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Abstract
Inflammation and the genes, molecules, and biological pathways that lead to inflammatory processes
influence many important and disparate biological processes and disease states that are quite often
not generally considered classical inflammatory or autoimmune disorders. These include
development, reproduction, aging, tumor development and tumor rejection, cardiovascular
pathologies, metabolic disorders, as well as neurological and psychiatric disorders. This paper
compares parallel aspects of autism and inflammatory disorders with an emphasis on asthma. These
comparisons include epidemiological, morphometric, molecular, and genetic aspects of both disease
types, contributing to a hypothesis of autism in the context of the immune based hygiene hypothesis.
This hypothesis is meant to address the apparent rise in the prevalence of autism in the population.
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Introduction
Autism is an enigmatic childhood disorder of unknown origin. It is characterized by
developmental, language, and social deficits, ranging in severity from patients with profound
deficits to individuals that are high functioning. Although the underlying etiological basis of
autism has eluded researchers, the genetic heritability of autism is quite strong 1. Specifically
what genes are involved and how they contribute to the disease phenotype is unclear.

Many theories regarding the biological basis of autism have been suggested, including
neurodevelopmental, exposure to environmental toxins, particularly to mercury 2, and immune
3 hypotheses. More recently, theories of hyper-systemizing and assortative mating 4,5 and
hyper-dopamine 6 have been proposed. At this time there is little definitive evidence to support
any single theory of the fundamental biological nature of autism.

Numerous reports have described imbalances in immune and inflammatory processes in
autistic patients, including aberrations in antibody levels, cytokines, and cellular subsets 7,8,
9,10,11,12. Additionally, recent reports have described an increased frequency of HLA-A2
13 and HLA-DR4 14 antigens in autism. Interestingly, epidemiological studies have provided

© 2007 Elsevier Ltd. All rights reserved.
Address correspondence to: Kevin G. Becker, Ph.D. TRIAD Technology Center Room 208, 333 Cassell Drive National Institute on
Aging National Institutes of Health Baltimore, MD 21224 TEL: 410-558-8360 FAX: 410-558-8281 Email: E-mail:
beckerk@grc.nia.nih.gov.
Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers
we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting
proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could
affect the content, and all legal disclaimers that apply to the journal pertain.

NIH Public Access
Author Manuscript
Med Hypotheses. Author manuscript; available in PMC 2007 November 1.

Published in final edited form as:
Med Hypotheses. 2007 ; 69(4): 731–740. doi:10.1016/j.mehy.2007.02.019.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



evidence for the association of asthma and allergies 15 or autoimmune disorders in families
with autistic children 16,17,18,19. The exact significance of immune abnormalities and the
relationship of infections, immunizations, allergies, inflammation, or other aspects of immune
response to disease etiology are unclear and controversial. Alterations of immune and
inflammatory processes in autism have recently been reviewed 3,20,21,22-24.

One of the challenges in the early study of the molecular basis of classical autoimmune
disorders was the attempt to establish the relevance of highly variable and fluctuating immune
serum proteins and cell populations to disease etiology. That is, are fluctuations in any set of
cytokines, immune mediators, or T cell populations, causative or are they epiphenomena due
to peripheral effects of target tissue destruction, transient common infections, or more
importantly, are they echoes of long ago infections. There is an ever present “which came first,
the chicken or the egg” nature in the study of highly variable immune mediators. Are
oligoclonal antibody bands found in the CSF of multiple sclerosis patients 25 related to the
etiology of the disease or are they end stage phenomena? Do alterations in cytokines from a
patient with systemic lupus erythematosus have a role in disease etiology or are they late stage
responses to tissue destruction brought on by other mechanisms? Similarly, are immune
aberrations in autism disease causing or are they epiphenomena?

Other comparisons of autism to asthma and autoimmune/inflammatory
disorders

In addition to imbalances in immune molecular mediators, there are other seemingly unrelated
parallels in the study of immune and inflammatory disorders as compared to autism that, when
viewed collectively, may provide additional support for shared aspects of disease etiology
between immune and inflammatory disorders and autism. These include; sex bias, birth order,
age-of-onset, neonatal head circumference, increasing prevalence in the population, rural
versus urban disease comparisons, and shared molecular and genetic markers.

