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ABSTRACT Computer simulations of the effect of protein
dynamics on the long distance tunneling mediated by the
protein matrix have been carried out for a Ru-modified (His
126) azurin molecule. We find that the tunneling matrix
element is a sensitive function of the atomic configuration of
the part of the protein matrix in which tunneling currents
(pathways) are localized. Molecular dynamics simulations
show that f luctuations of the matrix element can occur on a
time scale as short as 10 fs. These short time fluctuations are
an indication of a strong dynamic coupling of a tunneling
electron to vibrational motions of the protein nuclear coor-
dinates. The latter results in a modification of the conven-
tionalMarcus picture of electron transfer in proteins. The new
element in the modified theory is that the tunneling electron
is capable of emitting or absorbing vibrational energy (pho-
nons) from the medium. As a result, some biological reactions
may occur in an activationless fashion. An analytical theoret-
ical model is proposed to account for thermal f luctuations of
the medium in long distance electron transfer reactions. The
model shows that, at long distances, the phonon-modified
inelastic tunneling always dominates over the conventional
elastic tunneling.

Electron transfer is an integral part of many biological pro-
cesses, such as photosynthesis and respiration. Much effort,
therefore, has been directed toward understanding transport
properties of various biological materials. In particular, recent
experimental studies have provided information on the dis-
tance and structural dependence of electron transfer rates in
various natural and modified proteins (1–4). In these systems,
electron transfer typically occurs over distances of 10–30 Å and
is due to tunneling mediated by the intervening medium
between donor and acceptor.
It is commonly believed that fundamental principles of long

distance electron transfer are essentially the same as those of any
other electron transfer reaction (5). The only difference seems to
be in the nature of electronic coupling; in short distance reactions,
electronic orbitals of donor and acceptor directly overlapwhereas
in long distance reactions this coupling is indirect because of
sequential overlaps of atomic orbitals of the donor, the interven-
ing medium (bridge), and the orbitals of the acceptor. These
sequential overlaps give rise to the concept of superexchange. It
is assumed that all states in the bridging medium are virtual, i.e.,
there are no other resonant states in the systembut those of donor
and acceptor. The resonance between donor and acceptor occurs
in the course of thermal fluctuations of the polar environment.
The absence of real intermediate states and direct coupling
physically means that electron transfer occurs via tunneling. In
this picture, the overall rate of electron transfer is proportional to
the frequency at which donor and acceptor states come to
resonance and the probability to transfer an electron between

donor and acceptor states at the transition state (i.e., donor–
acceptor resonance) of the reaction. Such a direct application of
classic Marcus theory has been very successful in characterizing
major factors that control biological electron transfer (1–5).
The question, nevertheless, exists as to whether there is any

conceptual difference at all between short and long range
electron transfer reactions, in particular reactions in proteins.
In this paper, we examine this question in computer simula-
tions of electron tunneling in the Ru-modified azurin mole-
cule, which recently has been synthesized and studied in Gray’s
laboratory (3).
We are interested in the role of dynamics of the intervening

medium through which an electron passes between donor and
acceptor. One effect of the fluctuations in the medium is trivial;
because of the flexibility of the bridge, every time donor and
acceptor statesmeet in resonance, the configuration of the barrier
separating donor and acceptor wells will be slightly different. The
transfermatrix element (TDA), therefore, will be also different for
different configurations of the transition state, and an appropri-
ate averaging of the square ofTDA has to be carried out in the rate
expression to account for such inhomogeneity of the reaction.
This effect has been recognized early in the discussion of

