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Kinematic analysis has provided important insights into the biology of growth by revealing the distribution of expansion within
growing organs. Modern methods of kinematic analysis have made use of new image-tracking algorithms and computer-assisted
evaluation, but these methods have yet to be adapted for examination of growth in a variety of plant species or for analysis of
graviresponse. Therefore, a new image-analysis program, KineRoot, was developed to study spatio-temporal patterns of growth
and curvature of roots. Graphite particles sprinkled on the roots create random patterns that can be followed by image analysis.
KineRoot tracks the displacement of patterns created by the graphite particles over space and time using three search algorithms.
Following pattern tracking, the edges of the roots are identified automatically by an edge detection algorithm that provides root
diameter and root midline. Local growth rate of the root is measured by projecting the tracked points on the midline. From the
shape of the root midline, root curvature is calculated. By combining curvature measurement with root diameter, the differential
growth ratio between the greater and lesser curvature edges of a bending root is calculated. KineRoot is capable of analyzing a
large number of images to generate local root growth and root curvature data over several hours, permitting kinematic analysis of
growth and gravitropic responses for a variety of root types.

Detailed analysis of plant growth requires measure-
ments that capture the large spatial and temporal het-
erogeneity of the expansion and differentiation of plant
organs. While measurement of the aggregate growth of
a plant organ provides important information, such as
overall growth rate and velocity, the spatial distribu-
tion of growth is not described by these measure-
ments. A number of researchers have characterized
growth zones by employing kinematic analysis—an
aspect of study of dynamics of physical motion (e.g.
acceleration, velocity, etc.) without reference to the
forces resulting in the movement (Gandar, 1983). As
applied to plant growth, kinematics requires observa-
tion of the motion of discrete elements of an organ over
time, from which the velocity and acceleration of those
elements within a specified spatial context may be
quantified.

Kinematic analysis has been widely used to deter-
mine the growth profiles (Silk and Erickson, 1979) of

elongating plant organs, such as roots, stems, and
leaves, in which the spatial distribution of growth may
or may not be time dependent. More than six decades
ago, using a compound microscope, Goodwin and
Stepka (1945) measured cell division and the displace-
ment of epidermal cells in Phleum roots at 30-s inter-
vals in order to describe the processes of growth and
maturation. Later studies have combined measure-
ment of incremental organ growth and increase in cell
length and cell number to define components of
growth and analyze the spatial distribution of elonga-
tion (Erickson and Sax, 1956; Goodwin and Avers,
1956; Bertaud et al., 1986; Ben-Haj-Salah and Tardieu,
1995; Beemster et al., 1996; Sacks et al., 1997; Beemster
and Baskin, 1998). In addition, relative elemental
growth rate, describing the instantaneous displacement
of points across a growing organ, has been analyzed
for the two-dimensional growth of leaves (Erickson,
1966). Kinematic analysis has been used to study the
influence of environmental factors on spatial and tem-
poral growth patterns, e.g. effect of water stress (Sharp
et al., 1988; Fraser et al., 1990; Liang et al., 1997; Sacks
et al., 1997), shoot irradiance (Muller et al., 1998), and
temperature (Pahlavanian and Silk, 1988; Walter et al.,
2002) on maize (Zea mays) primary root elongation,
and influence of nitrogen supply (Gastal and Nelson,
1994) and water stress (Durand et al., 1995) on fescue
(Festuca spp.) leaf growth. Kinematic analysis has also
been employed to describe the influence of biotic
stress, such as aphid infestation, on elongation rate
of alfalfa (Medicago sativa) shoot (Girousse et al., 2005).
Recently, kinematic analysis has been used to analyze
the effect of phosphorus deficiency on the elongation
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rate of the primary root of Arabidopsis (Arabidopsis
thaliana; Ma et al., 2003) and grass leaf growth (Kavanova
et al., 2006). Application of the kinematic approach in
such diverse studies shows the utility of this technique in
understanding the details of plant growth.

Various methods have been employed to visualize
the spatial patterns of expansion for distinct physical
elements of an organ (Erickson and Sax, 1956; Gandar,
1983). Many approaches involve marking the expand-
ing regions of plant organs with ink, graphite particles,
charcoal particles, carbon-water slurries, and needle
holes, then measuring the displacement of the markers
over time (Selker and Sievers, 1987; Sharp et al., 1988;
Gould and Lord, 1989; Ben-Haj-Salah and Tardieu,
1995; Sacks et al., 1997; Beemster and Baskin, 1998;
Granier and Tardieu, 1998, 1999; Muller et al., 1998;
Hu et al., 2000). The displacement of these identifiable
markers on the surfaces of the growing organs can be
measured manually with a ruler or with a binocular
microscope, or by taking time-lapse photographs us-
ing still or video cameras (Sharp et al., 1988; Gould and
Lord, 1989; Bernstein et al., 1993; Ben-Haj-Salah and
Tardieu, 1995; Sacks et al., 1997; Beemster and Baskin,
1998; Granier and Tardieu, 1998, 1999; Muller et al.,
1998; Hu et al., 2000). More recently, instead of mark-
ing the growing organ, researchers have measured
spatio-temporal displacements of natural landmarks
such as vein structures on leaves (Schmundt et al.,
1998) or computationally discernible patterns on the
roots (van der Weele et al., 2003), and then applied
various methods of image analysis for quantification
of growth. Schmundt et al. (1998) used image sequence
analysis, which they termed optical growth analysis,
for measurement of growth in leaves of Ricinus com-
munis and Nicotiana tabacum. They visualized leaf vein
structures using infrared light and then employed
computer-assisted image-analysis software based on a
structure-tensor approach (Jahne, 1997) to obtain high-
resolution growth maps of leaves. Their study resulted
in quantification of the actual growth rates and
changes in growth rates over time of the actively
expanding leaves. Later, this method was modified by
Walter et al. (2002), who applied automated image
sequence analysis for detailed study of relative ele-
mental growth rate distribution of growing maize
primary roots influenced by variation in root temper-
ature. Recently, van der Weele et al. (2003) introduced
a new computer-assisted technique that involved the
combination of two methods, the structure-tensor
(Jahne, 1997) and robust matching algorithms (Black
and Anandan, 1996), to measure the expansion profile
of a growing root at high spatio-temporal resolution.
They captured digital images of an Arabidopsis root at
5- or 10-s intervals, and nine consecutive images were
analyzed using the structure-tensor method to find a
line of minimum variation in pixel intensity and to
define the moving and static portions of the root. van
der Weele et al. (2003) used the robust matching
algorithm to improve the initial, structure-tensor-
based estimates of velocity.

