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gyrB Mutations in Coumermycin Al-Resistant
Borrelia burgdorferi
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We have isolated and characterized mutants of Borrelia burgdorferi that are resistant to the antibiotic
coumermycin A1, which targets the B subunit of DNA gyrase. Mutants had either 100- or 300-fold higher
resistance to coumermycin A1 than wild-type B. burgdorferi. In each case, a single point mutation in the gyrB
gene converted Arg-133 to Gly or Ile. Mutations in the homologous Arg residue of Escherichia coli DNA gyrase

are also associated with resistance to coumarin antimicrobial agents.

Lyme disease in North America is caused by the spirochete
Borrelia burgdorferi (4, 38). B. burgdorferi has an unusual
eubacterial genome composed of mostly linear DNA mole-
cules (2, 3, 5, 10, 15, 18, 35, 36) with a few circular DNA
molecules (2, 21, 33, 36). We have recently shown that B.
burgdorferi is highly susceptible to growth inhibition by couma-

rin antimicrobial agents (33), which inhibit the enzyme DNA
gyrase (13, 17, 24, 28, 42). Furthermore, the circular DNA
molecules of B. burgdorferi are relaxed by coumermycin A1
treatment (33).
DNA gyrase is a prokaryotic type II DNA topoisomerase,

which introduces negative supercoiling into DNA by tran-
siently nicking both strands of the helix and using ATP
hydrolysis to pass another portion of the DNA molecule
through the double-stranded break (9, 12, 16, 28). The enzyme,
which is required for cell growth and replication, is a tetramer
composed of two A subunits and two B subunits. The A
subunit interacts with DNA and is responsible for the break-
ing-rejoining reaction, while the B subunit contains the
ATPase activity. Coumarin drugs, such as coumermycin A1,
bind to the B subunit of DNA gyrase and inhibit its ATPase
activity (17, 25, 37, 39), most likely by a noncompetitive
mechanism that involves stabilizing a protein conformation
with a low affinity for ATP (1, 24).

Resistance to coumarin drugs has been mapped to gyrB, the
gene encoding DNA gyrase B (14, 17, 19, 27, 29). Molecular
studies have demonstrated that mutations in the N-terminal
domain of DNA gyrase B, which contains the ATP-binding site
(1, 41), confer drug resistance (8, 11, 19, 40). The most
common mutations in Escherichia coli are those that change
Arg-136 (in the N-terminal domain) of DNA gyrase B to Leu,
Cys, His, or Ser (8, 11). In addition, a mutation that changes
Gly-164 to Val confers a temperature-sensitive resistance to
the coumarin antibiotic chlorobiocin (8). A mutant of the
halophilic archaebacterium Haloferax sp. resistant to the cou-

marin antibiotic novobiocin had mutations at three residues,
which correspond to Gly-81 (which is not a conserved residue),
Ser-121, and Arg-136 in E. coli (19). The mutation at the Arg
residue is thought to be primarily responsible for the drug
resistance (24).
There are very few mutants of B. burgdorferi derived from
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selection (6, 7, 30, 31) and none that are resistant to an

antimicrobial agent. This dearth of mutants has hindered
genetic experiments. We therefore isolated several coumermy-
cin Al-resistant variants, characterized their susceptibility to
the selective agent, and found mutations in their gyrB genes at
Arg-133, which corresponds to Arg-136 in E. coli.

Selection of coumermycin Al-resistant variants. B. burgdor-
feri B31 (ATCC 35210) has been extensively passaged in
culture and was grown at 32 to 34°C in Barbour-Stoenner-Kelly
(BSK) II medium lacking gelatin (33). Coumermycin A1
(Sigma) in dimethyl sulfoxide was added directly to B. burg-
dorferi cultures in BSK II medium (yielding a final dimethyl
sulfoxide concentration of less than 0.02%). B. burgdorferi was