electron transfer in proteins (6, 7). The real challenge, how-
ever, always has been to evaluate how big the fluctuations of
TDA are in real systems and to understand whether or not the
calculations of the electronic tunneling matrix element on a
single configuration (x-ray data for a protein structure), which
were the focus of many recent studies in this area, reliably
represent actual electronic couplings in proteins. We examine
this question in a molecular dynamics simulation by calculating
the superexchange matrix element simultaneously with the
dynamics trajectory of a protein in which electron transfer
occurs. The magnitude of fluctuations of the matrix element
observed in our calculations depends on the tunneling energy
and on the part of the protein that is allowed to move. We find
that, in general, the fluctuations of matrix element are so big
that the averaging of the square of TDA is unavoidable when a
comparison with experimental data is made.
The second effect ismore subtle. It has to dowith the time scale

of the fluctuations of the tunnelingmatrix element tb. The inverse
of this time defines the typical energy quantum (\tb21) that the
tunneling electron can exchange with vibrations of themedium in
which the propagation of the tunneling electron is taking place.
The effect of such an energy exchange is that the tunneling can
occur not at the resonant position of donor and acceptor states
but rather when the donor and acceptor states aremismatched by
at least one quantum of the vibrational energy of the protein
medium. Thus, tunneling becomes inelastic, in contrast to the
usual elastic tunneling assumed in the conventional theory of
electron transfer in proteins. We show here that the time scale of
matrix element fluctuations, due to motion of the atoms of the
proteinmatrix, can be as short as 10 fs, giving rise to a large energy
quantum of the order of 1000 cm21.We find that these short time
fluctuations are of the order of the matrix element itself, which
indicates a strong coupling of the tunneling electron to the fast
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vibrational nuclear motions of the protein, such as CN, CC, CO,
and CH stretch vibrations.
We also propose a simple analytical model, which is a natural

modification of the Marcus model of electron transfer, that
accounts for the effects found in our computer simulations. The
study of this model shows that, when the distance between donor
and acceptor increases, the contribution of inelastic tunneling
always dominates over the usual elastic tunneling. One conse-
quence of the inelastic tunneling is that the reaction becomes
activationless in the conventional inverted region.
In the next section, results of computer simulations of the

tunneling matrix element in Ru-modified azurin are presented.
The following section is devoted to the discussion of the analytical
model of electron transfer mediated by a fluctuating bridge.

2.0 Molecular Dynamics Simulations and Electron
Tunneling in Ru-Modified Azurin

The main idea of the calculations was to simulate thermal fluc-
tuations of the protein structure around equilibrium by running
Nosè–Hoover dynamics on the protein matrix as well as to
examine the tunneling matrix element for different configurations
of the nuclear coordinates along the trajectory. At this stage of the
work, the goal was to find how sensitive the tunneling amplitude
would be to equilibrium fluctuations of the protein structure and
to determine the relevant time scale of these fluctuations.
The calculations were performed on the His X–Ru-modified

blue copper protein azurin molecules from recent experimental
studies of Gray and coworkers (3). In these systems, electron
tunneling occurs between the Cu1 and Ru31 ions; Cu is a native
metal center of the azurin molecule, and the Ru(bipy)2im com-
plex is attached to a His X residue at different positions on the
surface of the molecule using site-directed mutagenesis. In par-
ticular, experimental studies have been carried out for three
systems (His-122, His-124, andHis-126) in which the Ru complex
is attached along one of the eight anti-parallel b-strands of the
azurin molecule, which has a distinctive b-barrel secondary
structure. The metal-to-metal distance in these systems varies
roughly between 15 and 26 Å for His-122 and His-126, respec-
tively. These complexes have been used recently in our studies of
protein pruning (8) and interatomic tunneling currents (9, 10) for
a ‘‘frozen’’ crystal structure of the molecule. The results of
dynamics simulation in His-126 molecule, with the longest dis-
tance between donor and acceptor, will be presented here.
A computer model of the three-dimensional atomic struc-

ture of the system used in the calculations (Fig. 1) was based
on the crystallographic data for azurin. Modifications of the
original crystal structure of the azurin molecule by attaching
the Ru complex were made using standard molecular simula-
tion programs.§
We begin with a discussion of the method of tunneling matrix

element calculation for a given configuration, i.e., for one snap-
shot of the protein structure along the trajectory. In fact, calcu-
lations of this type have been done and reported earlier (8–10).
We therefore give here only a brief description of this part of the
calculation.

