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Abstract
It is unknown whether nutritional deficiencies affect the morphology and function of structural cells,
such as epithelial cells, and modify the susceptibility to viral infections. We developed an in vitro
system of differentiated human bronchial epithelial cells (BEC) grown either under selenium
adequate (Se+) or selenium deficient (Se-) conditions, to determine whether selenium deficiency
impairs host defense responses at the level of the epithelium. Se- BECs had normal SOD activity,
but decreased activity of the selenium-dependent enzyme GPX1. Interestingly, catalase activity was
also decreased in Se- BECs. Both Se- and Se+ BECs differentiated into a mucociliary epithelium;
however, Se- BEC demonstrated increased mucus production and increased Muc5AC mRNA levels.
This effect was also seen in Se+ BEC treated with 3-aminotriazole, and inhibitor of catalase activity,
suggesting an association between catalase activity and mucus production. Both Se- and Se+ were
infected with influenza A/Bangkok/1/79 and examined 24 hours post-infection. Influenza-induced
IL-6 production was greater while influenza-induced IP-10 production was lower in Se- BECs. In
addition, influenza-induced apoptosis was greater in Se- BEC as compared to the Se+ BECs. These
data demonstrate that selenium deficiency has a significant impact on the morphology and influenza-
induced host defense responses in human airway epithelial cells.
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Introduction
The trace element selenium (Se) is an essential nutrient for all mammalian species and is of
fundamental importance for human biology. Se functions primarily through selenoproteins,
which contain selenocysteine, the 21st amino acid and all selenoproteins with enzymatic
activities contain selenocysteine at their active site. Selenocysteine is specifically incorporated
into selenoproteins through a cotranslational event directed by the UGA codon [1]. Of the
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selenoproteins that have been identified and characterized thus far, the groups of glutathione
peroxidases and thioredoxin reductases maintain cellular redox homeostasis and the group of
iodothyronine deiodinases maintains thyroid hormone metabolism [2], indicating that adequate
Se status is of utmost importance.

In the lung, Se levels may be associated with lung function parameters. For example, higher
serum Se levels are positively associated with higher FEV1 and are protective for lung function
[3,4]. In addition, several epidemiological studies have observed lowered serum Se levels in
asthma patients [5-8], yet the level of Se deficiency that is associated with asthma is not clearly
established. In a review of several randomized controlled trials studying the efficiency of Se
supplementation treatment in chronic asthma [9], one trial found that Se supplementation
produced improvement in subjective symptoms for patients with chronic asthma. However,
these improvements could not be validated by significant changes in separate clinical
parameters of lung function [10]. Thus, the role and importance of Se in asthma is not yet clear.

Several studies have shown that nutritional deficiencies in certain trace elements, such as Se,
can significantly impair immune defense parameters. For example, low serum Se levels were
associated with low percentage of NK cells, especially in women [11]. In addition, deprivation
of serum Se in HIV-infection is associated with increased levels of markers of disease
progression and inflammatory response [12]. Furthermore, addition of Se enhances the
phagocytic and bacteriacidal functions of human neutrophils in vitro [13] and Se deficiency
increases macrophage PGE2 and TGF-ß production in rats [14], suggesting that adequate Se
status is crucial for proper functioning of these cell types.

With regards to host defense against invading pathogens, numerous studies have shown that
nutritional deficiency in vitamins or trace elements enhances the susceptibility to infections
[15-17] including respiratory virus infections [18,19]. Generally, it is thought that this is a
result of the effects of the nutritional deficiency on the immune system and the ability to fight
the infection. However, recent studies have demonstrated that nutritional deficiencies of the
host can also affect viral pathogens themselves [18] resulting in viral species that are more
virulent than the parent species. For example, a strain of influenza virus that results in a mild
infection when given to mice, influenza A/Bangkok/1/79, exhibited increased virulence when
given to Se deficient mice [20]. Furthermore, virus subsequently isolated from such Se deficient
mice had significant changes in the viral genome and exhibited greater virulence when given
to mice fed a normal diet [20]. Thus, besides affecting the immune system and the ability to
fight an infection, deficiencies in trace elements such as Se can also modify the virulence of
the virus.