In most of the studies discussed above, the primary
objective was to characterize the growth of a plant
organ. However, we wanted to characterize both root
growth and gravitropic curvature of the basal roots of
common bean (Phaseolus vulgaris) in response to grav-
ity. Whereas one-dimensional kinematic study in the
direction of growth is sufficient for identifying and
characterizing the growth zones of the roots, at least
two-dimensional kinematic analysis is essential for
our purposes. It is necessary to examine root growth
and bending over a relatively long period (4–6 h) to
accommodate the time scales associated with changes
in growth angle of basal roots. The structure-tensor
method used by a number of researchers (Schmundt
et al., 1998; van der Weele et al., 2003) calculates local
root or leaf growth velocity with a high degree of con-
fidence only if there are many high-contrast patterns,
which are lacking at the magnification required to
follow the growth of larger plant organs such as the
roots of most crop plants. In the absence of such pat-
terns, the structure-tensor method can only produce a
very sparse velocity field with low confidence. There-
fore, we developed a novel semiautomated image-
processing system to analyze the gravitropic growth of
roots that takes advantage of patterns not only at a
pixel site but also in its neighborhood. As a result, the
new approach can generate reliable root growth data
even in regions where there are very low contrast pat-
terns or no patterns as long as the neighborhood is
large enough to include identifiable patterns. This
approach is also particularly suitable for measuring the
two-dimensional growth velocity of the root for rela-
tively longer times. Furthermore, this program automati-
cally detects root edges, generating the root midline for
calculation of root curvature, diameter, and differential
growth ratio between two sides of a bending root.

RESULTS

Here, we briefly describe the image-analysis program
KineRoot for kinematic study of growth and gravitropism
of roots. The mathematical details of the algorithm are
provided in Supplemental Appendix S1. Although we
use the new technique primarily to analyze gravitropic
growth of basal roots of common bean, the approach
can also be applied to study kinematics of other root
systems. KineRoot was developed using Matlab 7.0
(The MathWorks). It features an easy-to-use graphical
user interface, shown in Figure 1. KineRoot allows
loading of a sequence of images (the number is limited
only by the computer’s memory), and then playing of
the images as a movie at desired speeds and moving
from one frame to another with the click of a mouse
button. Furthermore, by measuring the millimeter
marks on the ruler, KineRoot also allows easy spatial
calibration of the images from pixels to millimeters.
Image analysis by KineRoot is divided into two basic
steps.
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Step 1: Tracking of Marker Points on the Root Images

From all the time sequence images loaded into Kine-
Root, the user selects an initial reference image that
shows the root tip and elongation zone most clearly. In
the reference image, the user selects a number of points
(generally 10–15) along the root with one point lying on
the root tip. The choice of points is arbitrary and
unrelated to natural features or added graphite, with
the only requirement being that they are chosen se-
quentially along the root. Then the user identifies the
point lying on the root tip. The user can either choose all
the points to be tracked by clicking the mouse on the
image, or select a few points and then use cubic spline
interpolation (Press et al., 1992) to generate the desired
number of marker points to be tracked by the software.
The marker points are then tracked in all other images
sequentially such that the patterns around a point have
the greatest similarity between two consecutive im-
ages. For tracking the points, a new highest correlation
coefficient search algorithm and its variations are used.

Highest Correlation Coefficient Search

This algorithm matches boxes of pixels between a
reference image and the current image irrespective
of whether the pixels are on the root or on the back-
ground. The image in which the points have been
tracked before the current image is used as the refer-

ence. For example, if the user selected the points in the
ith image, then, for tracking the interpolated points in
frames i 1 1 and i 2 1, the ith image is used as the
reference. Similarly, for tracking points in image i 1 2,
image i 1 1 is used as a reference, and, for tracking
points in image i 2 2, image i 2 1 is used as the
reference. Figure 2 schematically shows the pattern-
matching algorithm using the highest correlation
search method. The black circle in Figure 2A shows a
point (x0, y0) in the reference image that is being
searched for in the current image (Fig. 2B) based on
patterns within the gray square in Figure 2A. As the
root grows, the patterns separate from each other.
However, images captured at frequent intervals en-
sure that a high degree of similarity is maintained be-
tween consecutive images. KineRoot calculates the
correlation coefficient between the color intensities
of pixels in the gray square in Figure 2A and color
intensities of pixels from similar gray squares around a
predicted point in Figure 2B, such as the white circles.
This process of calculating the correlation coefficients
between color intensities of the pixels in the reference
image and the predicted image is repeated until the
correlation coefficient reaches its highest magnitude.
In Figure 2B, the white circle marked (x*, y*) shows the
most likely location of point (x0, y0) in Figure 2A. The
process ensures identification of the new locations of
the points based on highest similarity between the
patterns in two consecutive images, even if the points

Figure 1. Screen shot of the graphical user interface of the image-analysis software KineRoot.
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are not located on a graphite particle or other surface
marker. The small arrow pointing from the black circle
to the white circle in Figure 2B shows the local root
growth velocity with respect to the fixed germination
paper background.

The user specifies the size of the square N within
which pixels are correlated between two images (Fig.
2A) and the search box size R within which KineRoot
searches for the new location of the points (Fig. 2B).
The amount of computation necessary to track a point
depends on the search box size R and pixel box size N.
Since search for the new location of a tracked point is
limited by the size of R, it is necessary that R is larger
than the displacement distance of any marker point
between two consecutive images. However, selecting
an overly large value of R unnecessarily increases the
computation without any benefit. Larger values of N
match patterns over a larger area, increasing the
accuracy of tracking to a certain extent. However, at
very high values of N the root will occupy relatively

less space in the gray shaded box in Figure 2B, and,
therefore, the program will match patterns on the
germination paper rather than the root, causing inac-
curate tracking. Since N 3 N pixels from each image
are correlated, minimizing N improves the speed of
tracking due to reduction of computational load.
Therefore, optimum choices of R and N are important
for both computational efficiency and accuracy of the
method.