2.1 Tunneling Matrix Element

Because of their size, direct ab initio studies of electronic
coupling in realistic biological systems are not yet feasible
although such studies have been carried out on small model
systems (11–13). We will therefore use one of the semiempiri-
cal, one-electron methods developed for such calculations in
our group (10).
In the matrix element calculations, the perturbation theory

method (14–21) was used. This method avoids diagonalization
of the protein Hamiltonian matrix and thereby allows for

taking account of all atoms of the protein matrix in the
calculation. The approach is based on the assumption of weak
coupling between donor and acceptor orbitals and the orbitals
of the intervening medium. We recently have tested the
reliability of this method and found that it reproduces results
of exact diagonalization for Ru-modified azurin within 30%, a
reasonable accuracy for this type of calculation (10).
In this method, the tunneling matrix element is expressed in

terms of the Hamiltonian matrix of the bridge HB, its overlap
matrix SB, and the coupling coefficients of donor and acceptor
orbitals to the bridge V,

TDA 5 O
ij
Vai~E0SB 2 HB!ij

21Vjd, [2.1]

where E0 is the tunneling energy, and the couplings of donor
and acceptor metal ion orbitals ud. and ua. to the bridge
orbitals ui., u j., . . . are given by (17, 22)

Vjd 5 ~Hjd 2 E0Sjd!, Vai 5 ~Hai 2 E0Sai!. [2.2]

The Hamiltonian matrix of the protein Hij is set up using
Slater-type atomic orbitals as in the extended Hückel method.
The actual evaluation of Eq. 2.1 is carried out using the method
of transition amplitudes (20, 21). This type of calculation for
Ru-modified proteins and, in particular, for the His-126 de-
rivative has been described in detail recently (10).
With the use of perturbation theory, it has been shown (8) that

large portions of the protein are not participating in electron
transfer and can therefore be excluded from the calculation of
electronic coupling. The process of finding relevant amino acids
on which the tunneling pathways are localized (‘‘amino acid
resolution’’ of tunneling pathways) is called ‘‘protein pruning’’
and has been described by Gehlen et al. (8). The pruned mole-
cules consist only of important amino acids and are much smaller
in size compared with the full protein. Further ‘‘atomic’’ details
of the the tunneling pathways can be examined with the method

§The files with atomic coordinates of the molecule used in the present
study were kindly provided by Ralf Langen of H. B. Gray’s research
group.

FIG. 1. Ru(bipy)2(Im)(His-126)–azurin system. Donor is a type II
copper ion coordinated axially by a glycine oxygen and a methionine
sulfur atom and in the equatorial positions by two histidine nitrogen
atoms as well as a cysteine sulfur atom. Acceptor is in a virtually
perfect octahedral crystal field coordinated by two bipyridines and two
imidazole nitrogen atoms, one being the site-directed surface histi-
dine. In dark, the 12-amino acid, pruned molecule is outlined. Donor
and acceptor are separated by 26.7 Å. The arrows point to ‘‘soft links,’’
which are the Phe-110 (Ca–N) bond located on the Cys-112 strand and
the Gly-123 (Ca–C) bond, which is part of the Met-121 strand. The
pruned molecule and soft links were used in the dynamics simulations.
The water molecules surrounding the protein are not shown.
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of interatomic tunneling currents (9). Results of the pruning and
examination of the tunneling currents in Ru–His-126–modified
azurin have been reported (9).
From previous calculations by us and others, it has been

shown that the major tunneling pathways in the His-126–
azurin molecule are rather localized between two anti-parallel
b-strands connecting donor and acceptor. One of the b-strands
contains amino acids Met-121 and His-126, which are ligands
to donor and acceptor ions, respectively. The other b-strand is
ligated to the donor metal with Cys-112 and has a ‘‘through
space’’ contact with the acceptor Ru complex (Fig. 1). We call
these two strands Met-121 and Cys-112, respectively.
Pruning and tunneling currents allow one to identify im-

portant amino acids and to examine to what extent different
atoms in these amino acids are involved in promoting the
tunneling electron between donor and acceptor. Initially, such
an analysis was performed on a crystal structure of a Ru–His-
126–azurin molecule. This information then was used in the
dynamical studies as described below.