Although, as indicated above, numerous studies have examined the effects of nutritional
deficiencies on the immune system, there are few studies investigating the effects of nutritional
deficiencies on histological and functional changes of structural cells, such as airway epithelial
cells. More importantly, since influenza virus predominantly infects and replicates in epithelial
cells lining the respiratory tract, changes in airway epithelial cell morphology and function
could potentially alter the ability of host cells to respond to an influenza virus infection.
Therefore, we developed an in vitro model of Se-deficient human bronchial epithelial cells and
determined the effects of Se deficiency on mucociliary differentiation, antioxidant enzyme
balance, and influenza-induced cytokine production. Our data show that Se deficiency
enhances mucus production, modifies influenza-induced IL-6 and IP-10 production, and
increases influenza-induced apoptosis in bronchial epithelial cells, suggesting that effects of
Se deficiency on structural cells could modify the immune response to influenza infections.
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Materials and Methods
Cell Culture

Primary human bronchial epithelial cells were obtained from healthy nonsmoking adult
volunteers by cytologic brushing at bronchoscopy as described before [21]. Human bronchial
epithelial cells were expanded to passage 2 in bronchial epithelial growth medium (BEGM,
Cambrex Bioscience Walkersville, Inc., Walkersville, MD ) and then plated on collagen-coated
filter supports with a 0.4 μM pore size (Trans-CLR; Costar, Cambridge, MA) and cultured in
a 1:1 mixture of bronchial epithelial cell basic medium (BEBM) and DMEM-H with
SingleQuot supplements (Cambrex), bovine pituitary extracts (13mg/ml), bovine serum
albumin (BSA, 1.5 μg/ml), and nystatin (20 units). Upon confluency, all-trans retinoic acid
was added to the medium and air liquid interface (ALI) culture conditions (removal of the
apical medium) were created to promote differentiation. From this point on, half of the samples
were cultured in a BEGM : DMEM-H mixture that contained specially formulated Se-deficient
BEBM (Se- BEBM, Cambrex Bioscience Walkersville, Inc.) (see schematic in Figure 1). In
some experiments, differentiated bronchial epithelial cells were treated with 3-Aminotriazole
(50mM; Sigma).

Analysis of selenium levels
Selenium content in the ALI medium was determined as described before [22] by flow injection
hydride generation- /in-situ/ trapping in graphite furnace- atomic absorption spectrometry. An
Analyst 800 spectrometer (Perkin-Elmer, Norwalk, Mass, U.S.A.) equipped with FIAS 400
flow injection accessory was employed. Spectrometer parameters were set as recommended
by manufacturer, Se System II Electrodeless discharge lamp (Perkin-Elmer) as the radiation
source with End-capped graphite tubes permanently modified with 40 μg of iridium were used
for trapping and atomization. Conditions for hydride generation were: carrier gas flow rate 50
ml/min, HCl (1M) flow rate 4.5 ml/min, NaBH4 (0.5%) in KOH (0.4%) with flow rate 1.7 ml/
min, waste flow rate from separator15 ml/min. Sample coil volume was 500 μl. Samples were
diluted 1:1 by HCl (1 M) before analysis. Calibration was performed by the method of standard
additions. Limit of detection of the method was 22 pg of Se, corresponding to 0.044 ng/ml or
0.56nM.

Analysis of antioxidant enzyme activities
Cellular activity levels for glutathione peroxidase 1 (GPX1), catalase, and superoxide
dismutase (SOD) were measured by the NIH funded Biochemistry Core of the UNC Clinical
Nutrition Research Unit (DK56350) according to previously published methods [23-25].

Immunohistochemistry
For the analysis of mucus production, paraformaldehyde-fixed cultures of differentiated nasal
and bronchial epithelial cells were embedded in paraffin and 0.4 micron sections were used
for histochemical analysis of mucous glycoconjugates using alcian blue/periodic acid-Schiff
(AB/PAS) staining. For immunohistochemical analysis of the presence of cilia,
paraformaldehyde-fixed whole mounts of differentiated bronchial epithelial cells were
incubated with antibodies against acetylated α-tubulin (Invitrogen) at 4°C overnight and
fluorescently-labeled secondary antibodies (Alexa-488 conjugated anti-mouse antibody;
Invitrogen). Immunofluorescence was visualized by epifluorescence using a Nikon Microphot-
SA fluorescent microscope as described before [21]. Differentiated epithelial cells were
examined for the presence of fragmented DNA in apoptotic cells by the terminal
deoxynucleotidyl transferase UTP nick end labelling (TUNEL) technique, using the Roche
TUNEL staining kit (Roche; Indianapolis, IN). For the immunohistochemical analysis of
influenza-infected cells and localization of apoptotic cells, acetone-fixed whole mounts of
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differentiated bronchial epithelial cells were incubated with antibodies against influenza A
(Argene, North Massapequa, NY) and activated Caspase 3 (Cell Signaling), respectively,
followed by incubation with either Alexa-488 conjugated anti-mouse antibodies (for influenza)
or Alexa-594 conjugated anti-rabbit antibodies (for Caspase 3). Cells were washed with TBS
and coverslipped using VectaShield with DAPI (Vector Labs, Burlingame, CA), to stain the
nuclei. Immunofluorescence was visualized by use of a Zeiss 510 laser scanning microscope
at the Michael Hooker Microscopy Core Facility at the University of North Carolina at Chapel
Hill as described before [26].

