
Deconstructing sickle cell disease: Reappraisal of the role of
hemolysis in the development of clinical subphenotypes

Gregory J. Katoa*, Mark T. Gladwina, and Martin H. Steinbergb

aVascular Medicine Branch, National Heart, Lung and Blood Institute; Critical Care Medicine Department,
Clinical Center, National Institutes of Health, 10 Center Drive, Building 10CRC 5-5140, Bethesda, MD
20892-1476, U.S.A.

bCenter of Excellence in Sickle Cell Disease, E248, Boston Medical Center, 88 E Newton St, Boston, MA
02118, U.S.A.

Summary
Hemolysis, long discounted as a critical measure of sickle cell disease severity when compared with
sickle vaso-occlusion, may be the proximate cause of some disease complications. New mechanistic
information about hemolysis and its effects on nitric oxide (NO) biology and further examination of
the subphenotypes of disease requires a reappraisal and deconstruction of the clinical features of
sickle cell disease. The biology underlying clinical phenotypes linked to hemolysis may increase our
understanding of the pathogenesis of other chronic hemolytic diseases while providing new insights
into treating sickle cell disease.

The pathophysiological roles of dysregulated NO homeostasis and sickle reticulocyte adherence have
linked hemolysis and hemolytic rate to sickle vasculopathy. Nitric oxide binds soluble guanylate
cyclase which converts GTP to cGMP, relaxing vascular smooth muscle and causing vasodilatation.
When plasma hemoglobin liberated from intravascularly hemolyzed sickle erythrocytes consumes
NO, the normal balance of vasoconstriction:vasodilation is skewed toward vasoconstriction.
Pulmonary hypertension, priapism, leg ulceration and stroke, all subphenotypes of sickle cell disease,
can be linked to the intensity of hemolysis. Hemolysis plays less of a role in the vaso-occlusive-
viscosity complications of disease like the acute painful episode, osteonecrosis of bone and the acute
chest syndrome.

Agents that decrease hemolysis or restore NO bioavailability or responsiveness may have potential
to reduce the incidence and severity of the hemolytic subphenotypes of sickle cell disease. Some of
these drugs are now being studied in clinical trials.
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Introduction
Sickle cell disease, a systemic disorder whose proximate cause is a mutation in the β-globin
chain of hemoglobin, has as its major clinical features acute episodes of pain, stroke, priapism
and acute chest syndrome and chronic organ damage, like osteonecrosis, renal failure and
chronic hemolytic anemia.1 Dysregulated NO homeostasis, a consequence of hemolytic
anemia, may be responsible for some of the complications of sickle cell disease and other
chronic forms of hemolytic anemia. This article will review the evidence for a
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pathophysiological model of sickle cell disease that relates certain clinical complications
primarily to blood viscosity and vaso-occlusion, and other complications mainly to hemolysis-
linked endothelial dysfunction.