Disease onset and sex bias
In asthma and in autism presentation is in early childhood. Both disease types have an age of
onset in early childhood; 2-4 years for children with autistic disorder 26 and 3 to 6 for wheeze
and asthma 27. In addition, both autism and asthma display a skewed sex bias toward boys.
This bias is approximately 4:1 boys to girls in autism 1 and approximately 2:1 in asthma 28,
29. It is well known that in most adult autoimmune and inflammatory disorders, including
asthma, there is a predominance of adult women with the diagnosis. However, less well known
is that prior to puberty this skewing is toward boys 30. This male bias prior to puberty may be
true in other immune mediated disorders as well such as multiple sclerosis 31, Type 1 diabetes,
and thyroiditis.

Birth order
Some studies have shown birth order to be relevant in atopic disorders as well as autism. In
both cases, being first born may carry a greater risk for disease than later births. In a large study
of 11, 371 Italian young men those with no siblings had the highest level of serum IgE
sensitization. An inverse association was observed between number of siblings at time of
testing and prevalence of high atopy p < 0.0001 32. Similar findings have been shown in for
atopic disease in Crete 33, asthma, eczema-urticaria and hay fever in Scotland 34, asthma with
allergic rhinitis in Denmark 35 and asthma, allergy, and eczema in the Netherlands 36. These
observations are thought to be related to increased transmission of childhood infections due to
a growing family size in the context of the hygiene hypothesis (see below). Similarly, the risk
of autism has been shown in some cases to be related to birth order in the same direction as
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asthma and atopic disorders, with risk decreasing with a greater number of older siblings in
the United States 37,38,39, Western Australia 40 and England 41.

Increased neonatal head circumference
Increased neonatal head circumference has been found in both autism and asthma. Increases
in neonatal head circumference have been associated with asthma and atopy. In particular, head
circumference has been associated with elevated serum IgE levels and hay fever disorders
42-45. Increased neonatal head circumference or macrocephaly is a robust finding in autism
with the largest effect between the ages of 2-5 46,47,48,49,50,51. This brain size difference is
largely back to normal by adolescence. The biological basis for this increase is unknown
although genetic, infectious, and inflammatory mechanisms have been proposed 50 (see PTEN
below).

Increase in prevalence in the population: parallel “epidemics”
Both autism and asthma have had reports of apparent increases in the population over the last
30 years. Numerous studies show general increases in prevalence in both asthma 52,53 and
autism 54-58, at roughly similar rates over the last 30 years. In both disease types this has been
often referred to as an “epidemic” 54,59. In both disease types this apparent increase is
controversial. Changes in diagnostic classifications and access to health care resources have
confounded the interpretation of prevalence estimates in the study of asthma and autism.
Significant increases in disease prevalence over a short time in evolutionary terms suggest that
purely genetic mechanisms may not be solely responsible 60. Given the strong heritability of
autism, changing environmental modifiers in the context of the background genetics of autism
may be important over the past 30 years. There have been similar increases in the prevalence
in classical autoimmune diseases over the same time span as well, including Type 1 diabetes
61,60,62.

Rural vs Urban disease distribution
Both autism and asthma appear to show uneven geographical distributions in disease
prevalence. Differential susceptibility or resistance to asthma and allergies is found in urban
environments versus rural or farm environments 63,64,65. Although the exact mechanistic
basis of the difference is not known, this distribution pattern of disease is thought to have an
inverse relationship to infection and is central to the hygiene hypothesis (see below).

The geographical distribution of autism is less clear although there is evidence that there may
be an urban versus rural distribution. This has been found in epidemiological studies from
multiple countries including Denmark 66, the United States 67, England 55,68 and Japan 69.
Interestingly, in studies of autism that analyzed numerous familial risk factors, a major risk
factor for autism was increasing degree of urbanization 55,68. In a study from the US, the urban
versus rural distribution was attributable to mercury exposure in the environment, however
this may reflect an industrialized versus rural pattern as well 67.

The Inuit of northern Canada may provide an interesting population case study. This isolated
rural population exists in crowded living conditions, with high levels of mercury and other
environmental toxins in the diet 70. However, autism is essentially non-existent in the Inuit.
In a recent report Fombonne, et al., state; “No case of autism has ever been reported in an Inuit
child in the past 15 years 71. In parallel, asthma and atopic disorders are uncommon in Inuit
children, even with very high rates of lower respiratory infections prior to age 2 and particularly
high rates of childhood smoking (31.9%) 72.
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Molecular and genetic markers shared with inflammatory/ autoimmune diseases
Like many common human disorders, autism, asthma, and autoimmune disorders have been
studied using genetic linkage and genetic association approaches. The chromosomal regions
identified in linkage studies and the specific variants of genes identified in genetic association
studies are quite often not unique to any one disorder. Many, if not most, genes in the human
genome have broad based effects influencing different cells and tissues at different times of
development under the influence of different environmental modifiers. In the context of
common human disease, important regulatory genes may effect disease susceptibility
differently when found in combination with different disease associated alleles 73.