To make the algorithm efficient, the operator can use
the velocity of the marker points to provide a better
prediction to the search algorithm and reduce the
search box size R. In Figure 2B, the dashed square of
size R 3 R pixels is centered on the point (x0, y0). But if
the velocity of the point (x0, y0) in Figure 2A is already
known, then one can predict the new location of this
point in Figure 2B, and, therefore, the dashed square
R 3 R can be drawn around the predicted location of
(x0, y0). This use of velocity of the individual points to
provide a better initial guess to the search algorithm
eliminates need for large R and reduces computational
load, making the tracking algorithm more efficient.
Use of estimated velocity for tracking can be toggled
on or off in the software.

Highest Color-Weighted Correlation Coefficient
Search Algorithm

Although the highest correlation search method
worked in more than 70% of our experiments, if the
root grew into an area where the background (in this
case the germination paper texture) was very different
from the reference image, the algorithm had more
difficulty tracking the points accurately.

To overcome this problem, we introduced a weigh-
ing factor w, based on the color of the pixel, into the
calculation of correlation coefficient. The user selects a
small area of the image covering only the root and then
another area covering only the background. Color
intensities of red, green, and blue channels from each
of these areas are averaged and stored as root color
(Rr, Gr, Br) and background color (Rb, Gb, Bb), where
R, G, and B are the intensities of red, green, and blue,
respectively, and range between 0 and 1. Figure 3
shows a schematic for calculation of the weighing
factor w. If the difference in intensity of any color
between the root and the background is less than 0.2,
the weighing factor w is assigned a value of 1 (e.g. the
dashed line in Fig. 3 labeled ‘‘Blue’’); otherwise, the
weighing factor is calculated by linear interpolation
for pixels with color intensity between that of the root
and the background. If the color intensity is outside
the root and background color intensity range, w is
assigned a value of 1 or 0 depending on proximity to
the root color or background color, respectively. The
color-based weighing factors reduce the importance of
the pixels from the background in calculating the
correlation coefficients between two boxes of pixels.
As a result, even if the appearance of the background
changes drastically, the software is able to track points

Figure 2. Schematic showing the pattern-matching algorithm. The
white tubular shapes with black borders on the gray background show
the growing root. The black spots show patterns on the root. A shows
the reference image and B shows the current image. The black circle
with a white outline in A is the marker point (x0, y0), which is being
tracked in B. We chose all pixels within the gray square of N 3 N in A
and correlate those with the gray boxes in B. The search for the new
location of the marker point in B is restricted within the larger dotted
square R 3 R. When the N 3 N box is centered on the (x*, y*) in B, the
correlation with A is highest. But when the gray box is placed
elsewhere, the correlation coefficient between the N 3 N boxes in A
and B drops. Note that there is no requirement for the points to be on a
graphite particle for tracking.
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on the root reliably. It should be noted that in case of
low contrast images, where the intensity difference be-
tween the root and background is less than 0.2 for all
three colors, the weighing factor becomes 1. As a result,
the color-weighted highest correlation search method
changes to the highest correlation search method de-
scribed in the previous section.

Using Tracking History

In addition to the methods described above, we also
employed a variation where instead of using the pre-
vious image as the only reference, the user could in-
clude more images, including the one where the user
first selected the points as reference. In the absence of
history tracking, if there are 50 images and the user
chooses the 35th image to select the points, then the
35th image will be used as reference for locating the
points on the 34th image, the 34th image will be used
as a reference for the 33rd image, and so on. However,
with history tracking the user could also use other
images where points have already been tracked as a
reference also, e.g. for the 22nd image the reference
could include the 23rd, 24th, 25th, and the initial ref-
erence image (in this example, the 35th image). Kine-
Root calculates a weighted average of the correlation
coefficients, putting greater weight on images with
closer proximity in time to the current image and
progressively lesser weight on the images that are

further away from the current image. Then this aver-
age correlation coefficient is used for finding the most
likely position of a marker point.

Apart from the maximal correlation search method,
KineRoot can also use a simpler approach for straight
roots by searching for the minimum pixel intensity
difference. Further details on this approach are pro-
vided in Supplemental Appendix S1.

The tracking methods described above have differ-
ent computational loads. Since our objective is to track
marker points reliably with the minimum possible
computation, the methods are ranked and chosen ac-
cording to decreasing computational efficiency in the
following order: minimum pixel intensity difference
search method, highest correlation coefficient search
method, highest color-weighted correlation coefficient
search method, combination of difference and correla-
tion search methods, and correlation search with track-
ing history method. After tracking the marker points,
the algorithm for each method provides a confidence
measure of marker tracking, and, if the confidence
measure is too low, KineRoot suggests that the user
use the next tracking method with a higher computa-
tional load. For the correlation coefficient search
method, the minimum of the highest correlation coef-
ficients for tracking all marker points in all frames
provides the confidence measure F 5 Cmin. A threshold
value of confidence F 5 0.8 was used before moving to
the next method.

Step 2: Automatic Edge Detection and Finding the

Midline of the Roots

Once the marker points are tracked along the root,
KineRoot finds the root centerline and projects these
points on the midline to estimate root growth. To
identify the root midline, the edges of the root are
identified in each image. An ‘‘edge’’ in an image is
defined as a line at which the gradient of color inten-
sity has a local peak. However, quite often the edge
cannot be accurately identified by highest magnitude
of the derivative of the pixel intensities directly be-
cause of noise in the image or blurriness at the edge.
Many methods have been developed for automatic
detection of edges from digital images (Prewitt, 1970;
Sobel, 1978; Canny, 1986). Among these methods, one
of the most popular is the edge detection algorithm by
Canny (1986). The Canny algorithm has three steps, of
which we use two and replace the third step with a
simpler method by customizing for the specific char-
acteristics of root images. The steps of edge detection
are shown in Figure 4.