Nitric oxide and the hemolysis phenotype
Hemolytic anemia varies in intensity among the genotypes of sickle cell disease. It is most
severe in patients with sickle cell anemia who are homozygous for the sickle hemoglobin gene
mutation (HBB; glu6val), less severe in individuals with sickle cell anemia and concurrent α
thalassemia (homozygous or heterozygous for a single α-globin gene (HbA1, HBA2) deletion,
a genotype found in a third of individuals with sickle cell anemia, and least severe in patients
with HbSC disease (compound heterozygosity for HbS and HbC (HBB; glu6lys). Even within
a single genotype, the hemoglobin concentration is variable. For example, in sickle cell anemia,
51Cr red cell survival ranges between two and 21 days and this is reflected in similarly wide
variations of total hemoglobin concentration, reticulocyte count, bilirubin level and lactic
dehydrogenase (LDH) levels, all clinical markers of hemolysis.2,3 Hemolytic anemia may be
the driving force behind some complications of sickle cell disease because of its effects on NO
bioavailability.4 Nitric oxide binds soluble guanylate cyclase, which converts GTP to cGMP,
relaxing vascular smooth muscle and causing vasodilatation (Fig. 1). Plasma hemoglobin
liberated from intravascularly destroyed sickle erythrocytes consumes NO, producing
methemoglobin and bio-inactive nitrate. A state of reduced endothelial NO bioavailability in
sickle cell disease impairs downstream homeostatic vascular functions of NO, like inhibition
of platelet activation and aggregation and transcriptional repression of the cell adhesion
molecules, VCAM-1, ICAM-1 (vascular cell adhesion molecule-1, intercellular adhesion
molecule-1), P-selectin and E-selectin.5 Hemoglobin, heme and heme iron catalyze the
production of oxygen radicals, further limiting NO bioavailability and activating endothelium.
6 Lysed erythrocytes also liberate arginase that destroys L-arginine, the substrate for NO
production, providing another mechanism for endothelial NO deficiency.7 Although not linked
directly to hemolysis, reactive oxygen species, generated at high rates in patients with sickle
cell disease, also consume NO.8,9 The normal balance of vasoconstriction to vasodilation is
therefore skewed toward vasoconstriction, endothelial activation and proliferation. Both
hemolytic rate and splenectomy (surgical and functional) are associated with red cell membrane
damage, phosphatidylserine exposure at the red cell membrane surface, activation of tissue
factor and thrombosis.10–18 Speculatively, chronic anemia and tissue ischemia might also
contribute to a proliferative vasculopathy via activation of HIF-1-(hypoxia inducible factor)
dependent factors such as iNOS (inducible nitric oxide synthase), erythropoietin, and VEGF
(vascular endothelial growth factor), which has been seen in an animal model of pulmonary
hypertension.19,20

Pulmonary hypertension and hemolysis
Pulmonary hypertension affects about 30% of patients with sickle cell anemia and is a major
risk factor for near-term death.21–24 Other varieties of hemolytic anemia have also been linked
to pulmonary hypertension, particularly in splenectomized patients, including beta-thalassemia
intermedia and major, pyruvate kinase deficiency, and hereditary spherocytosis.11,12,25–36
Pulmonary thrombosis, a common complication of pulmonary hypertension, is seen frequently
in these hemolytic disorders, especially following splenectomy.12,15,27,35,37,38
Splenectomy has been previously suspected to play a role in the development of vasculopathy
in otherwise healthy patients, although this point remains controversial.39,40 In patients with
thalassemia, plasma hemoglobin levels preliminarily have been reported to be higher in
splenectomized patients than non-splenectomized patients.41 This remains to be confirmed
and further investigated, but splenectomy removes a large portion of the reticuloendothelial
system, lowering the overall hemolytic rate, possibly shifting some of the hemolysis from
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extravascular to intravascular compartment. This hypothetically would liberate more plasma
hemoglobin, which would lead to more intense scavenging of nitric oxide, with
vasoconstrictive and prothrombotic consequences. Surgical asplenia in thalassemia and
functional asplenia in sickle cell disease might also lead to prolonged circulation of abnormal
red cells with cell surface phosphatidylserine, implicated in hemostatic activation in both
diseases.10,11,17,42

In patients with sickle cell disease or thalassemia, markers of hemolysis are associated with
indicators of reduced NO availability, endothelial dysfunction and pulmonary hypertension.
Markers of hemolysis such as plasma hemoglobin and serum lactate dehydrogenase (LDH)
correlate closely with nitric oxide consumption and dysregulated metabolism of arginine, the
substrate of nitric oxide synthase.4,43 These markers also correlate with endothelial
dysfunction manifested as abnormal vascular reactivity in forearm blood flow studies, or as
elevated plasma levels of soluble endothelial adhesion molecules.43–45 Finally, serum LDH,
high bilirubin and low total hemoglobin are linked to the prevalence and severity of pulmonary
hypertension.22,43 Some of these same observations have been made in thalassemia
intermedia and major.46