Western blotting
Whole cell lysates were prepared by lysing the cells in RIPA buffer containing 1% Nonidet P
(NP)-40, 0.5% deoxycholate, 0.1% SDS, and protease inhibitors (Cocktail Set III; Calbiochem,
San Diego, CA). One hundred micrograms of whole cell lysate was separated by SDS-PAGE
as described before [21]. This was followed by immunoblotting using specific antibodies to
acetylated α-tubulin (1:2000, Invitrogen), or cytokeratin 13 (1:1000, Novacastra Laboratories
Ltd., Newcastle upon Tyne, UK). Antigen-antibody complexes were stained with anti-rabbit
or anti-mouse, horseradish peroxidase-conjugated antibody (1:4000, Santa Cruz
Biotechnology) and SuperSignal West Pico Chemiluminescent Substrate (Pierce, Rockford,
IL). The chemiluminescent signals were acquired using a 16-bit CCD camera (GeneGnome
system; Syngene, Frederick, MD) and visualized using the GeneSnap software (Syngene).

Infection with influenza
Throughout this study we used influenza A/Bangkok/1/79 (H3N2 serotype) which was
propagated in 10-day-old embryonated hen’s eggs. The virus was collected in the allantoic
fluid and titered by 50% tissue culture infectious dose in Madin-Darby canine kidney cells and
hemagglutination as described before [27]. Stock virus was aliquoted and stored at -80°C until
use. For infection of differentiated bronchial epithelial cells approximately 3 × 105 cells were
incubated with 320 HAU of influenza A Bangkok 1/79 from the apical side for 1 hour, after
which the remaining unattached virus was removed. This infection protocol results in a mild
infection in which about 10-20% of the cells become infected with influenza A. Throughout
the study, effects of selenium deficiency on influenza virus infections were assessed 24 hours
post-infection.

RT-PCR
Total RNA was extracted using TRizol (Invitrogen) as per the supplier’s instruction. First-
strand cDNA synthesis and real-time RT-PCR was performed as described previously [21;
26;28]. The sequences for the Taqman primers and probes used in this study are as following:
HA: probe, 5′-FAM-TGATGGGAAAAACTGCACACTGATAGATGC-TAMRA-3′; sense,
5′-CGACAGTCCTCACCGAATCC-3′; antisense, 5′-
TCACAATGAGGGTCTCCCAATAG-3′; Muc5AC: probe, 5′ -FAM-
CATACAGCCATGCCCAGGATGG-TAMRA-3′; sense, 5′ -
GAGTGTTGGCCGGAGGAA-5′; antisense, 5′ -GGGCAGGGTGGTGCTTGTA-3′;
GAPDH: probe, 5′-JOE-CAAGCTTCCCGTTCTCAGCC-TAMRA-3′; sense, 5′-
GAAGGTGAAGGTCGGAGTC-3′; antisense, 5′-GAAGATGGTGATGGGATTTC-3′. For
the analysis of catalase mRNA levels, real-time PCR was conducted using commercially
available primer and probe sets for human catalase and normalized to β-actin mRNA levels
(both from Applied Biosystems) according to the supplier’s instructions. For all PCR analyses,
relative quantitation of mRNA levels was done using a standard curve obtained through serial
dilutions of a reference sample known to express high levels of the respective target mRNA.
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Analysis of cytotoxicity and cytokine production
Cell culture supernatants from the basolateral compartment were collected 24 hours post-
infection and stored at -20°C until analysis. For analysis of cytotoxicity, supernatants were
analyzed for the presence of lactate dehydrogenase (LDH), a marker of necrotic cell death,
using a commercially available kit (TaKaRa, Shiga, Japan ) according the supplier’s
instructions. IL-6 and IP-10 levels were determined using commercially available ELISA kits
(BD™ OptEIA ELISA kits, BD Bioscience, San Jose, CA) according to the manufacturer’s
instructions.

Statistical Analysis
Data are expressed as means ± S.E.M. of at least three separate experiments. The ELISA and
LDH data in figures 6 and 7 were expressed as fold change of Se-deficient over Se-adequate
cells and analyzed using the Wilcoxon Signed Rank Test, assuming a theoretical mean of 1.
All other data were analyzed using paired t-tests. A value of P <0.05 was considered to be
significant.