Noise Smoothing and Image Gradient

Since an edge is identified by a sudden change in
color within a span of a few pixels, i.e. a strong color
gradient, it is important to ensure that the strongest
color gradients of the image do not reflect either noise
or the dark graphite particles on the image. Therefore,

Figure 3. Schematic showing the weights for calculating color-
weighted correlation coefficients based on color of the pixel and sam-
pled colors of the root (Rr, Gr, Br) and the background (Rb, Gb, Bb). The
red, green, and blue labeled lines show the weighting factors for the
corresponding colors. If the difference in color intensity between the root
and the background is less than 0.2, weighting factor is assigned a value
of 1; otherwise, weighting factor w is calculated by linear interpolation
for a pixel whose color intensity lies between that of the root and the
background. If the color intensity of a pixel is outside this range, a value
of 1 or 0 is assigned based on the proximity to the root color or back-
ground color, respectively.
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before detecting the edge of the root, noise is smoothed
by convolving the image with a Gaussian filter (Fig.
4A). Figure 4B shows the image before convolution,
and Figure 4C shows the smoothed image after con-
volution with the Gaussian filter.

Edge Enhancement

In this step the magnitude of the color intensity
gradient of the image is calculated (Fig. 4D). To obtain
the best estimate of the root edge, it is important to
use the maximum available contrast between the root
and the background. For our experiments the back-
ground germination paper is blue, whereas the root
color is light gray. When we compared the individual
red, green, and blue colors between the root and the
background, we found that instead of averaging all
three colors, the red color produced the highest con-
trast, whereas the blue color had the least contrast.
Therefore, for edge detection in our experiments, best
results were obtained using the intensity of red color of
the pixels. However, KineRoot allows the user the flex-
ibility of choosing how to calculate the color gradient.
Figure 4D shows that although the gradient identifies
the edges, the peak gradient corresponding to the edge
spreads over more than one pixel width, resulting in a
smudged edge. To identify the true edge in the image,
the Canny edge detector identifies the local maxima
along the edge and suppresses all other high gradient
values in the image (Fig. 4E), resulting in edges that
are one pixel wide.

Edge Finding

Although the Canny edge detection algorithm has
one more step in which the edge points are linked
together to generate the final edge, we apply an easier
approach knowing that the roots have tubular shape
and the edges can be found if we move perpendicular
to the lines joining the tracked points. However, there
could be another root near the edge that can be picked
erroneously by the computer. To prevent this error, the
user measures the approximate root diameter, which is
then used as the search radius for finding the root edge
from the non-maxima suppressed image gradient (Fig.
4E). Figure 4F shows the final edge-detected image,
where both upper and lower edges are outlined with
thin white lines.

Root Midline Identification

By taking the average of both upper and lower
edges, we can also identify the root midline, which is
shown by the thick white line in Figure 4F. To get an
accurate estimate of the root midline by averaging the
root edges even for highly curved roots, the points are
selected through an iterative algorithm that ensures
that the radial lines connecting any pair of edge points
are locally perpendicular to the root midline. The
details of the root midline identification algorithm are
provided in the Supplemental Appendix S1.

Measurements

Once the root midline is found, we project the
tracked marker points on the midline (i.e. drop per-
pendicular on the midline) and measure the distance
Sp of the pth point from the root tip along the midline of
the root as shown in Figure 5A using the following
equation.

Sp 5 +
p

i52

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi 2 xi 21Þ2 1 ðyi 2 yi 21Þ2

q
ð1Þ

For our subsequent measurements, we use Sp to
compute root growth velocity and relative elongation
rate. In addition, we also directly measure the root di-
ameter D at any point along the root length. Figure 5B
shows the schematic of the space-time mapping of
marker points where distance of the marker points
from the root tip is along the vertical axis and time is
on the horizontal axis. Note here that since we use the
root tip as our spatial reference, it is held fixed. The
region where the distance between consecutive marker
points changes more rapidly over time than other areas
along the root identifies the growth zone (Fig. 5B).

Knowing the distance of the tracked points from
root tip allows us to calculate root growth velocity as a
function of distance from the root tip and time. If a
point p is located at Sp distance from the root tip at time
t and after dt time it moves to Sp 1 dSp distance from
the root tip, then the growth velocity of the point p is as
follows.

Figure 4. Steps of automatic edge detection: A, two-dimensional
Gaussian filter; B, close-up image of a basal root; C, basal root image
after noise smoothing by convolution with the Gaussian filter; D,
magnitude of the gradient of the smoothed image showing blurry edges;
E, edge enhanced by non-maxima suppression; F, detected upper and
lower edges of the root and the centerline shown by white lines.

Basu et al.

310 Plant Physiol. Vol. 145, 2007



Up 5 UpðSp; tÞ5
dSp

dt
ð2Þ

The relative elongation rate describes the rate of rel-
ative growth of a small segment of the root over a short
time where a root segment of length l 5 Sp 2 Sp21 grows
to l 1 dl over time dt. Therefore, relative elongation rate
is as follows.

r 5
dl

ldt
ð3Þ

Relative elongation rate r(s, t) can also be calculated
by taking the derivative of the root growth velocity
u(s, t) with respect to distance from the root tip s (Silk
and Erickson, 1978; Taiz and Zeiger, 1998).

Since we are also interested in bending of the roots,
one of the important parameters to calculate from
image analysis is the root curvature. Curvature is the
reciprocal of radius of curvature, i.e. the radius of a
circle that matches the curve at a point (x, y), and is
given by

k 5

d
2
y

dx
2

1 1
dy

dx

� �2
" #3=2 ; ð4Þ

where y 5 y(x) is the equation that describes the root
midline. To calculate the root diameter d at distance s

from the root tip, a line locally perpendicular to the
root midline is drawn. The distance between the two
points of intersection of the two edges with this per-
pendicular line is the root diameter at distance s from
the root tip. As a root bends toward gravity, one side of
the root grows more than the other side. Therefore, the
ratio of arc lengths along the two edges of the root can
be used to characterize graviresponse of a root. Fol-
lowing Silk and Erickson (1978), the differential growth
ratio of two arcs of length dsu and dsl on the upper and
lower edges of an element of a bending root is calcu-
lated by the following equation.

dsu

dsl

5
2 1 kd

2 2 kd
ð5Þ

Example Measurements

In this section we present representative measure-
ments from one bean basal root to demonstrate the
performance of KineRoot and the typical results ob-
tainable from it. Figure 6 shows an example of marker
point tracking and automatic edge detection using a
montage of eight images of basal roots. The images
shown in Figure 6 are at 90-min intervals from a

Figure 5. A, Schematic showing projection of tracked points on the
root centerline. Distance of the projected tracked points from the root
tip Sp is measured along the root centerline. From the detected root
edge, we also measure the root diameter D as a function of distance
from the root tip and time. B, Schematic showing the spatio-temporal
trajectory of the tracked points. The region where the gap between the
points increases rapidly with time identifies the growth zone.