Hemolysis and the priapism paradox
Priapism has a distinctive relationship to hemolysis and pulmonary hypertension. It is one of
the only complications of sickle cell disease found to be associated with pulmonary
hypertension in sickle cell disease.22,43 Priapism is associated with reduced hemoglobin level
and the hemolytic markers, reticulocyte count, bilirubin, LDH and aspartate aminotransferase
(AST).43,47 Patients with a history of priapism have a fivefold greater risk of developing
pulmonary hypertension.22 Consistent with an epidemiological link between pulmonary
hypertension, priapism, and hemolytic pathobiology, priapism and pulmonary hypertension
are more common in individuals with sickle cell anemia than patients with sickle cell anemia-
α thalassemia or HbSC disease.7,47 Similar to pulmonary hypertension, priapism may also
complicate unstable hemoglobinopathy, β thalassemia intermedia, paroxysmal nocturnal
hemoglobinuria and other types of hemolytic anemia where NO scavenging by plasma
hemoglobin is likely.48–55

Since NO is generally believed to play a role in normal penile erection, it is paradoxical that
chronically impaired NO bioavailability is associated with priapism. For example, it is well
known that increasing NO-dependent cGMP levels by inhibition of phosphodiesterase 5
(PDE5) with drugs like sildenafil increases erectile responses. However, consistent with this
association, increased priapic activity is seen in the severely NO deficient double nos3/nos1
knockout mouse.56 This unexpected priapism was attributed to severe down-regulation of
PDE5 due to chronic NO deficiency resulting in episodic uncontrolled cGMP-dependent
vasodilation of the penile erectile tissue, presumably by activation of soluble guanylate cyclase
by other non-NO dependent mediators such as CO or voltage gated signaling. Such a paradox
suggests a potential beneficial effect of PDE5 inhibitors, such as sildenafil, on priapic activity.
57,58 Perhaps more importantly, this pathobiology suggests that efforts to control hemolytic
rate may reduce priapic activity.

Leg ulcers and hemolysis
Patients with leg ulcers had lower hemoglobin levels and higher levels of lactate
dehydrogenase, bilirubin, aspartate aminotransferase and reticulocytes than did age and sex
matched control patients with sickle cell anemia but without leg ulcers.59 Age-adjusted
comparisons showed that sickle cell anemia-α thalassemia and HbSC disease were more
frequent among controls than leg ulcer cases. These results strongly suggested that the
likelihood of having leg ulcers was related to the intensity of hemolysis.43,47 Similar to
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pulmonary hypertension and priapism, cutaneous leg ulcers are also seen in other forms of
hemolytic anemia.60–69 The incidence of leg ulcers does not appear to be linked to frequency
of vaso-occlusive crisis.59,70

Stroke and hemolysis
The evidence linking stroke to hemolysis is more circumstantial and less definitive. In several
studies of stroke in sickle cell disease, stroke was associated with lower hemoglobin
concentration.71 Coexistent α thalassemia protects patients with sickle cell anemia from stroke.
72 Likewise, the prevalence of α thalassemia was significantly higher in children with normal
transcranial Doppler (TCD) flow rates than in patients with high flow velocity, a risk factor
for stroke.73 Whether this is due to the known effect of α thalassemia to reduce hemolysis and
increase hemoglobin, or to some other effect of α thalassemia on the sickle erythrocyte is
unknown. Supporting a link between hemolytic risk and stroke risk, in children with sickle cell
disease and abnormally high TCD velocities, chronic transfusion simultaneously reduces the
hemolytic rate, plasma hemoglobin level and the risk for stroke.74,75 In another study, silent
cerebral infarct also was associated with lower hemoglobin, although there was no association
of α thalassemia, reticulocyte count, AST or bilirubin with silent infarct.76

A self-reported history of stroke is associated with pulmonary hypertension in patients with
sickle cell disease.22 In addition, we have reported a case series of six adult patients with sickle
cell disease and cerebrovascular disease, with overt or sub-clinical cerebral infarcts, all of
whom had pulmonary hypertension.77 All six patients shared a characteristic profile of
particularly severe hemolysis seen in most sickle cell patients with pulmonary hypertension.
There are many similarities in the epidemiological, physiological and histopathological
features of these two complications of sickle cell disease, and it is intriguing to hypothesize
that, like pulmonary hypertension, part of the pathophysiology of cerebrovascular disease
might involve impaired NO bioavailability.