Results
In Vitro Model of Se-deficient human respiratory epithelial cells

Previous studies have shown that primary human bronchial epithelial cells can undergo
mucociliary differentiation in vitro when grown under defined culture conditions [21;29;30].
We have expanded this cell culture model and developed an in vitro model of Se-deficient
bronchial epithelial cells. Figure 1A is a schematic of this in vitro model, which is described
in more detail in the Materials and Method section. Briefly, human bronchial epithelial cells
are grown submerged on collagen-coated membranes. Upon reaching confluency, the media
in the apical compartment is removed to establish air-liquid interface condition. At this point
the cell culture samples are divided into two groups: 1.) Se-adequate group (Se+), which
receives normal media with about 4nM of Se and 2.) Se-deficient group (Se-), which receives
media that is deficient (i.e. <0.56 nM) in Se. Mucociliary differentiation is achieved within
15-30 days, upon which the cell culture samples are ready to be used. To assure that Se-
deficiency was achieved by culturing and differentiating bronchial epithelial cells in Se-
deficient media, we analyzed the activity of the Se-dependent antioxidant enzyme glutathione
peroxidase-1 (GPX1). Figure 1B shows that differentiation in Se-deficient media significantly
decreased GPX1 activity, indicating that cellular Se-deficiency was achieved.

Effects of Se-deficiency on mucociliary differentiation
Previous studies have demonstrated that nutritional deficiencies can lead to ultrastructural
changes in the cell [31;32]. To determine whether Se-deficiency modified mucociliary
differentiation and epithelial cell morphology, we analyzed the level of ciliation in these cells
by immunohistochemistry using anti-acetlyated α-tubulin antibodies, since acetylated α-
tubulin is a major component of cilia. Differentiated Se+ and Se- bronchial epithelial cells were
fixed in paraformaldehyde, stained for acetylated α-tubulin, and examined using an
epifluorescence microscope. Figure 2A shows that anti-acetylated α-tubulin antibody strongly
reacts with cilia and that Se+ and Se- bronchial epithelial cells contain large beds of ciliated
cells. In addition, Se-deficiency did not significantly modify the level of ciliation in bronchial
epithelial cells. We also confirmed these observations by analyzing the expression of acetylated
α-tubulin in whole cell lysates from both Se- and Se+ bronchial epithelial cells, which would
yield a more quantitiative analysis of ciliation throughout the entire sample. Figure 2B confirms
the findings shown in figure 2A in that there was no observable difference in markers of
ciliation between Se- and Se+ bronchial epithelial cells. In addition, we also analyzed the level
of cytokeratin 13, a marker of squamous cells. Figure 2B demonstrates that Se deficiency had
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no significant effect on the level of cytokeratin 13. To determine whether Se-deficiency
modifies mucus production in differentiated bronchial epithelial cells, paraffin-embedded
sections were stained for mucus glycoproteins using AB/PAS. Figure 2C shows that Se+
bronchial epithelial cells are covered by a layer of mucus and that Se-deficiency increased the
layer of mucus lining these cells. Although the mucus layer covering the bronchial epithelial
cells appeared greater in Se- cells, there was no apparent increase in the number of goblet cells.
To confirm the observations on increased mucus layer, we analyzed mRNA levels for
Muc5AC, one of the predominant mucins produced by human respiratory epithelial cells
[33]. Figure 2D shows that in bronchial epithelial cells Se-deficiency significantly increases
Muc5AC mRNA levels. Taken together these data indicate that Se-deficiency increases mucus
production in bronchial epithelial cells.

Effects of Se-deficiency on antioxidant enzyme activity
Se is essential for the production and activity of antioxidant enzymes such as glutathione
peroxidase-1 (GPX1), which we have shown was suppressed by Se-deficiency in bronchial
epithelial cells (figure 1B). To examine whether Se-deficiency also modifies the activity of Se-
independent antioxidant enzymes, we also determined catalase and Cu,Zn-SOD activity in
these cells. Interestingly, while Cu,Zn-SOD activity did not change in Se-deficient bronchial
epithelial cells (figure 3A), catalase activity was significantly lower in Se-deficient bronchial
cells (figure 3B). To determine whether the decrease in catalase activity was caused by a
suppression of catalase synthesis in Se-deficient cells, we analyzed catalase mRNA levels in
Se+ and Se- cells. Figure 3C shows that the decrease in catalase activity was not caused by a
decrease in catalase mRNA levels. These data suggest that Se-deficiency also affects the
activity, but not the transcription, of Se-independent antioxidant enzyme activities in bronchial
epithelial cells, and that the suppression of catalase activity in Se-deficient bronchial epithelial
cells may render bronchial epithelial cells even more oxidatively stressed.