Figure 6. Montage of eight images of a bean basal root. The images are
at 90-min intervals from a sequence of 72 images originally captured at
5-min intervals. The images on the left show the patterns on the root
generated by graphite particles, whereas the images on the right show
the tracked marker points and the root edges on the same images of the
left. The upper and lower edges of the growing root are detected by
KineRoot, and the bold white line shows the root midline. The black
dots show the tracked points.

Kinematic Analysis of Root Growth and Curvature

Plant Physiol. Vol. 145, 2007 311



sequence of 72 images originally captured at 5-min
intervals. The images on the left show the patterns on
the root generated by graphite particles, whereas the
images on the right show the tracked marker points
and the root edges on the same images as on the left.
The 2-d-old seedling with emerging basal roots was
grown in growth pouch in nutrient solution (see
‘‘Materials and Methods’’). The images were captured
beginning 36 h after the emergence of the basal roots.
The black dots are the marker points selected by the
user at 120 min and tracked in other frames by
KineRoot using highest correlation search method.
Note that after the user selected the marker points,
they were interpolated to generate a total of 25 points
that are tracked in all frames. To avoid crowding of the
points, here we only show 14 points selected by the
user. After the marker points were tracked, edges of
the root were identified by edge detection. The average
of the root edge lines generates the root midline, which
is shown by the bold white line. The root tip is
identified by the asterisk symbol. The marker points
were projected on the midline to calculate distance Sp
from the root tip along the midline.

As the root grows, the marker points move away
from each other (Fig. 6). The rate at which points move
away from each other defines the growth zones of the
root. In Figure 7, the top-most line (3.5 mm at time
0 min and 7 mm at 355 min) shows overall growth of
the selected root segment. The points located between
0.8 and 2.2 mm from the root tip at time 5 0 separated
more than points in other regions of the root; this is the
rapid elongation zone of the root.

Figure 8A shows the growth velocity of tracked
markers from a single root as a function of distance
from the root tip. The gray dots in Figure 8A show the
growth velocity of all marker points from 72 images
taken over a period of 6 h at 5-min intervals. The super-
imposed bold line is the mean growth velocity after
grouping the data in bins of 0.5 mm. The raw data
from KineRoot form a clustered group showing the

robustness of the algorithm. The velocity profile shows
the typical sigmoid shape and is comparable to results
of other kinematics techniques (e.g. Sharp et al., 1988;
Fraser et al., 1990; Sharp et al., 2004). The plot of mean
relative elongation rate as a function of distance from
the root tip (Fig. 8B) shows that the growth zone spans
up to 6 mm from the root tip.

To show the versatility of the software in handling
the images of different types of roots, we also analyzed
the growth velocity and relative elongation rate of Arab-
idopsis primary root. Gray-scale images of Arabidop-
sis primary root were collected by using a compound
microscope with infrared light and without marking.
Figure 9A shows the velocity profile of the primary
root measured as a function of distance from the root
tip. The image at the top of Figure 9A shows the
primary root of Arabidopsis from which the mean
velocity profile was calculated. The thin wiggly line in
Figure 9A shows the growth velocity obtained through
tracking of 500 marker points along the root. The solid
black line shows smoothed growth velocity plot ob-
tained using the method of overlapping polynomials.

Figure 7. Root length map showing the growth of the root by plotting
distance of the marker points from the root tip along the root midline at
5-min time intervals.

Figure 8. A, Root growth velocity plotted as a function of distance from
the root tip. The gray dots show the growth velocity of 25 tracked points
in 72 frames. The bold line shows the average growth velocity after
grouping the data in bins of 0.5 mm. The vertical bars are 6 1 SD. B,
Mean relative elongation rate plotted against distance from the root tip
with SD error bars.
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Figure 9B shows the profile of relative elongation rate,
i.e. the derivative of the smoothed growth velocity
data in Figure 9A. The data represented in Figure 9
show average growth velocity and relative elongation
rate calculated from nine frames. Second-order finite
difference method was used for calculating derivatives
to estimate both growth velocity and relative elonga-
tion rate.

A color isocontour plot shows relative elongation
rate of bean root as a function of distance from the root
tip and time, i.e. spatio-temporal variation in relative
elongation rate (Fig. 10). The isocontour plot is gener-
ated using Matlab 7.0 through KineRoot’s interface.
The length of the growth zone increases with time
from approximately 1.5 mm (1–2.5 mm from root tip)
at 60 min to 4 mm (1–5 mm from root tip) at 350 min.
The apical boundary of the growth zone remains

almost constant at 1 mm from the root tip, but the
distal end of the growth zone expands, lengthening
the growth zone. In addition, the rate of elongation
also increases with time as shown by the large red
region beyond 270 min compared to mostly green
elongation zone before that. The isocontour plot illus-
trates the dynamism of the developing growth zone.

Detection of root edges also allows us to measure root
diameter in space-time coordinates. Figure 11 shows the
time-averaged root diameter as a function of distance
from the root tip. The diameter of the root near the tip is
minimum and reaches a nearly constant magnitude at
about 1.5 mm from the root tip. The small error bars in
Figure 11 show that as the root grows by about 3.5 mm
in length over 6 h, the root diameter remains nearly
constant.