ADRB2, beta(2)-Adrenergic receptor
The gene for the beta(2)-Adrenergic receptor encodes a member of the G protein-coupled
receptor superfamily and is expressed on epithelial and endothelial cells of the lung, mast cells,
as well as airway smooth muscle cells. ADRB2 activation is thought to work through increased
intracellular cAMP levels 74. Polymorphisms in ADRB2, including the Glu27 allele, have
been studied in multiple disease states including hypertension 75, atopic dermatitis 76, Graves
disease 77, rheumatoid arthritis 78,79, obesity 80 and in particular, asthma 81. ADRB2 is of
major interest in asthma as it may be involved in lung function as well as response to β2-
Adrenergic agonists 82,83. ADRB2 polymorphisms may not influence asthma incidence or
prevalence but may influence persistence of asthmatic symptoms 84.

Importantly, the Glu27 allele of ADRB2 has recently been associated with autism in twins
85 as well as in the AGRE autism cohort 86.

PTEN-Phosphatase and tensin homolog
PTEN, phosphatase and tensin homolog, is central to phosphoinositide metabolism as an
important regulatory checkpoint in the PI3K/ATK signaling pathway, effecting multiple
downstream processes including immune function, cell growth, cell survival, and
differentiation 87-89. PTEN has been shown to play a role in lymphocyte proliferation,
systemic autoimmunity, and autoimmune disease 87,88, as well as in benign tumors of the
gastrointestinal tract. In relation to disease, PTEN has been implicated in bronchial asthma and
allergic inflammation 90.

Interestingly, PTEN has been implicated in macrocephaly (OMIM # #153480) and Cowden
disease (OMIM #158350). PTEN has been implicated in autism as well, in particular, within
a subset of autistic individuals with macrocephaly 91,92. A recent report described a patient
with a PTEN mutation having autistic features, macrocephaly as well as nodular lymphoid
hyperplasia of the small and large intestinal mucosa 93. Moreover, a mouse model with specific
deletions of PTEN in selected neuronal cell types resulted in macrocephaly, changes in social
interactions, and increased responses to sensory stimuli, suggesting a model for autistic
spectrum disorder 94.

MET- met proto-oncogene
The proto-oncogene MET, also known as hepatocyte growth factor receptor, encodes a
tyrosine-kinase receptor which has been shown to have pleiotropic effects, in myocardial
infarction, ischemia, angiogenesis, and importantly in cancer progression. Recently,
polymorphic variants that result in reduced expression of MET has been genetically associated
with autism 95. MET also has been shown to effect the immune system 96, in particular it
suppresses immune dendritic cell function 97. In addition, cMET and its ligand HGF have been
shown to be involved in multiple neuronal processes including synaptic plasticity in the
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hippocampus 98, development of cortical pyramidal dendrites 99 and synaptic organization
100.

Genome wide scans
Genome wide scans are genetic linkage studies that use evenly spaced polymorphic markers
that span the entire human genome in an attempt to link disease phenotypes to specific regions
in the human genome. In a comparison of genome wide linkage studies between autoimmune
and inflammatory disorders and similar studies in autism and Tourette syndrome, overlap of
polymorphic markers were found to be statistically significant (p = 0.01) in chromosomal
regions originally independently identified in autism and Tourette's, or in autoimmune and
inflammatory disorders. http://www.grc.nia.nih.gov/branches/rrb/dna/pubs/cgoatad.pdf This
comparison was performed using the approach originally taken for autoimmune disorders
101. Fig 1 shows sixteen selected regions of the genome where this marker overlap occurs. A
more comprehensive listing of marker overlap between autoimmune/inflammatory disorders
and autism and Tourette syndrome can be found here:
http://www.grc.nia.nih.gov/branches/rrb/dna/atsmap.htm Moreover, a subset of these markers
found to be statistically significant in both disease classes is not due to simple coincidental
overlap of genetic regions, but includes 144 identical polymorphic markers originally found
to be statistically significant in both autism and autoimmune or inflammatory disorders,
including asthma. For example, in the chromosomal region 17q25.3, the polymorphic marker
D17S784 has been independently linked to psoriasis 102, Crohn's disease 103, Tourette
syndrome 104, and autism 105. A listing of markers independently found in both disease classes
can be found here: http://www.quickbase.com/db/8qsiujvy

Summary of disease comparisons
The epidemiological, morphometric, molecular, and genetic comparisons between autism and
inflammatory disorders stated above highlight multiple lines of evidence in addition to humoral
and cellular immune abnormalities with the goal to strengthen an etiological relationship
between autism and autoimmune and inflammatory disorders. It is not suggested that these
comparisons support any direct link between these disorders. However, these shared
observations between autism and inflammatory disorders are used in support of the
development of a hypothesis for the apparent rise in the prevalence of autism using the
framework of the immune hygiene hypotheses.