Previous studies have demonstrated that oxidative stress can enhance mucus production in
bronchial epithelial cells and that catalase can mitigate this effect [34]. To determine whether
the increased mucus production seen in Se-deficient bronchial epithelial cells (Figures 2B and
2C) was caused by the effects of Se-deficiency on catalase activity, we treated normally
differentiated bronchial epithelial with 3-aminotriazole (3-AT), an inhibitor of catalase
activity, and subsequently analyzed Muc5AC mRNA levels. Figure 4 demonstrates that
treatment with 3-AT significantly enhances Muc5AC mRNA levels in bronchial epithelial
cells, suggesting that the effect of Se-deficiency on mucus production in bronchial epithelial
cells may have been caused by the reduced catalase activity observed in these cells.

Effects of Se-deficiency on influenza virus replication in human bronchial epithelial cells
Because we demonstrated that Se-deficient bronchial epithelial cells had increased mucus
production and decreased GPX1 and catalase activity, we wanted to determine if viral
replication would be affected by Se status. The respiratory epithelium is the major site for
influenza virus replication and it is reasonable to hypothesize that morphological changes of
the respiratory epithelium could modify its susceptibility to influenza virus infections. Se+ and
Se- bronchial epithelial cells were infected with influenza A/Bangkok/1/79 and examined for
viral replication by influenza hemagglutinin (HA) RNA levels and immunohistochemistry 24
hours post-infection. Figure 5A shows that in bronchial epithelial cells, Se-deficiency had no
significant effect on influenza virus HA RNA levels. Visualization of influenza-infected cells
as shown in figure 5B demonstrated that both ciliated and non-ciliated epithelial cells are
infected with influenza and that Se-deficiency had no significant effect on the number of
influenza infected bronchial epithelial cells.
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Effects of Se-deficiency on influenza-induced cytokine production in bronchial epithelial
cells

Cytokines produced by influenza-infected cells are essential in recruiting and activating
immune cells, whose goal it is to ultimately clear the infection. However, too much
inflammation can be damaging to the surrounding tissue. Interleukin-6 (IL-6) is a pleiotropic
pro-inflammatory cytokine released by epithelial cells in response to infection and has been
shown to play a key role during infection. The expression of interferon-inducible protein 10
(IP-10) or CXCL10 is also upregulated by influenza infection. IP-10 recruits and activates T
cells to the site of injury and is also a potent inducer of NK cell activation [35;36]. Thus, both
IL-6 and IP-10 play important roles during influenza infections, with overlapping yet different
roles. To determine the effects of Se-deficiency on influenza-induced cytokine production, we
measured IL-6 and IP-10 protein levels in cell culture supernatants. Figure 6 shows that Se-
deficiency enhanced influenza-induced IL-6 levels (figure 6A) but decreased influenza-
induced IP-10 levels (figure 6B) in bronchial epithelial cells. Interestingly, treatment with 3-
AT had no effect on influenza-induced IP-10 levels (figure 6C), suggesting that the effects of
Se-deficiency on influenza-induced cytokine levels are not mediated by its effects on catalase
activity.

Effects of Se-deficiency on influenza-induced cell death in bronchial epithelial cells
Infection with influenza can cause cell death and has been demonstrated to occur via
predominantly apoptotic pathways [37]. To examine whether Se-deficiency modifies
influenza-induced cell death, we analyzed markers of necrotic as well as apoptotic cell death
in Se+ and Se- cells at 24 hours post influenza infection. Figure 7A demonstrates that influenza
infection does not significantly increase the release of LDH, a marker of cell necrosis, in either
Se+ or Se- cells. In addition, we examined the levels of apoptosis using TUNEL assay and
immunohistochemical staining of cleaved and thus activated caspase 3, in both influenza-
infected Se+ and Se- cells. Figure 7B demonstrates that non-infected Se+ and Se- cells had
little to no appearance of TUNEL-positive apoptotic cells, which was increased by influenza
infections in both Se+ and Se- cells. In addition, Influenza-infected Se+ and Se- cells were
stained for both influenza and activated caspase 3 and examined using confocal microscopy
to determine the level of influenza-induced apoptosis using another marker of apoptosis and
whether infected or non-infected neighboring cells undergo apoptosis. Figure 7C demonstrates
that Se-deficiency enhances the number of apoptotic cells and that while some apoptotic cells
were non-infected cells and did not positively stain for influenza (pink arrows), the majority
of apoptotic cells were also infected with influenza (white arrows). These data suggest that Se-
deficiency enhances influenza-induced apoptosis.