Fetal hemoglobin (HbF), α thalassemia and the viscosity-vaso-occlusive
phenotype

High HbF levels reduce the incidence of some subphenotypes of sickle cell disease, like
osteonecrosis,78 acute chest syndrome79,80 and acute painful episodes (Table 1).80,81 HbF
level has not been associated with protection from pulmonary hypertension, stroke or priapism.
22,47,71 This is paradoxical, since HbF expression in patients with sickle cell disease is well
known to be associated with decreased overall hemolysis. The solution to the paradox may lie
in the remarkably high rate of intense hemolysis in the fraction of red cells that fail to express
HbF.82 In addition, potential associations of HbF with these subphenotypes may also be
obscured by analytical approaches that fail to account for the interactions of many other genetic
modifiers with HbF.83 The principal observed clinical benefits of HbF are on the viscosity-
vaso-occlusive phenotype, potentially due to the anti-sickling effect of HbF.81

While concurrent α thalassemia also decreases hemolysis,2,84 it also is protective for the
putatively hemolysis-associated phenotypes of leg ulcers,85–87 priapism47 and stroke,72,
73,88 and it is associated with increased risk of the viscosity-vaso-occlusive phenotypes of
acute painful episodes89–92 and osteonecrosis.85,93,94 Similarly, α thalassemia has also been
associated with increased incidence of another viscosity-vaso-occlusive complication, namely
the acute chest syndrome,85 although the opposite result has been seen in smaller studies or
in children.87,89 In general, the phenotypic associations of α thalassemia closely mirror the
associations of high hemoglobin (Table 1).
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Hemolysis and the sickle reticulocyte, initiators of vaso-occlusion
Hemolysis promotes adhesive properties of circulating cells and the vessel wall. Sickle
reticulocytes, increased in number in response to hemolysis, display receptors and ligands
responsible for their adherence to endothelium and leukocytes. Under flow conditions,
reticulocytes were the most adherent of the heterogeneous population of sickle erythrocytes.
95 Reticulocyte adherence provides an additional link between hemolytic anemia and sickle
vaso-occlusion. Sickle erythrocytes adhere to cultured endothelial cells and the tenacity of
adherence reflects the severity of disease.96,97 Receptors and ligands for this interaction have
been characterized.98,99 Sickle erythrocyte adherence also varies according to the hemoglobin
genotype being most manifest in sickle cell anemia. Even among patients with this genotype,
adherence varies about twenty-fold.96 Since most of the endothelial cell adhesion molecules
that bind sickle reticulocytes are normally suppressed by NO, decreased NO bioavailability
resulting from intravascular hemolysis might also contribute to sickle erythrocyte adherence.
44,100–105

Hemolysis in geographic subgroups
The prevalence of priapism and leg ulcers is reported to be much higher in patients with sickle
cell disease in Jamaica, who manifest severe hemolysis, than those in India or Greece, in whom
less severe hemolysis is seen.106–108 However, the rates of vaso-occlusive crisis and acute
chest syndrome are comparable between these geographic subgroups. Although one might
suspect the geographic difference in priapism and leg ulcer rates to be due to differences in
fetal hemoglobin levels, in the Cooperative Study of Sickle Cell Disease conducted in the
U.S.A., priapism and leg ulcers were associated with severity of hemolysis and not with fetal
hemoglobin levels.47,59 This further supports the concept of a hemolysis-endothelial
dysfunction subphenotype distinct from the viscosity-vaso-occlusion subphenotype.

Hemolysis and desaturation
Several groups have found an association of low transcutaneous oxygen saturation of
hemoglobin with elevated serum lactate dehydrogenase, severity of anemia and reticulocytosis,
suggesting a link between hemolysis and hypoxemia.43,109–112 Speculatively, this link might
involve hemolysis-associated pulmonary hypertension and consequent ventilation-perfusion
mismatch, although other factors may also play a role.113 Further investigation is required to
understand this observation.