2.2 Protein Dynamics and Fluctuations of the Tunneling
Barrier

We know that only a part of the protein is involved in
tunneling, so the dynamics calculations were performed only
on a particular group of atoms (determined by pruning and
tunneling currents) that make up the tunneling bridge between
donor and acceptor (Fig. 1). The tunneling matrix element was
examined along the dynamic trajectory.
Standard canonical Nosè–Hoover dynamics (23) was per-

formed with the cell–multipole method for nonbonding inter-
actions. The protein dielectric constant « was set to a value of
4.0. Several layers of movable water molecules were added to
simulate the effect of the solvent. In addition, there was an
outer water shell surrounding the simulation system. The
coordinates of these water molecules were fixed to prevent
long term escape of movable water from the simulation region.
All of the atoms in the molecule were frozen except those

specified in Fig. 1, which were allowed to vibrate. The positions
of the donor and acceptor metal ions and their nearest ligand
atoms were also fixed, i.e., the total distance between donor
and acceptor ions and the coupling coefficients to the nearest
bridge atoms (Eq. 2.2) did not vary in the dynamics simulation.
It is clear that the frozen atoms in the molecule modify to

some extent the low frequency vibrational patterns of the
flexible bridge. The vibration of the whole molecule can only
increase the amplitudes of low frequency fluctuations of the
bridge (this increase indeed was observed in the calculation).
To most clearly demonstrate the principal effect, and in
particular the effect of high frequency modes of the bridge, we
report here only results for the dynamics of the atoms that are
directly involved in tunneling.
In the calculations, the ESFF force field (23) that allows

inclusion of metal ions (Cu1 and Ru13) in the calculations was
used. The ESFF results were tested by comparing calculations
using both CFF91 and ESFF on a protein model with metal
ions removed.We have found that all qualitative results are the
same for both force fields although details of the matrix
element fluctuations are slightly different. There were no
qualitative changes when « varied in the range 1–4. The time
step of the calculations was 0.25 fs. The systemwas equilibrated
first, and then the dynamic trajectory was generated.
A remark is necessary on the applicability of the classical

dynamics simulation of the fluctuations of high frequency modes,
such as CC, CH, CN, and CO bonds, that clearly have a quantum
character. As will be shown in the next section, to evaluate
dynamic effects of fluctuations, one needs to calculate the
correlation function of the tunnelingmatrix element. The Fourier
harmonics of the correlation function, which are important for
the dynamics of electron transfer, depend only on the frequencies
of the vibrational modes. These frequencies are the same in both

quantum and classical mechanics. Thus, the relevant time scale of
fluctuations (the spectrum of fluctuations) of the tunneling
matrix element can be obtained by classical simulation of the
protein dynamics. Essentially the same idea was used in treating
quantum mode contributions into the reorganization energy of
electron transfer reactions in proteins (24, 25).
In Figs. 2–4, results of the dynamics calculations are shown. Fig.