Root graviresponse or curvature can be described by
KineRoot as curvature of the root midline (Fig. 12A) or
as the differential growth ratio between two edges of
the root (Fig. 12B). Positive curvature and a differential
growth ratio greater than 1 indicate downward bend-
ing, and negative curvature indicates upward bend-
ing. In this case, we have presented the very small
change in growth direction of a plagiogravitropic bean
basal root in the absence of gravistimulation, i.e. these
data are for the small changes in direction accompa-
nying normal plagiogravitropic growth. Although the
curvature and the differential growth ratio are very
small in this example (the upper edge of the root grew
2%–4% more than the lower edge in 6 h), KineRoot
was able to quantify this difference and detect two
regions of bending, the apical bending zone spanning
1 to 3.5 mm from the root tip and the distal bending
zone spanning 3.5 to 5.5 mm from the root tip.

DISCUSSION

This study presents semiautomated image-analysis
software, KineRoot, for kinematic analysis of root

Figure 9. A, Root growth velocity of Arabidopsis primary root plotted
as a function of distance from the root tip. Thin wiggly lines represent
growth velocity data obtained from tracking of 500 marker points, and
solid black line is the smoothed root growth velocity profile. B, Relative
elongation rate calculated from the derivatives of smoothed velocity
profiles. The image of the root from which the velocity profile was
obtained is shown at the top.

Figure 10. Colored isocontour plot of the rate of relative elongation
plotted as a function of distance from the root tip and time. Reds,
oranges, and yellows show high rate of elongation, whereas light and
dark blues show low/zero rate of elongation.
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growth and graviresponse. This method is suitable for
larger-rooted species, such as crop plants, as well as
for small-rooted plants, and can monitor growth over
several hours. As an example, we present analysis of
common bean basal root growth and graviresponse.
Common bean basal roots were 0.4 to 1 mm in diam-
eter and 10 to 20 mm long at the onset of the study, and
grew at rates of 0.8 to 1.2 mm/h. Since these roots are
devoid of patterns permitting spatio-temporal track-
ing at suitable magnification, we sprinkled graphite
particles to add patterns to the root for tracking by
KineRoot. Although use of ink or graphite particles as
markers has been used before (Erickson and Sax, 1956;
Sacks et al., 1997; Beemster and Baskin, 1998; Muller
et al., 1998), the process was tedious. Clearly visible
markers had to be added very carefully for tracking
because mechanical stimulation can damage roots and/
or alter root growth. However, in KineRoot the com-
puter matches patterns within boxes of pixels sur-
rounding a marker, so there is no need for any
particular type or placement of markers on the roots,
and any point on the root can be used as a marker even
if there is no graphite particle exactly at that point, as
long as there are some uniquely identifiable color
patterns around the roots. As a result, KineRoot is more
suitable for kinematic study of a large number of roots
with minimal user interventions. Furthermore, the
method of pattern matching allows us to track the
marker points on the roots for extended periods, even
if the roots deviate from a straight trajectory.

The existing algorithms based on the structure-
tensor method (Schmundt et al., 1998; van der Weele
et al., 2003) search for a path of minimum pixel inten-
sity difference in a stack of seven to nine images to
generate the velocity field of the plant organ. There-
fore, in any portion of the plant organ where there are
very few patterns, this method cannot generate veloc-
ity with sufficient confidence, and as a result produces
a velocity field that is very sparse. In a growing root,

it is the zone of interest (the growth zone) that be-
comes less populated with patterns with time, and
the structure-tensor method generates very few high-
confidence velocity measurements there. Since Kine-
Root not only matches patterns at a pixel site but also
from its neighboring sites, even when the patterns
expand within the growth zone, KineRoot can track
marker points with high confidence based on patterns
in the neighboring pixels.

Our analysis of growth velocity and relative elon-
gation rate shows that KineRoot can also be used to
analyze the images of different types of roots, such as
relatively large roots of common bean and small roots
of Arabidopsis. KineRoot automatically tracks the
marker points and detects edges of the roots, generat-
ing reliable growth data. The growth velocity data
generated by KineRoot (Figs. 8 and 9) match the de-
scription of root growth found in the literature (Taiz
and Zeiger, 1998). The growth zone of roots can be
divided into two main regions, the meristem (zone of
cell division) and zone of rapid elongation. As the cells
divide, they successively pass through the elongation
zone and to the maturation zone, where growth ceases
as cells become mature with differentiated character-
istics (Dolan et al., 1993; Taiz and Zeiger, 1998). The

Figure 11. Mean root diameter plotted as a function of distance from
the root tip. The vertical bars show 6 1 SE. Where bars are not visible,
the SE is less than the size of the symbol.

Figure 12. A and B, Mean root curvature (A) and differential growth
ratio (B) between the upper and lower sides of the root plotted as a
function of distance from the root tip. Positive curvature and differential
growth ratio greater than 1 indicate downward bending and vice versa.
The vertical bars indicate SE.
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rate of root elongation is regulated by the combined
effects of cell production in the meristem and cumu-
lative cell expansion in both meristem and growth
zone (Beemster and Baskin, 1998). Since individual
cells are not visible in images collected for KineRoot
analysis of common bean, it is not possible to directly
measure the cell production in the meristem. Our
analysis of a bean root shows that the relative elonga-
tion rate is not quite zero close to the root tip (Fig. 8B),
reflecting the expansion of meristem cells. The plot of
relative elongation rate of an Arabidopsis root, which
is to a finer scale, shows a small (,300 mm) zone at
the site of the apical meristem with nearly flat relative
elongation rate (Fig. 9B). The relative elongation rate
and velocity profile of an Arabidopsis primary root
obtained using KineRoot matches closely with the
output from a structure-tensor method, RootFlowRT
(T. Baskin, personal communication; RootFlowRT de-
scribed in van der Weele et al., 2003).

Color isocontour plotting shows the variation in
relative elongation rate as a function of both space
and time (Fig. 10). This type of representation of
bivariate data allows easy identification of spatio-
temporal patterns of growth of the basal roots. The
spatio-temporal isocontour plot of relative elongation
rate (Fig. 10) also explains the large SDs in Figure 8B.
Since the length of the growth zone as well as rate of
elongation change with time, grouping data from the
entire duration of the experiment introduces varia-
bility, resulting in large SD in mean relative elongation
rate (Fig. 8B).