grown in solid medium as previously described (22, 23). Briefly,
240 ml of P-BSK (75 g of bovine serum albumin [fraction V;
Pentex, Miles] per liter, 7.5 g of Neopeptone [Difco] per liter,
9 g of HEPES [N-2-hydroxyethylpiperazine-N'-2-ethanesul-
fonic acid] per liter, 1.1 g of sodium citrate per liter, 7.5 g of
glucose per liter, 1.2 g of sodium pyruvate per liter, 0.6 g of
N-acetyl-D-glucosamine per liter, 3.3 g of sodium bicarbonate
per liter, 3.8 g of TC Yeastolate [Difco] per liter, NaOH to pH
7.5), 38 ml of 10x CMRL-1066 (without L-glutamine and
sodium bicarbonate; Life Technologies), 12 ml of rabbit serum
(trace hemolyzed; Pel-Freez), 20 ml of fresh 5% sodium
bicarbonate, and 200 ml of 1.7% agarose (high-strength ana-

lytical grade; Bio-Rad) were mixed at 55°C; 35 ml was poured
into 150-mm-diameter dishes and allowed to solidify. The
medium was equilibrated to 42°C, and 45 ml was mixed with
2.5 ml of B. burgdorferi in liquid BSK II and poured on top of
the solid bottom layer. Plates were incubated at 32 to 34°C in
a humidified 5% CO2 atmosphere. Coumermycin Al -resistant
variants were selected by plating 2.5 ml of a log-phase culture
of B. burgdorferi B31 (-108 bacteria per ml) in 0.1 ,ug of
coumermycin Al per ml (top and bottom agarose), which
inhibits growth of the parent cells by -80% (33). Ten isolated
colonies were picked (with a Pasteur pipet) from five dishes
after 2 to 4 weeks and grown in liquid BSK II with 0.1 jig of
coumermycin Al per ml. Cultures of coumermycin Al-resistant
B. burgdorferi were replated, and single colonies were picked a

second time from top agarose containing 0.1 ,ug of coumermy-
cin A1 per ml.
The gross morphology and plasmid content of the sponta-

neous coumermycin Al-resistant variants were indistinguish-
able from those of the parental B31 strain (data not shown).
However, the generation time of all 10 variants was 11 h,
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TABLE 1. Rate of growth, susceptibility to coumermycin A1, and
amino acid residue at position 133 in the B subunit of DNA gyrase

for wild-type and coumermycin Al-resistant mutants
of B. burgdorfera

Strain Doubling time (h [SE]) IC90 (.Lg/ml) DNA gyrase Bresidue 133

B31 10 (0.1) 0.2 Arg
CR8A 11 (0.2)b 20 Gly
CR1OE 11 (0.3)b 60 Ile

a Growth was assayed in 10-ml cultures by centrifuging the cells, resuspending
them in 1 ml of Dulbecco's phosphate-buffered saline, and determining the A6.
as described previously (33). Inhibitory concentrations of coumermycin A1 were
determined by inoculating 10 ml of BSK II medium with 106 bacteria per ml in
the presence or absence of coumermycin A,, incubating the cells at 34°C for 72
to 75 h (at which time the cultures in the absence of antibiotics reached 1 x 108
to 1.5 x 108 bacteria per ml), and assaying growth. The IC90 (previously termed
MIC) was defined as the concentration of antibiotic that inhibited growth by 90%
relative to growth in the absence of antibiotic (33).

b p . 0.05 compared with B31 as determined by t tests on the means of four
independent experiments.

compared with 10 h for B31 (Table 1). The variants could be
divided into two groups, based on the level of resistance to
coumermycin Al. Variant CR8A had an IC90 (the concentra-
tion that inhibits the growth of 90% of the cells) of 20 ,ug/ml,
100-fold higher than that of parental B31 (Table 1). The
second group, consisting of the other nine variants (represent-
ed by CR1OE), had an IC90 of 60 ,ug of coumermycin A1 per
ml, 300-fold higher than that of the parental strain (Table 1).
All of the variants maintained coumermycin Al resistance after
at least 30 generations in the absence of selection. Growth was
inhibited by 50% in the presence of 0.02, 3, and 10 ,ug of
coumermycin Al per ml for B31, CR8A, and CR1OE, respec-
tively.