2 presents a long term dynamics simulation, in which all amino
acids of two b-strands relevant to electron transfer were allowed
to move. To examine the shortest time scale of fluctuations, a
short term dynamics was performed on the Gly-123 (Ca–C) bond
on the Met-121 strand and on the Phe-110 (Ca–N) bond on the
Cys-112 strand. These four atoms lie approximately the same
distance from the donor (11.5–12.8 Å) and acceptor (13.0–14.5
Å) ions. Furthermore, these particular amino acids arewell within
hydrogen bonding distances (.1.8 Å) to each other. These two
strands were found previously to carry different amounts of
tunneling current (9).
As one can see from Figs. 2–4, the tunneling matrix element is

a sensitive function of the configuration of the protein matrix.
Fluctuations of thematrix element reflect variations of the barrier
through which tunneling occurs at slightly different configura-
tions of the protein. Typical thermal fluctuations of the protein
structure are seen to be sufficient to cause significant fluctuations
of the tunneling matrix element. The matrix element responds
differently to motion of different parts of the protein, as shown
in Figs. 3 and 4. This is related clearly to the probability that the
tunneling electron will visit a given part of the protein as it makes
a tunneling jump from donor to acceptor (9).
Two major conclusions can be drawn from the numerical

results presented above. First, the fluctuations of the matrix
element are sufficiently big, so when a comparison with
experimental data is made, the averaging that reflects these
fluctuations has to be included in the expression for the rate
of electron transfer (5),

k 5
2p

\
, TDA

2 .rFC, [2.3]

where rFC is the Franck–Condon density, and , TDA
2 . is the

averaged square of the transfer matrix element over all pos-
sible thermal fluctuations of the protein structure.

FIG. 2. Long term dynamics of matrix element fluctuations. The
part of the molecule shown in dark in Fig. 1 was allowed to move
together with surrounding water molecules (not shown in Fig. 1). The
Cys-112 and Met-121 sulfur atoms, as well as the His-126 nitrogen
atom, were held fixed in the dynamics simulation. Two different
tunneling energies were used in the calculation. One (E05 211.10 eV)
is close to a gap edge, and the other (E0 5 210.50 eV) is close to the
middle of the gap. The gap in this model is located approximately
between 211.7 and 29.6 eV.
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The second conclusion is that the fluctuations are in general
sufficiently fast. The time scale tb on which variations of matrix
element can be as large as 100% or even greater is ;10 fs, as
seen from Figs. 3 and 4. The corresponding energy quantum
\(tb)21 is ;1000 cm21. As will be shown in the next section,
such fast f luctuations result in energy exchange between a
tunneling electron and vibrational modes of the medium in
which tunneling occurs. The latter effect introduces a new
important aspect into theory of long distance electron transfer
reactions that results in a modification of the conventional
expression (Eq. 2.3) for the rate.

3.0 Theoretical Model of Electron Tunneling in Fluctuating
Medium

To account for thermal fluctuations of the bridge in long
distance electron transfer reactions and for sensitivity of the
tunneling matrix element to such fluctuations (i.e., the break-
down of the Condon approximation), a generalization of the
Marcus model is required. Such a generalization is the subject
of this section. In earlier literature, there were discussions of
various aspects related to the breakdown of the Condon
approximation and issues similar to those considered below, in
particular in refs. 26–31.

3.1 Hamiltonian

The simplest treatment of electron transfer is obtained within
a harmonic model of the medium. In this model, two states,
donor and acceptor, are coupled to each other and to a
harmonic bath that describes collective modes of polarization
fluctuations of the medium surrounding the reaction complex.
The Hamiltonian of this model (which sometimes is called the
spin–boson Hamiltonian) is written in the form:

H 5 H0P 1 V [3.1]

H0P 5
DG0
2

sz 1 sz O
i51

N

ciyi 1 O
i51

N S pi22mi 1
mivi

2yi
2

2 D [3.2]

V 5 TDAsx [3.3]

where TDA is the electronic matrix element coupling the
reactant state uD& and the product state, uA&, yi and pi are the
coordinates and conjugated moment, respectively, referring to
nuclear motions of the medium, and DG0 is the driving force
of the reaction. The symbols sz and sx are the Pauli operators
(uA.,Au 2 uD.,Du) and (uD.,Au 1 uA.,Du), respectively,
in a two-state (uD& and uA&) representation.
Coordinates yi describe ‘‘normal modes’’ of the solvent polar-

