bee genome did not recover
any functional or complete sequences. Only truncated
copies of putative R1 elements were assembled at the 3′-
junction of the 28S rDNA (Fig. 6C). It is surprising that the
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honey bee does not contain complete and functional R1
elements, given that other hymenopteran insects have
been purported to harbour them (Jakubczak et al., 1991;
Bigot et al., 1992; Varricchio et al., 1994). According to
Jakubczak et al. (1991), Nasonia sp., S. speciosus and the
carpenter bee, Xylocopa sp., all contain R1 elements,
although ORFs have not been determined for any of these
species, and only the 3′-junctions with the 28S rDNA were
actually sequenced. Similarly, Bigot et al. (1992) detected
the presence of R1 elements in 12 Hymenoptera, including
the honey bee; however, the distinction between functional
and truncated copies could not be determined by Southern
blot analysis. The results of their RFLP analysis of the R1
insertion site (Fig. 3, Bigot et al., 1992) showed a small
amount of DNA in honey bee as compared to other sampled
Hymenoptera, a finding consistent with our detection
of only truncated R1 elements. Indeed, 5′-truncated R1 ele-
ments of sizes 0.5 and 1 kb long are known from the 28S
rRNA genes of D. melanogaster (Jakubczak et al., 1990,
1991). In agreement, our truncated consensus R1 element
is 577 nts long, and thus could reflect the remnant of once
functional R1 elements in the genome of the honey bee that
have since been pruned by rRNA gene homogenization.
Alternatively, R1 elements could occur in such low fre-
quency in the honey bee genome that no functional copies
were included in its assembly.

Conclusion

Our analysis of the rRNA genes from the honey bee suggests
that the functional rRNA-coding regions are structurally
conserved and homogeneous throughout the nuclear and
mitochondrial genomes. Some regions of mt rRNAs that are
variable in sequence length and base composition do not
contain secondary structures that are conserved across
Insecta. Studies evaluating these variable regions within
the tertiary structure of the ribsome, including rRNA-rRNA
and rRNA–ribosomal protein interactions, are needed to
determine their structural and functional significance. Our
preliminary characterization of the IGS and ETS regions
linking nl rRNA genes in the honey bee suggests that these
highly variable sequences are relatively similar to other
holometabolous insects in organization, repetitive nature
and base composition. Like most other arthropods studied,
honey bee rRNA genes are subject to parasitism by retro-
transposable elements, although they lack both the most
common type of R2 element and functional R1 elements. In
Hymenoptera, it has been hypothesized that the intriguing
haplo-diploid system, in which males come from partheno-
genic eggs (n) and females come from fertilized eggs (2n),
is correlated with a low level of genetic variability, relative to
other arthropod genomes (Grauer, 1985; Woods & Guttman,
1987; Bigot et al., 1992). The characteristics of the honey
bee rRNA genes we present here cannot contest this claim.

Experimental procedures

rRNA secondary structure prediction

The assembled honey bee rDNA sequences were integrated into
the arthropod rRNA models (nl 18S, 5.8S, 28S, 5S rRNAs; mt 12S
and 16S rRNAs) predicted and compiled at the Comparative RNA
website (CRW Site) (http://www.rna.icmb.utexas.edu) and the
jRNA website (http://hymenoptera.tamu.edu/rna). Helix number-
ing follows the E. coli system available at the CRW Site. Infor-
mation pertaining to the alignment of RNA sequences using
secondary structure models, including covariation analysis, ther-
modynamic algorithms, and ambiguously aligned regions, is avail-
able at both websites. Secondary structure model diagrams were
generated with the program XRNA (developed by B. Weiser and
H. Noller, University of Santa Cruz, CA). Base pair frequency tables
and structural diagrams are available at the CRW Site. Differences
between our previous arthropod rRNA structures and those pre-
sented here are illustrated at the jRNA website.

IGS sequence comparison

Conserved rDNA sequences flanking the 3′-terminal end of the
28S rRNA and 5′-terminal end of the 18S rRNA were used for
BLAST (Altschul et al., 1990) searches at the Honey Bee Genome
Database (http://racerx00.tamu.edu/bee_resources.html). All
options in assembly 3 were explored, including unassigned groups
(bin 0); however, almost without exception, all BLAST results were
within the repeat reads of assembly 3. Default BLAST settings were
used, except that we did not filter for low complexity. Results
were viewed as master-slave with identities and displayed with
500 descriptions and alignments. We used master-slave to identify
reads used in subsequent BLAST searches to extend the sequence.
Only sequence differences repeated four or more times were
reported. Unique and rare SNP differences were not reported.
Sequences were then aligned manually in SeAl v2.0a11 (Ram-
baut, 1996). Only one alignment was made for the 5′-end of the
IGS, while three alignments were made for the 3′-end of the IGS
and ETS regions. Alignments are available at the jRNA website.

R1 and R2 element prediction rDNA sequences spanning the
conserved insertion sites for R1 and R2 elements in arthropods
were compiled using the BLAST strategy discussed above. Results
containing non-rDNA sequences inserted either at the 5′- or 3′-end
of the rDNA insertion site were exported to SeAl for manual align-
ment. Further BLAST searches were performed using conserved
regions of aligned sequences, allowing us to ‘walk’ across the R
elements from both the 5′- and 3′-ends. Upon completion of the R2
elements, we translated the consensus sequence in six frames to
determine the ORF of RT protein. This allowed for the identification
of putative start and stop codons. Nucleotide and amino acid
sequences of honey bee R2 element were aligned with the R2-B
element of the jewel wasp, Nasonia sp. (GENBANK accession no.
AF090145). Alignment was performed manually with reference
to the published structure of RT proteins from arthropods (Burke
et al., 1999).
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The following supplementary material is available for this
article online:

S1 Base pair frequency table comparing the models of
Wuyts et al. (2000) and Ouvrard et al. (2000) for variable
region 4 (V4) of arthropod 18S rRNA.

S2 Alignments of the IGS and ETS regions of unassem-
bled honey bee rDNA sequences.

S3 Alignments of R1 and R2 retrotransposable elements
of the honey bee.

This material is available from the Comparative RNA web-
site, http://www.rna.icmb.utexas.edu, and the jRNA web-
site http://hymenoptera.tamu.edu.

Note added in proof

Carapelli et al. (2006) recently predicted the secondary
structure of the mt 16S rRNA for the strepsipteran Xenos
vesparum. There are significant differences between their
model and the model presented here, particularly in
domain V of mt LSU rRNA.
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