Discussion
Numerous studies have demonstrated that nutritional deficiencies can significantly affect the
susceptibility to viral infections, and many of these studies point to an impaired immune
response as the main cause for these effects [15;38;39]. However, the susceptibility to
respiratory virus infections could also depend on morphology and function of structural cells,
such as respiratory epithelial cells, since these cells are the predominant cell type for respiratory
virus replication. Very little is known whether nutritional deficiencies could induce functional
and/or morphological changes of the respiratory epithelium, which could potentially alter the
susceptibility to viral infections. Using a cell culture model of differentiated human airway
epithelial cells our data presented here demonstrate that deficiency in the essential nutrient Se
induces significant changes in epithelial morphology, influenza-induced cytokine production,
as well as influenza-induced apoptosis, suggesting that effects of nutritional deficiencies on
structural cells can significantly modify the susceptibility to invading pathogens.
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Cellular GPX1 is one of the most abundant selenoproteins in mammals and is often used as a
biomarker for Se status [40]. GPX1 is a tetrameric enzyme with each one of the four subunits
containing one active site of selenocysteine residue. Therefore, a deficiency in Se leads to
decreased GPX1 activity, as seen in our deficient bronchial epithelial cells and shown by others
[41;42]. GPX1 and catalase overlap in their ability to detoxify hydrogen peroxide, with GPX1
also detoxifying lipid hydroperoxides. However, an unexpected finding was that catalase
activity, a Se-independent enzyme, was also decreased under conditions of Se deficiency.
Similar to GPX1, catalase is a tetramer. Within the tetramer are four porphyrin heme (iron)
groups, which are necessary for catalase to interact with its substrate hydrogen peroxide and
therefore are essential for catalase activity. There is evidence that Se affects iron metabolism,
iron uptake, and the activity of other heme-containing enzymes. For example, rats fed Se-
deficient diets showed decreased ferrochelatase activity, the enzyme required for heme
synthesis, as well as heme levels in the intestine, which also led to the decreased activity of
heme-containing enzyme cytochrome P-450 [43]. In addition, in splenic mononuclear cells
isolated from rats, Se deficiency impaired transferrin receptor internalization [44], which is the
major mechanism of nutritional iron uptake. Thus, Se deficiency could decrease catalase
activity in bronchial epithelial cells by modifying iron uptake and/or heme synthesis.

In our in vitro model, differentiation of human bronchial epithelial cells into ciliated cells was
not significantly affected by Se-deficiency. However, Se deficient bronchial epithelial cells
demonstrated enhanced mucus production. Specifically, Se deficiency significantly enhanced
Muc5AC expression and mucus glycoprotein levels covering bronchial epithelial cells.
Interestingly, treatment with the catalase inhibitor 3-aminotriazole (3-AT) had similar effects
on Muc5AC mRNA levels as did Se-deficiency, suggesting that the decreased catalase activity
in Se-deficient cells is at least partially responsible for this effect. This is supported by previous
studies, which have shown that hydrogen peroxide and other forms of oxidative stress can
enhance mucus production in airway epithelial cells and that catalase can mitigate this effect
[34;45-47]. Thus, enhanced levels of oxidative stress in Se-deficient cells caused by decreased
GPX1 and catalase activity is likely the basis for the enhanced mucus production in Se-deficient
bronchial epithelial cells. More recent work has started to delineate the mechanisms by which
oxidative stress enhances mucus production and mucus cells metaplasia. Specifically, work by
Casalino-Matsuda et al. demonstrated that in differentiated bronchial epithelial cells, reactive-
oxygen intermediates (ROI) activated tissue kallikrein, a serine protease related to the
formation of kinins, which in turn induced EGFR activation and enhanced expression of
MUC5AC [45]. In addition, recombinant tissue kallikrein was able to mimic the effects of ROI
with regards to MUC5AC expression. Furthermore, catalase was an inhibitor of tissue
kallikrein [45], suggesting that decreased catalase activity could enhance tissue kallikrein
activity and therefore be a potential mechanism by which Se-deficiency enhanced MUC5AC
expression and mucus levels in bronchial epithelial cells. Interestingly, preliminary analysis
of gene array data comparing Se-deficient and Se-adequate bronchial epithelial cells indicate
that kallikrein expression may be enhanced in Se-deficient epithelial cells (data not shown),
which we are currently examining further.