ization and vibrations of the ligands of donor and acceptor ions.
The connection of the model Hamiltonian to a real system is
made by specifying the spectral density of the harmonic bath J(v).
The final result for the rate can always be expressed in terms of
J(v), which, in turn, can be expressed in terms of the longitudinal
dielectric function of the solvent and parameters of the inner part
of the reaction complex by well established formulas (32).
The nonadiabatic reaction corresponds to a weak electronic

coupling TDA in Eq. 3.3. In this case, the rate can be obtained
using the Golden Rule or the equivalent expression in terms
of the correlation function of electronic coupling V:

k 5
1
\2 E

2`

1`

, V~t!V~0! . dt , [3.4]

where V(t) is the interaction representation of V and the
averaging , . . . . is over a thermal distribution in the initial
electronic state. A simple calculation (see, e.g., ref. 32) results
in a well known quantum expression for the rate of nonadia-
batic electron transfer reaction. Marcus theory is recovered as
the classical limit of that expression.
In the above formulation of the conventional electron

transfer model, two points are of particular importance for
further discussion. First, in the above model, all vibrational
modes yi change their equilibrium positions as the electron
jumps from donor to acceptor (otherwise a mode does not
contribute to the reorganization energy and can be excluded
from the model). The second point is that the electronic
coupling TDA is independent of the coordinates of the medium.
As calculations of the previous section show, the second

assumption of the independence of electronic coupling of the
system coordinates, namely the Condon approximation, is not
necessarily valid for long distance electron transfer. Indeed, it
is quite obvious that, in principle, thermal fluctuations of the
bridge can result in fluctuations of the tunneling barrier and
hence in variations of the electronic coupling. To account for
this effect, the electronic coupling TDA in the model should be
made a function of coordinates of the bridge modes. The
bridge modes, however, do not necessarily participate in
polarization fluctuations or change their equilibrium positions
upon electron transfer, in contrast to themodes in the standard
model (Eqs. 3.1–3.3).
In long distance tunneling, electronic coupling is due to

superexchange. The simplest expression of superexchange

FIG. 3. Matrix element fluctuations in short term dynamics of the
Phe-110 (Ca–N) bond for two different tunneling energies, E0 5
211.10 eV and E0 5 210.50 eV.

FIG. 4. Matrix element fluctuations in short term dynamics of the
Gly-123 (Ca–C) bond for two different tunneling energies, E0 5
211.10 eV and E0 5 210.50 eV.
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coupling is the McConnell product of the form (33, 34):

TDA , VdbP
j

Vj, j11
~DEj!

[3.5]

where Vj, j11 are the couplings between directly overlapping
atomic orbitals of neighboring atoms along the tunneling path,
and DEj is the energy difference between the tunneling energy
and the energy of orbital j promoting the long distance
coupling. The coupling coefficients are exponential functions
of the distance between atoms, so when the atoms make
vibrational motions around equilibrium positions, the cou-
plings Vj, j11 change.
It is quite obvious then that a reasonable generalization of

the above formulation, to account for fluctuations of the
coupling coefficients Vj, j11, is to write TDA in the form:

TDA~x! 5 TDA
0 P

j51

L

exp~ 2 ajxj! 5 TDA
0 expS2O

j51

L

ajxjD, [3.6]

where xj are the deviations from equilibrium of the atomic
coordinates of the bridge, aj are some constants characterizing
the strength of the coupling to a particular bridge mode j, and
TDA0 is the tunneling matrix element corresponding to the
equilibrium configuration of the bridge. We assume that the
electron makes a total of L virtual jumps between donor and
acceptor. In general, L is proportional to the tunneling dis-
tance [or the length of a tunneling path (34)]. We further
assume that coordinates xi are harmonic oscillators [elsewhere
(35) we show how to generalize the treatment to Morse
oscillators]. Then, the new Hamiltonian of long distance
electron transfer reactions takes the form:

H 5 H0P 1 H0B 1 V, [3.7]

where H0P is the Hamiltonian of polarization modes and
ligands that change equilibrium upon electron transfer; H0B is
the Hamiltonian of the bridge modes, which do not change
their equilibrium position,

H0B 5 O
j51

L S pj22mj 1 mjvj
2xj
2

2 D [3.8]

and the coupling is

V 5 TDA~x1, . . . , xL!sx [3.9]

with TDA(x) given by Eq. 3.6.