Mutations in the gyrB gene correlated with coumermycin A1
resistance. DNA was isolated from wild-type and coumermy-
cin A1-resistant B. burgdorferi as described previously (33). The
gyrase genes have been mapped to near the center of the linear
chromosome (5, 26). The region of the gyrB gene encoding a
portion of the N-terminal domain was amplified by PCR, using
a GeneAmp kit (Perkin-Elmer Cetus) with 292F (5'-GGTG
GTAAGTITTAATAAAGGCACG) and 582R (5'-GTl7'A
AAAAAGCAAGCTCT'ITAAG) as primers (20, 26). We
determined the sequence of the gyrB gene from nucleotides
316 to 558 (Fig. 1A), using a dsDNA Cycle Sequencing System
(Life Technologies/BRL). This N-terminal 81-amino-acid re-
gion shares 50% amino acid identity with the E. coli protein.
This conservation provides an unequivocal alignment of the
gyrB gene products in which the B. burgdorferi Arg-133 corre-
sponds to Arg-136 of E. coli (Fig. 1B). This Arg residue was
conserved in B. burgdorferi 212 (26), B31 (Fig. 1B), JD-1,
Sh-2-82, and CA-11.2A (data not shown). The B31 sequence
was identical to the 212 sequence (GenBank accession number
L14948) between nucleotides 316 and 558. CR8A, which is
100-fold more resistant than the wild type, was found to have
an A-to-G transition (Fig. IA) that resulted in an Arg-133-to-
Gly change. All nine members of the CR1OE group, which are
300-fold more resistant than the wild type, were found to have
a G-to-T transversion (Fig. 1A) that converted Arg-133 to Ile.
No other mutations were found in the region of gyrB that
encodes amino acid residues 106 to 186 (which includes
Ser-118 and Gly-161, corresponding to Ser-121 and Gly-164,
respectively, in E. coli) in any of the coumermycin A,-resistant
variants (Fig. 1A). In addition, Southern blotting indicates that
there is only one copy of the gyrB gene per chromosome in
CR1OE (34).

A

B31 TATAAAGTTT CTGGGGGACT TCATGGCGTT GGAATTTCGG TTGTAAATGC 365
8A .......... .......... ..........

1tE .......... .......... ..........

B31 TCTATCTTCG TTTTTAGAGG TTTATGTTAA TAGAGATGGA AAAATTTTTA 415
8A G
IOE... .......

B31 GGCAAACTTT TTCAAAAGGT ATTCCGACTT CTAAAGTAGA AGTTGTGGGG 465
8A
1tE .......... ..........

B31 GAATCTTCTG TTACGGGGAC TAAGGTTACT TTTITGGCGG ATTCTGAAAT 515
8A .......... ..........

IOE .......... ..........

B3 1 TTTTGAAACT TTAGATTATA ATITCGATGT TCTTGAAAAA AGG
8A .......... ..........

10E .......... ..........

B

ECOGYRB
BBUGYRB
HALGYRB
SAUGYRB
BSUGYRB
PPUGYRB
NGOGYRB
MPNGYRB
CCRGYRB
PMIGYRB

558

YKVSGGLHGVGVSVVNALSQKLELVIQREGKIHRQIYEHGVPQ - --AP 153
........... I. SF. .VYVN.D ..F.F.TFSK.I.TSK---- 150
Q SE. .VEVK.D.AVWTHRF. V. E. .VEEFER 158
.......... D. ..........SE DYH. . KK .FD---- 161

A. TE.D D...........VTD---- 155
................... E. ........ TWE.T.V......----.. 155
..I DWVT .T. Y. D. .E.FVRFVR.ETE----E. 157
........... A ....... SSFKVWVA ..HQQYFLAFHN.GEVIGDL-- 159
............. .....D.KWL.H.N ..V.QMRF.R.DAVTS---- 174
....... ....D....... ... E....D----DR 153

ECOGYRB LAVTGETEKTGTMVRFWPSLETFTNVTEFEYEILAKR 19 0
BBUGYRB VE.V. .SSV ... K.T.LADS.I.-ETLDYNFDV.E.. 186
HALGYRB VRDLEPG.D. .. TI .... .DDGI.-ET . .. DFKT.EN. 194
SAUGYRB .KEV..........VIKADG....ET.VYN. .T.QQ. 198
BSUGYRB EII ... DH TTH.V.DP.I.SET ..YD.DL. .N. 192
PPUGYRB M. V. ..T... HIH.K. .... AK.I-H.SWD..... 191
NGOGYRB .KIV.DSD .K.......L... G.I- .YSFD..... 193
MPNGYRB VNEGKCDKEH. K.E .V.DFTVM-EKSDYKQTVI .S. 195
CCRGYRB K ... DSPVR- .EGPK-AG-. .L.G-. .VTFF 202
PMIGYRB .K.I .. D.SF. .... ... .KGE 182