Although Se-deficient cells had increased mucus production and decreased GPX1 and catalase
activities, Se deficiency did not have a significant effect on the ability of influenza virus to
infect bronchial epithelial cells. However, despite the lack of significant effects on influenza
virus replication, Se deficiency did modify influenza-induced cytokine release. Specifically,
influenza-induced IL-6 release was enhanced, while IP-10 release was decreased in Se-
deficient bronchial epithelial cells. This response was not due to differences in viral load, which
were equivalent between infected Se-adequate and deficient cells. IL-6 is a pleiotropic pro-
inflammatory cytokine, which is also a mediator of fever and the acute phase response. In
addition, IL-6 induces the differentiation of B cells into antibody producing plasma cells and
the activation of T cells. Thus, while IL-6 is essential for the resolution of the infection, an
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increased IL-6 release is likely to contribute to enhance the overall inflammatory response and
symptoms associated with the infection. IP-10 is a chemoattractant for T lymphocytes and
activator of NK cells, thus playing an important role in orchestrating the innate and adapative
immune defense against the invading virus [35;36;48]. Therefore, a decreased release of IP-10
by influenza-infected epithelial cells would impair recruitment and activation of immune cells
that are essential for the innate defense response in the lung as well as subsequent T cell
infiltration. Previous studies have demonstrated that in an elderly population, decreased serum
Se levels are associated with lower percent NK cells [11]. In addition, healthy human volunteers
supplemented with Se demonstrated greater NK cell cytotoxicity [49], further strengthening
the notion that decreased IP-10 released by Se-deficient epithelial cells could impair immune
cell parameters. Taken together, the opposite effects of Se deficiency on influenza-induced
IL-6 and IP-10 release by bronchial epithelial cells may enhance the overall inflammatory
response to the virus and decrease the ability to recruit and activate immune cells to the site of
infection, thus contributing to an overall impaired defense response against the infection.

The induction of apoptotic cell death in a variety of cell types is commonly observed following
influenza infections both in vitro and in vivo [37;50-52]. Apoptotic cell death is often regarded
as part of the host defense response, because it shuts down virus-replicating cells without
inducing an inflammatory response. In addition, many viruses, including influenza virus, have
developed strategies to prevent apoptosis of the host cell [53], which is another indication that
apoptotic death of the host cell is unfavorable for the virus. Our data indicate that Se deficiency
enhanced influenza-induced apoptosis and that the majority of cells undergoing apoptosis were
infected and not non-infected neighboring cells. Specifically, we demonstrate here that in Se
deficient cells influenza infections cause a greater level of activated caspase 3. Assuming that
apoptosis is beneficial to the host, these data would suggest that Se deficiency primes epithelial
cells to limit the infection. However, the role of apoptosis and the consequences of this process
for influenza virus replication or host cell defense have been questioned. For example, recent
data demonstrated that influenza virus replication was strongly impaired by caspase inhibitors
and ectopic expression of caspase 3 significantly increased virus replication [54]. The
mechanism of this effect appears to be mediated by enhanced export of viral RNP complexes
through caspase 3 activation [54]. These data suggest that for its own propagation, influenza
virus may have the ability to use components of the apoptotic process, which is supposed to
shut down viral replication. Therefore, enhanced caspase 3 activation in Se-deficient influenza-
infected cells may have a dual role and ultimately enhance propagation of the infection.
However, in our in vitro cultures, viral load was not changed under conditions of Se deficiency,
suggesting that apoptosis is not a major mechanism for enhancing or decreasing viral titers.

How Se deficiency enhances influenza-induced apoptosis is still unclear. Previous studies have
shown that oxidative stress can induce apoptosis in airway epithelial cells [55;56], suggesting
that the cellular oxidative stress caused by the suppressed GPX-1 and catalase activity seen in
our Se-deficient bronchial epithelial cells could have been responsible for the enhanced
apoptosis seen in these cells. This notion is further supported by studies demonstrating GPX1
and catalase activities influence the sensitivity to oxidative stress-induced apoptosis [57-59].
Thus, the suppressed antioxidant enzyme activities may have rendered Se-deficient epithelial
cells more susceptible to influenza-induced apoptosis.