Identification of the root edge allows us to not only
locate the root midline but also measure the root
diameter. In this example, the root diameter remained
nearly constant during the nearly 6-h test period,
whereas root length grew by 3.5 mm (Fig. 11). The
diameter function would be useful under situations
such as drought, when root radial expansion is re-
duced throughout the growth zone (Sharp et al., 1988).

KineRoot measures the distribution and extent of
root curvature as well as root elongation, permitting
detailed analysis of gravitropism and other responses
resulting in changes in the direction of growth. The
root midline was used to estimate the curvature of the
root as it grew (Fig. 12A). When combined with root
diameter, root curvature can also be used to calculate
differential growth ratio (Fig. 12B) between two sides
of a bending root because a root can only bend if one
side grows more than the other side. In this case, since
the bending of the root was minimal, the differential
growth ratio was also minimal with the upper edge
growing 2% to 4% more than the lower edge of the
root. The program was able to quantify even very
small and temporary growth differentials.

Our approach of nearly automatic image analysis
and measurement using colored images provides a
new tool for application of kinematic techniques to the
analysis of spatio-temporal growth of plant organs
over long time spans as long as there are discernible
patterns in the images for tracking on the organ.

MATERIALS AND METHODS

Experimental Method

Common bean (Phaseolus vulgaris) genotype TLP19 developed at the

International Center for Tropical Agriculture (Cali, Colombia) was employed

for this study. Seeds were surface sterilized with 6% sodium hypochlorite for

5 min, rinsed thoroughly with distilled water, and scarified with a razor blade.

Seeds were germinated at 28�C in darkness for 2 d in rolled germination paper

(25.5 3 37.5 cm; Anchor Paper Co.) moistened with nutrient solution, which

was composed of (in mM) 3,000 KNO3, 2,000 Ca(NO3)2, 1,000 NH4H2PO4,

250 MgSO4, 25 KCl, 12.5 H3BO3, 1 MnSO4, 1 ZnSO4, 0.25 CuSO4, 0.25

(NH4)6Mo7O24, and 25 Fe-Na-EDTA. Germinated seeds with radicles approx-

imately 2 to 3 cm long were transferred to a sheet of 30- 3 24-cm blue

germination paper (Anchor Paper Co.) stiffened by attaching perforated

plexiglass sheets to stabilize the root system. The bottom of the blue paper

with plexiglass was placed to allow direct contact with the nutrient solution.

The germination paper containing a seedling was suspended in nutrient

solution and covered with aluminum foil to prevent illumination of the roots.

Graphite particles sprinkled on the roots created patterns on the otherwise

uniformly colored root that could be followed in image analysis. A small

amount of graphite powder was drawn into a dropper fitted with a pipette tip

and then blown on the roots from close proximity. During this procedure care

was taken to not touch the roots or change the orientation of the seedling with

respect to the gravity. A pouch containing one seedling was placed in a water-

sealed plexiglass box maintained at 25�C to 26�C. Seedlings were photo-

graphed from outside the plexiglass box. Images of root systems were

captured for 4 to 6 h at fixed intervals (5 min) using a high-resolution (6

Megapixel) digital single-lens reflex camera (Nikon D70s) fitted with 105-mm

Nikkor micro lens, beginning 1 d after emergence of basal roots in pouches.

The camera was triggered at fixed intervals by a laptop computer through a

universal serial bus cable using the software Nikon Capture 3.5. The resolu-

tion of the captured images was 10 to 20 mm pixel21. Except for the use of the

camera’s flash for image capture, plants were grown in complete darkness to

minimize light exposure of the roots. To avoid shadows from direct flash,

which interferes with image analysis, light from two flashes was bounced off a

sheet of white paper placed on top of the plexiglass box. The flashes were

wirelessly triggered by the built-in flash of the Nikon D70s camera. A ruler

was attached to the supporting plexiglass sheet for calibrating pixel dimen-

sions into millimeters.

Arabidopsis (Arabidopsis thaliana) images were obtained from Dr. Tobias

Baskin, University of Massachusetts, Amherst, MA.

The KineRoot program is available for downloading from Dr. Anupam Pal

(apal@iitk.ac.in). Since the software is built using Matlab 7, the user must have

Matlab to use the software. KineRoot is compatible with Windows, Linux, and

Unix versions of Matlab.

Supplemental Data

The following materials are available in the online version of this article.

Supplemental Figure S1. Illustration of the algorithm used for finding the

midline of the root.

Supplemental Appendix S1. Mathematical details of the new image-

analysis program KineRoot.

ACKNOWLEDGMENT

We gratefully acknowledge Dr. Tobias Baskin for providing the image of

the primary root of Arabidopsis shown in Figure 9.

Received June 1, 2007; accepted August 13, 2007; published August 24, 2007.

LITERATURE CITED

Beemster G, Baskin T (1998) Analysis of cell division and elongation

underlying the developmental acceleration of root growth in Arabidopsis

thaliana. Plant Physiol 116: 1515–1526

Beemster GTS, Masle J, Williamson RE, Farquhar GD (1996) Effects of soil

resistance to root penetration on leaf expansion in wheat (Triticum

Kinematic Analysis of Root Growth and Curvature

Plant Physiol. Vol. 145, 2007 315



aestivum L.): kinematic analysis of leaf elongation. J Exp Bot 47:

1663–1678

Ben-Haj-Salah H, Tardieu F (1995) Temperature affects expansion rate of

maize leaves without change in spatial distribution of cell length

(analysis of the coordination between cell division and cell expansion).