3.2 Rate of Long Distance Inelastic Tunneling

To find the rate, one again can use the correlation function
formalism (Eq. 3.4). We note that Eq. 3.5 does not involve any
assumptions (such as the Condon approximation) in the
functional form of the coupling V. Now V has an additional
dependence on the bridge coordinates xi. The group of bridge
oscillators is assumed to be independent of other modes in the
system, so the correlation function expression is factorized and
can be written in the form:

k 5 STDA0
\

D 2 E
2`

1`

F0~t!F1~t!dt [3.10]

where F0(t) is the correlation function corresponding to the
conventional electron transfer problem with constant coupling
TDA0 , and F1 is an additional correlation function of the bridge
modes:

F1~t! 5 ^exp X~t! exp X~0!&, [3.11]

where

X 5 2 O
j51

L

ajxj. [3.12]

Both F0 and F1 are easy to calculate using, e.g., the cumulant
method (36). The full quantum expression for F0 is well known
(see, e.g., refs. 24, 25, 37). Its classical limit (\viykBT,,1 for
all i in H0P) has the form

F0
cl~5! 5 exp F2

lkBTt2

\2
2 i

~l 1 DG0!t
\ G , [3.13]

where l is the reorganization energy, and T is the temperature
of the system. The rate constant corresponding to F0cl is given
by the familiar expression (5)

k0~TDA
0 , DG0, l! 5

~TDA
0 !2

\ Î p

lkBT
expF2

~l 1 DG0!2

4lkBT
G .
[3.14]

For F1(t), one obtains

F1~t , T! 5 O
n52`

`

In1 Lk

sinh
\vb

2kBT
2

3 expF 2 invbS t 1
i\
2kBT

D 1 Lkcoth
\vb

2kBT
G [3.15]

where In(z) is the modified Bessel function, and all frequencies
of the bridge were treated to be the same and equal to vb. A
new constant k was introduced, k 5 \a2y2 mvb. Using this
correlation function and the expression for F0cl (Eq. 3.13 or a
more general quantum expression), one obtains the following
expression for the rate:

k 5 O
n52`

`

P~n, L!k0~^TDA
2 &1y2, DG0 1 n\vb, l!,

[3.16]

where

P~n, L! 5 expS2Lkcoth
\vb

2kBT
D In1 Lk

sinh
\vb

2kBT
2 expSn\vb

2kBT
D
[3.17]

and

^TDA
2 & 5 ~TDA

0 !2 expS 2Lkcoth
\vb

2kBT
D . [3.18]

The above formula has a clear physical meaning. The total rate
is the sum of all multiphonon processes. The term with n 5 0
corresponds to a usual electron transfer reaction, when no
vibrational quanta are exchanged between the tunneling electron
and the bridge. This is the usual elastic tunneling. The only
consequence of fluctuations of the bridge here is that the effective
tunneling matrix element is calculated for an ‘‘average’’ barrier,
^TDA2 &1y2. This effect has been mentioned earlier (Eq. 2.3).
All other terms in the above formula describe inelastic

processes, when one or more vibrational quanta are emitted or
absorbed by the tunneling electron in the bridge. The factor
P(n, L) is the probability to emit (positive n) or to absorb
(negative n) unu quanta of vibrational energy by the tunneling
electron. For each of the multiquantum processes, the partial
rate is given by the usual nonadiabatic formula (Eq. 3.14) with
an averaged coupling constant and a shifted driving force. The
reorganization energy remains the same.
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The most significant change of the energetics of the reaction
comes from the vibrational modes with high frequencies. For
such modes, one can simplify the above expressions assuming
\vbykBT..1. In this quantum limit, negative values of n can
be neglected (there is no thermal excitation and, hence, no
quanta to absorb), then for n $ 0, using the asymptotic
expression of In(z) for small z, one obtains

P~n, L! 5 exp~ 2 Lk!
1
n!