Taken together, the results presented here strongly suggest that nutritional deficiencies can
modify the morphology of the respiratory epithelium and that these effects are associated with
an altered response to influenza infection. While several studies have demonstrated effects of
nutritional deficiencies on immune functions [15;38;39;60], our data demonstrates that
nutritional deficiencies can have a significant impact on structural cells and their response to
a viral infection. Interestingly, chronic lung diseases such as asthma, COPD, and cystic fibrosis
are also associated with lower serum Se levels [4;61-63] and supplementation with Se has been
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shown to improve lung function in these patients [49]. All of these lung diseases are also marked
by enhanced mucus production and exacerbation of disease symptoms by respiratory virus
infections [64;65]. How decreased serum Se levels impact the pathogenesis of these chronic
lung diseases is not well understood. However, our data suggest that the increased mucus
production and an altered response to viral infection in Se-deficient bronchial epithelial cells
could potentially contribute to the phenotype and enhanced susceptibility to viral infections in
these lung diseases, as well as in normal individuals with marginal to deficient Se status.
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Figure 1.
In vitro model of Se-deficient human bronchial epithelial cells. A) Schematic of in vitro
differentiation of bronchial epithelial cells under Se-deficient and adequate conditions. B.)
GPX1 activity in lysates from differentiated Se adequate (Se+) and Se deficient (Se-) bronchial
epithelial cells. * significantly different from Se+ controls; p<0.05
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Figure 2.
Effect of Se deficiency on the morphology of differentiated bronchial epithelial cells. A.)
Ciliated cells in cultures of differentiated Se-adequate (Se+) and Se-deficient (Se-) bronchial
epithelial cells were visualized using indirect immunofluorescent localization of acetylated α-
tubulin. B.) Whole cell lysates from Se+ and Se- bronchial epithelial cells were examined for
acetylated α-tubulin and cytokeratin 13 levels Western blotting. Representative immunoblots
for acetylated α-tubulin and cytokeratin 13 from two separate samples are shown. C.) Sections
of paraffin-embedded samples of differentiated Se adequate (Se+) and Se deficient (Se-)
bronchial epithelial cells were stained for mucus glycoproteins using AB/PAS. D.) Total RNA
isolated from Se+ and Se- bronchial epithelial cells was analyzed for Muc5AC mRNA levels.
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Data were normalized for the expression of GAPDH and expressed as mean ± S.E.M.
*significantly different from Se+ cells; p<0.05
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Figure 3.
Effects of Se deficiency on antioxidant enzyme activities. Lysates from differentiated Se
adequate (Se+) and Se deficient (Se-) bronchial epithelial cells were analyzed for A.) total
superoxide dismutase (SOD) activity or B.) catalase activity. C.) Total RNA isolated from of
Se+ and Se- bronchial epithelial cells was analyzed for catalase mRNA levels. Data were
normalized for the expression of ß-actin. *significantly different from Se+ cells; p<0.05
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Figure 4.
Effects of 3-Aminotriazole on Muc5AC expression. Differentiated bronchial epithelial cells
were treated with 50mM 3-Aminotriazole (3-AT) for 24 hrs and analyzed for Muc5AC mRNA
levels. Data were normalized to GAPDH mRNA. *significantly different from control cells;
p<0.05
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Figure 5.
Effects of Se deficiency on influenza virus infections. A.) Total RNA isolated from of Se+ and
Se- bronchial epithelial cells was analyzed for HA mRNA levels 24 hours post-infection. Data
were normalized for the expression of GAPDH. B.) Acetone-fixed cultures of differentiated
Se+ and Se- bronchial epithelial cells were labeled with anti-influenza A antibodies and
visualized using confocal microscopy.
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Figure 6.
Effects of Se deficiency on influenza-induced cytokine production. Basolateral supernatants
from influenza-infected Se+ and Se- bronchial epithelial cells were analyzed for A.) IL-6 and
B.) IP-10 levels 24 hours post-infection and expressed as fold change over the levels present
in non-infected control cells. *significantly different from Se+ cells; p<0.05 C.) Differentiated
bronchial epithelial cells were treated with 50mM 3-Aminotriazole (3-AT) and infected with
influenza. IP-10 levels were analyzed in basolateral supernatants collected 24 hours post-
infection and expressed as fold change over the levels present in non-infected control cells.
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Figure 7.
Effects of Se deficiency on influenza-induced cell death. A.) Basolateral supernatants from
influenza-infected Se+ and Se- bronchial epithelial cells were analyzed for LDH levels and
expressed as fold change over the levels present in non-infected control cells. B.) and C.)
Cultures of differentiated Se+ and Se- bronchial epithelial cells were fixed in acetone and
examined B.) for detection of apoptotic cells using TUNEL assay (FITC) and nuclear staining
using DAPI (blue) or C.) for co-localization of apoptotic and influenza infected cells using
anti-influenza A antibodies (green) and anti-activated caspase 3 antibodies (red) and visualized
using confocal microscopy.
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