The hygiene hypothesis
The hygiene hypothesis is a widely held theory of the etiology of asthma and atopic disorders
which builds on observations of rural versus urban distribution of disease. It suggests that
cleaner environmental conditions in westernized countries, as compared to developing
countries, play a role in the increase of the prevalence of these disorders in western countries
106. Moreover, low levels of asthma and allergies are found with early exposure to cats 107,
108, being raised in a farm environment 109 larger family size 110,35 day-care attendance
111 and birth order 32,33,34,35,36.

Risk for asthma and atopy may be due to a lack of early immune challenge of the post-natal
immune system by microbial or parasitic infection possibly including environmental
saprophytes and gut commensal organisms, relative to the developing innate immune system
112. Alteration in the immune repertoire early in thymic development may lead to the
establishment of immune hypersensitivity ultimately leading to inflammatory pathology.

In certain ways, the hygiene hypothesis is counterintuitive, in that less clean polluted
environments were once thought to cause asthma. Moreover, it is common practice in western

Becker Page 5

Med Hypotheses. Author manuscript; available in PMC 2007 November 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.grc.nia.nih.gov/branches/rrb/dna/pubs/cgoatad.pdf
http://www.grc.nia.nih.gov/branches/rrb/dna/atsmap.htm
http://www.quickbase.com/db/8qsiujvy


society to “protect” children from bacteria and microorganisms through isolation indoors and
through overuse of antibacterial soaps. This practice may be harmful in not allowing robust
immune challenge in early neo-natal development.

The hygiene hypothesis is not without criticism. The changes in the prevalence of atopic
disorders may have more complex etiologies with regard to overall microbial load or helminth
infection in the general population 113,114,115,116 rather than with simple notions of personal
or community hygiene practices.

Autism and the hygiene hypothesis
As compared above, similarities between autism, asthma, and inflammatory disorders raise the
possibilities of shared mechanisms between these disease types. These include altered immune
function in both types of disorders, a similar sex bias at diagnosis, similar birth order
relationships, unexplained increased neonatal head circumference, a similar increase in
prevalence rates during the last quarter century, a possible rural-urban distribution of the
diagnosis with disease being more prevalent in urban environments, and shared molecular and
genetic factors between autism and asthma. This adds multiple lines of evidence that
mechanisms important in the etiology of immune and inflammatory processes may contribute
to the etiology of autism.

It is proposed here that the hygiene hypothesis, a viable theory in the etiology of asthma, should
be considered in the etiology of autism. Underlying factors important in the hygiene hypothesis,
whether they are truly related to hygiene practices or to overall microbial or parasitic load,
thought to be relevant to the increase in asthma and atopy, may contribute to the rise in the
incidence of autism as well. Altered patterns of infant immune stimulation may hypersensitize
the early immune system not toward allergic sensitivity and bronchial hypersensitivity but to
inflammatory or cytokine responses affecting brain structure and function leading to autism.
It is well documented that immune cytokines play an important role in normal brain
development as well as pathological injury in early brain development 117,118. It is
hypothesized that immune pathways altered by hygiene practices in western society may effect
brain structure or function contributing to the development of autism.
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Fig 1. Selected clusters of linkage data from Autism, Tourette syndrome, and Autoimmune/
Inflammatory disorders
All polymorphic markers come from independent genetic linkage whole genome scans. Each
marker is positioned on a common reference map based on the LDB gmaps. Chromosome band
and centimorgan position are shown above and below respectively for each chromosomal
region. Polymorphic markers from autoimmune and inflammatory disorders are in black.
Markers from autism are in orange. Markers from Tourette syndrome are in purple. All markers
are arbitrarily assigned a 10-centimorgan interval at the peak marker reported. Line weight is
proportional to LOD score of p-value. References and other information for all polymorphic
markers can be found here: http://www.quickbase.com/db/8jp3dz49?a=q&qid=1
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