~Lk!n. [3.19]

The probability to emit n vibrational quanta in the bridge with
L oscillators takes a Poisson form. In this limit, only terms with
n $ 0 are present in Eq. 3.16.
Several important conclusions can be made from the above

results. First, it is clear from the expressions for probabilities (Eqs.
3.17 and 3.19) that the probability of elastic tunneling quickly
diminishes to 0 as the length of the tunneling path L increases.
Thus, for long distance tunneling reactions, inelastic tunneling
dominates over usual elastic tunnelingwhen the distance between
donor and acceptor becomes sufficiently large.
Second, because the activation energy for various inelastic re-

action channels in Eq. 3.16 (with n quanta emitted) depends on n,

Ea~n! 5 ~l 1 DG0 1 n\vb!
2y4l [3.20]

for large and negative DG0 (when the conventional reaction is in
the inverted region) an inelastic reaction can be activationless
because there will be always such an n* (provided L is large) that,
for n*th channel, the activation energy will be close to 0. It is
possible that such a phenomenon indeed occurs in proteins, such
as Ru-modified azurin or cytochrome. According to recent data
(38), the reaction rate in the Ru–Cyt system, for example, is
surprisingly insensitive to variations of the driving force, which is
consistent with the prediction of the present model.
The overall effect of multiphonon energy relaxation in the

bridge (kL. 1) can be expressed in a simple formula that can
be obtained by approximating P(n, L) (Eq. 3.19) by a contin-
uous Gaussian function of n. Then, replacing the sum over n
in Eq. 3.16 with an integral, one obtains:

lnk 5 2 ~l 1 DG0 1 ^n& \vb!
2y4l9kBT 1 const [3.21]

l9 5 l 1 ^n& \vb
\vb

2kBT
, [3.22]

where , n . 5 Lk is the average number of quanta dissipated
in the bridge. Thus, although the dependence of ln k on DG0 is
still quadratic in this approximation, as in the classic Marcus
theory, the width of the parabola, l9, can be significantly larger
than that of the Marcus theory l because one can have \vby
kBT..1 for high frequencies in the bridge. Similar effects in
principle exist for absorption channels (n, 0). However, for high
frequency modes, the number of thermally excited vibrational
quanta is too small to have practically significant effect.
We note that the inelastic bridge effects are qualitatively

similar to quantum effects in the standard model of electron
transfer discussed extensively in the literature in the past (e.g.,
ref. 37). Both quantum effects and inelastic effects can be
incorporated within a single model (35).
The above formulas suggest that, when inelastic tunneling is

contributing to the reaction, the dependence of the reaction rate
on the driving force should be different for different distances of
electron transfer. Also, the effective width, l9, should be expected
to be both temperature- and distance-dependent. These predic-
tions provide an avenue for possible experimental verification of

the discussed effects, for example, in a series of DG0 measure-
ments of the reaction rates inRu-modified proteins with different
distances between donor and acceptor.
There is no doubt that this effect should exist at large

distances of electron tunneling. The main objective is to find
a real example in which electron–bridge coupling k is suffi-
ciently strong. Present calculations, based on the extended
Hückel model, indicate that it might be the case in Ru-
modified proteins.More accurate calculations, however, would
be desirable in the future to verify this conclusion.
We conclude that the dynamics of the medium in which long

distance tunneling is taking place introduces a new perspective
in our understanding of the mechanism of biological electron
transfer worthy of further investigation.
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