Plant Physiol 109: 861–870

Bernstein N, Lauchli A, Silk WK (1993) Kinematics and dynamics of

sorghum (Sorghum bicolor L.) leaf development at various Na/Ca

salinities (I. Elongation growth). Plant Physiol 103: 1107–1114

Bertaud DS, Gandar PW, Erickson RO, Ollivier AM (1986) A simulation

model for cell proliferation in root apices. I. Structure of model and

comparison with observed data. Ann Bot (Lond) 58: 285–301

Black MJ, Anandan P (1996) The robust estimation of multiple motions:

parametric and piecewise-smooth flow fields. Comput Vis Image Underst

63: 75–104

Canny J (1986) A computational approach to edge detection. IEEE Trans

Pattern Anal Mach Intell 8: 679–698

Dolan L, Janmaat K, Willemsen V, Linstead P, Poethig S, Roberts K (1993)

Cellular organisation of the Arabidopsis thaliana root. Development 119:

71–84

Durand J-L, Onillon B, Schnyder H, Rademacher I (1995) Drought effects

on cellular and spatial parameters of leaf growth in tall fescue. J Exp Bot

46: 1147–1155

Erickson RO (1966) Relative elemental rates and anisotropy of growth in

area: a computer programme. J Exp Bot 17: 390–403

Erickson RO, Sax KB (1956) Rates of cell division and cell elongation in the

growth of the primary root of Zea mays. Proc Am Philos Soc 100: 499–514

Fraser TE, Silk WK, Rost TL (1990) Effects of low water potential on cortical

cell length in growing regions of maize roots. Plant Physiol 93: 648–651

Gandar PW (1983) Growth in root apices. I. The kinematic description of

growth. Bot Gaz 144: 1–10

Gastal F, Nelson CJ (1994) Nitrogen use within the growing leaf blade of

tall fescue. Plant Physiol 105: 191–197

Girousse C, Moulia B, Silk W, Bonnemain JL (2005) Aphid infestation

causes different changes in carbon and nitrogen allocation in alfalfa

stems as well as different inhibitions of longitudinal and radial expan-

sion. Plant Physiol 137: 1474–1484

Goodwin RH, Avers W (1956) Studies on roots. III. An analysis of root

growth in Phleum pratense using photomicrographic records. Am J Bot

43: 479–487

Goodwin RH, Stepka W (1945) Growth and differentiation in the root tip of

Phleum pratense. Am J Bot 32: 36–46

Gould KS, Lord EM (1989) A kinematic analysis of tepal growth in Lilium

longiflorum. Planta 177: 66–73

Granier C, Tardieu F (1998) Spatial and temporal analyses of expansion

and cell cycle in sunflower leaves. A common pattern of development

for all zones of a leaf and different leaves of a plant. Plant Physiol 116:

991–1001

Granier C, Tardieu F (1999) Water deficit and spatial pattern of leaf

development. Variability in responses can be simulated using a simple

model of leaf development. Plant Physiol 119: 609–620

Hu Y, Camp KH, Schmidhalter U (2000) Kinetics and spatial distribution

of leaf elongation of wheat (Triticum aestivum L.) under saline soil

conditions. Int J Plant Sci 161: 575–582

Jahne B (1997) Digital Image Processing: Concepts, Algorithms, and

Scientific Applications, Ed 4. Springer, Berlin

Kavanova M, Grimoldi AA, Lattanzi FA, Schnyder H (2006) Phosphorus

nutrition and mycorrhiza effects on grass leaf growth. P status- and size-

mediated effects on growth zone kinematics. Plant Cell Environ 29:

511–520

Liang BM, Sharp RE, Baskin TI (1997) Regulation of growth anisotropy in

well-watered and water-stressed maize roots. 1. Spatial distribution of

longitudinal, radial, and tangential expansion rates. Plant Physiol 115:

101–111

Ma Z, Baskin TI, Brown KM, Lynch JP (2003) Regulation of root elongation

under phosphorus stress involves changes in ethylene responsiveness.

Plant Physiol 131: 1381–1390

Muller B, Strosser M, Tardieu F (1998) Spatial distributions of tissue

expansion and cell division rates are related to sugar content in the

growing zone of maize roots. Plant Cell Environ 21: 149–158

Pahlavanian AM, Silk WK (1988) Effect of temperature on spatial and

temporal aspects of growth in the primary maize root. Plant Physiol 87:

529–532

Press WH, Teukolsky SA, Vetterling WT, Flannerty BP (1992) Numerical

Recipes in C: The Art of Scientific Computing, Ed 2. Cambridge University

Press, New York

Prewitt JMS (1970) Object enhancement and extraction. In EBS Lipkin, A

Rosenfield, eds, Picture Processing and Psychopictorics. Academic

Press, New York, pp 75–149

Sacks MM, Silk WK, Burman P (1997) Effect of water stress on cortical cell

division rates within the apical meristem of primary roots of maize.

Plant Physiol 114: 519–527

Schmundt D, Stitt M, Jahne B, Schurr U (1998) Quantitative analysis of the

local rates of growth of dicot leaves at a high temporal and spatial

resolution, using image sequence analysis. Plant J 16: 505–514

Selker JML, Sievers A (1987) Analysis of extension and curvature during

the graviresponse in Lepidium roots. Am J Bot 74: 1863–1871

Sharp R, Silk W, Hsaio T (1988) Growth of the maize primary root at low

water potentials. I. Spatial distribution of expansive growth. Plant

Physiol 87: 50–57

Sharp RE, Poroyko V, Hejlek LG, Spollen WG, Springer GK, Bohnert HJ,

Nguyen HT (2004) Root growth maintenance during water deficits:

physiology to functional genomics. J Exp Bot 55: 2343–2351

Silk WK, Erickson RO (1978) Kinematics of hypocotyl curvature. Am J Bot

65: 310–319

Silk WK, Erickson RO (1979) Kinematics of plant growth. J Theor Biol 76:

481–501

Sobel I (1978) Neighborhood coding of binary images for fast contour

following and general binary array processing. Computer Graphics and

Image Processing 8: 127–135

Taiz L, Zeiger E (1998) Plant Physiology, Ed 2. Sinauer Associates, Sunder-

land, MA

van der Weele CM, Jiang HS, Palaniappan KK, Ivanov VB, Palaniappan

K, Baskin TI (2003) A new algorithm for computational image analysis

of deformable motion at high spatial and temporal resolution applied

to root growth. Roughly uniform elongation in the meristem and also,

after an abrupt acceleration, in the elongation zone. Plant Physiol 132:

1138–1148

Walter A, Spies H, Terjung S, Kusters R, Kirchgessner N, Schurr U (2002)

Spatio-temporal dynamics of expansion growth in roots: automatic quanti-

fication of diurnal course and temperature response by digital image se-

quence processing. J Exp Bot 53: 689–698

Basu et al.

316 Plant Physiol. Vol. 145, 2007