Hemolysis and animal models
More definitive scientific evidence has been obtained in animals showing that hemolysis causes
vasomotor instability, supporting the extensive epidemiological evidence in humans.
Experimentally induced hemolysis in dogs provokes systemic and pulmonary hypertension,
renal dysfunction, and diminished vascular response to NO donors.114 These findings are
directly associated with biochemical evidence of stoichiometric oxidation of nitric oxide by
cell-free plasma hemoglobin. Furthermore, they are attenuated by administration of inhaled
nitric oxide, which oxidizes cell-free plasma hemoglobin to methemoglobin, preventing its
scavenging of endogenous NO. These biochemical and physiological data in a large animal
model provide the strongest mechanistic evidence to date for a human syndrome of hemolysis-
associated dys-egulation of NO bioactivity.

Augmenting the NO pathway in sickle cell disease
Therapies directed at restoring NO homeostasis have shown promise in preliminary studies in
patients with sickle cell disease. In children with sickle cell disease presenting to the emergency
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department with vaso-occlusive pain crisis, inhaled nitric oxide therapy was associated with
trends toward lower pain scores, decreased analgesic requirements, and shorter hospital stay.
115 A larger scale study is currently under way. Oral administration of the NO synthase
substrate L-arginine has been effective in a pilot study of sickle cell pulmonary hypertension.
116 Inhibition of phosphodiesterase-5 by sildenafil promotes accumulation of cGMP,
amplifying the effect of NO in pulmonary vascular smooth muscle, improving hemolysis-
associated pulmonary hypertension in two preliminary human trials.117–119 These therapies
cannot yet be recommended until larger scale clinical trials are completed, but further research
is clearly warranted in this area.120

Conclusions: A new perspective on sickle subphenotypes and goals for
treatment

Hemolytic and viscosity-vaso-occlusive phenotypes must have substantial areas of overlap.
Nevertheless, this dichotomization helps place subphenotypes of sickle cell disease into a new
context (Fig. 2).121 Hemolytic anemia and increased NO scavenging play a major role in the
propensity to acquire the subphenotypes of pulmonary hypertension, stroke, leg ulcer and
priapism. At least the latter three are ameliorated by α thalassemia that reduces hemolysis and
improves anemia. HbF, while it should not be disregarded as a modulator of these
subphenotypes, has little direct protective effect against these vasculopathic complications.
Distinct from these phenotypes are ones associated with increased blood viscosity, like
osteonecrosis, acute chest syndrome and painful episodes. Adversely affected by α thalassemia,
their prevalence is directly associated with higher hemoglobin concentration and HbF has a
protective effect. These data serve to support a concept of subphenotypes in sickle cell disease,
as previously proposed by others.70,121

Hemolytic anemia-induced phenotypes are likely to be improved by transfusion and agents
that increase NO bioavailability or dramatically reduce hemolysis.122 HbF induced by
hydroxyurea appears to have an anti-sickling effect that reduces the severity of viscosity-vaso-
occlusive complications. However, the heterocellular HbF distribution induced by
hydroxyurea may not reduce hemolysis sufficiently to correct the hemolysis-endothelial
dysfunction complications.82 In order to significantly impact the hemolytic complications,
HbF-inducing agents might have to achieve a pancellular distribution of HbF.

An increased fraction of dense cells is present in most patients with sickle cell disease and HbS
polymerization is critically dependent on cell density. Drugs capable of reducing cell density
are accompanied by decreased hemolysis and clinical trials of some of these agents have started.
123,124 Agents that decrease hemolysis or restore NO bioavailability or the responsiveness of
the vasculature to NO may have potential to reduce the incidence and severity of the hemolytic
subphenotypes of sickle cell disease.

Practice Points
• Adults with sickle cell disease and thalassemia intermedia or major should be

screened by echocardiogram for a tricuspid regurgitant jet velocity (TRV) 2.5
m/sec, suggestive of pulmonary hypertension. Patients with elevated TRV should
be referred to a pulmonologist or cardiologist knowledgeable in
hemoglobinopathy-associated pulmonary hypertension.