FIG. 1. (A) Nucleic acid sequence of a 243-bp region of the gyrB
gene from parental B31 and coumermycin A,-resistant B. burgdorferi.
Nucleotides 316 to 558 from gyrB of strains B31, CR8A, and CR1OE,
which encode a region of the N-terminal domain of DNA gyrase B, are
shown. The sequences of the other eight variants of the CR1OE group
are identical to the sequence of CR1OE. Dots indicate nucleotide
identity. (B) Comparison between the protein sequences of an 81-
amino-acid region of DNA gyrase B from E. coli (ECO), B. burgdorferi
(BBU), Haloferax sp. (HAL), Staphylococcus aureus (SAU), Bacillus
subtilis (BSU), Pseudomonas putida (PPU), Neisseria gonorrhoeae
(NGO), Mycoplasma pneumoniae (MPN), Caulobacter crescentus
(CCR), and Proteus mirabilis (PMI). The GenBank accession numbers
are X04341, L14948, M38373, X71437, X02369, X54631, M59981,
X53555, U00592, and M58352, respectively. The CLUSTAL program
from PC/Gene 6.26 was used to compare predicted sequences. The P.
mirabilis and C. crescentus sequences are not complete. The conserved
Arg residue is in boldface; dots indicate amino acid identity, and
dashes indicate introduced gaps.

Conclusions and discussion. Coumermycin Al is an antibi-
otic that interacts with the B subunit of DNA gyrase. We have
isolated coumermycin Al-resistant variants of B. burgdorferi
and have mapped single point mutations correlating with drug
resistance to Arg-133 of DNA gyrase B. This is the first report
of a mutation in a Lyme disease agent that confers resistance
to an antibiotic. The site of mutation is consistent with
mutations at the conserved Arg residue previously observed in
E. coli (Arg-136) and Haloferax sp. (Arg-137), which confer
resistance to coumarin antibiotics (24). A corresponding Arg
residue is found in all DNA gyrase B proteins whose sequence
is known (Fig. 1B) except that from Streptomyces sphaeroides,
which is the producer of the coumarin antibiotic novobiocin
(40). In E. coli, mutations of Arg-136 to His, Arg-136 to Ser or
Cys, and Arg-136 to Leu confer 5-, -20-, and 64-fold resis-
tance, respectively, to coumarin drugs (8, 11), while the three
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mutations, including Arg-137 to His, confer -1,000-fold resis-
tance to coumarin drugs in Haloferax sp. (19). The mutation in
B. burgdorferi that correlates with coumermycin A1 resistance
is Arg-133 to Ile or Gly, neither of which has been previously
described in any other bacteria. The level of resistance in these
variants is 100- to 300-fold relative to the wild-type level. We
did not identify any mutations of Arg-133 to Ser, which is
possible with a single base change from the B. burgdorferi Arg
codon (AGA). This may be because the Arg-133-to-Ser change
does not confer enough resistance to allow for selection under
our conditions (despite the low concentration of coumermycin
A1 used). On the other hand, an Arg-136-to-Gly mutation has
not been detected in E. coli in spite of extensive searches (24).
This may be due to differences between the DNA gyrase B
proteins of the two bacteria: although they share 54% overall
identity, they are significantly different in size. The crystal
structure of the N-terminal domain of the B subunit in E. coli
indicates that Arg-136 interacts with Tyr-5 (41) and may,
therefore, have an indirect role in forming the ATP binding
pocket (24).
The coumermycin A,-resistant mutants grew slightly slower

than the wild-type strain. This slower growth rate may be due
to the decreased activity of the drug-resistant DNA gyrase,
although some coumarin-resistant strains of E. coli grow at the
same rate as wild-type strains (8). The slower growth pheno-
type may either be unique to B. burgdorferi or not detected in
E. coli because of its rapid generation time relative to B.
burgdorferi. Preliminary results suggest that the level of super-
coiling in the coumermycin A,-resistant B. burgdorferi mutants
CR8A and CR1OE are lower than in wild-type B31 (32),
indicative of a mutant DNA gyrase (8). We are currently using
coumarin-resistant gyrB as a selectable marker for genetic
studies in B. burgdorferi (34).
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