• Clinicians should be alert to a syndrome of hemolysis-endothelial dysfunction,
including high serum lactate dehydrogenase levels, pulmonary hypertension, leg
ulcers and priapism.
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Research Agenda
• Role of oxidant stress in reducing nitric oxide bioactivity in sickle cell disease.
• Efficacy of the endothelin receptor antagonist bosentan or phosphodiesterase-5

inhibitors in hemolysis-associated pulmonary hypertension.
• Efficacy of novel nitric oxide donors in acute and chronic sickle cell ischemic

tissue injury.
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Figure 1.
Intravascular hemolysis reduces nitric oxide bioactivity. Nitric oxide is produced by isoforms
of nitric oxide (NO) synthase, using the substrate L-arginine. Intravascular hemolysis
simultaneously releases hemoglobin, arginase, and lactate dehydrogenase (LDH) from red cells
into blood plasma. Cell-free plasma hemoglobin stochiometrically inactivates NO, generating
methemoglobin and inert nitrate (A). Plasma arginase consumes plasma L-arginine to
ornithine, depleting its availability for NO production (B). LDH also released from the red cell
into blood serum serves as a surrogate marker for the magnitude of hemoglobin and arginase
release. NO is also consumed by reactions with reactive oxygen species (O2

−) produced by the
high levels of xanthine oxidase activity and NADPH oxidase activity seen in sickle cell disease,
producing oxygen radicals like peroxynitrite (ONOO-)(C). The resulting decreased NO
bioactivity in sickle cell disease is associated with pulmonary hypertension, priapism, leg
ulceration, and possibly with non-hemorrhagic stroke. A similar pathobiology is seen in other
chronic intravascular hemolytic anemias.
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Figure 2.
Model of overlapping subphenotypes of sickle cell disease. Published data suggest that patients
with sickle cell disease with higher hemoglobin levels have a higher frequency of viscosity-
vaso-occlusive complications closely related to polymerization of sickle hemoglobin, resulting
in erythrocyte sickling and adhesion. Such complications include vaso-occlusive pain crisis,
acute chest syndrome, and osteonecrosis. In contrast, a distinct set of hemolysis-endothelial
dysfunction complications involving a proliferative vasculopathy and dysregulated vasomotor
function, including leg ulcers, priapism, pulmonary hypertension, and possibly non-
hemorrhagic stroke, is associated with low hemoglobin levels, and high levels of hemolytic
markers such as reticulocyte counts, serum lactate dehydrogenase, plasma hemoglobin and
arginase, producing a state of impaired nitric oxide bioavailability. The spectrum of prevalence
and severity of each of these subphenotypes overlap with each other. Patients with α-
thalassemia trait tend to have less hemolysis and higher hemoglobin levels, tending to decrease
the prevalence of hemolysis-endothelial dysfunction, and tending to increase the prevalence
of viscosity-vaso-occlusion. The effect of fetal hemoglobin expression or chronic red cell
transfusion is more complex, simultaneously increasing hemoglobin level, but reducing
sickling and hemolysis.
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Table 1
Patterns of association of known prognostic factors with specific complications of sickle cell disease

Prognostic Factor Viscosity-Vaso-occlusive Subphenotype Hemolysis-Endothelial Dysfunction Syndrome

 VOC ACS AVN Ulcers PHT Priapism Stroke

High LDH - - - ↑ ↑ ↑ ?
High hemoglobin ↑ ↑ ↑ ↓ ↓ ↓ ↓
α-thalassemia ↑a ↑/↓ ↑a ↓ ? ↓ ↓
High HbF ↓ ↓ ↓ ↓ - - -
Hydroxyurea ↓ ↓ ? ? - ? ↓

Abbreviations: VOC, vaso-occlusive pain crisis; ACS, acute chest syndrome; AVN, avascular necrosis of bone; PHT, pulmonary hypertension; LDH,
serum lactate dehydrogenase; HbF, fetal hemoglobin; ↑, increased risk; ↓, decreased risk; -, no change in risk observed; ?, effect on risk has not been well

evaluated. The information in this table is derived from recent reviews and other publications.43,47,81,125 More detailed information is presented in the
text.

a
Permissive in patients with HbSS, protective in patients with HbSC.
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