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Cell extracts were used to determine the enzymes involved in the intermediary carbon metabolism of several
strains of Shewanella putrefaciens. Enzymes of the Entner-Doudoroff pathway (6-phosphogluconate dehydratase
and 2-keto-3-deoxy-6-phosphogluconate aldolase) were detected, but those of the Embden-Meyerhof-Parnas
pathway were not. While several tricarboxylic acid cycle enzymes were present under both aerobic and
anaerobic conditions, two key enzymes (2-oxoglutarate dehydrogenase and pyruvate dehydrogenase) were
greatly diminished under anaerobic conditions. Extracts of cells grown anaercbically on formate as the sole
source of carbon and energy were positive for hydroxypyruvate reductase, the key enzyme of the serine pathway
in other methylotrophs, while no hexulose synthase activity was seen.

Shewanella putrefaciens strains have been isolated from
many different environments (4, 32, 36-38, 41), many of which
are suboxic or anoxic. In a recent report, Brettar and Hoefle
characterized these bacteria as redox interface organisms on
the basis of their abundance at oxic/anoxic interfaces in the
Baltic Sea (4). The prevalence of S. putrefaciens in so many
different suboxic niches may be the result of their ability to
exploit a wide range of compounds as terminal electron
acceptors. In addition to growing aerobically, S. putrefaciens
can use Fe(IIl), Mn(IV), S% S,0,27, NO;~, NO, ™, trimeth-
ylamine oxide, dimethyl sulfoxide, glycine, and fumarate as
terminal oxidants during anaerobic respiration and growth
(32-36, 38). With regard to electron donors, S. putrefaciens
strains can use hydrogen (28) and a limited but diverse group
of carbon compounds (36). Carbon sources utilized include
glucose, lactate, pyruvate, propionate, ethanol, acetate (aero-
bically), formate (anaerobically), and a number of carboxylic
and amino acids, including serine. Since S. putrefaciens is
capable of growth on formate as its sole source of energy and
carbon, it can be classified as a facultative methylotroph
according to the definition of Anthony and others (1, 7, 24, 26).
Methylotrophs are characterized by their ability to grow on
compounds that contain no carbon-carbon bonds and are
distinguished from autotrophs by their ability to fix carbon at
the oxidation level of formaldehyde (1, 7, 24, 26). Facultative
methylotrophs in general utilize multicarbon compounds that
can be converted to acetyl coenzyme A and oxidized by the
tricarboxylic acid (TCA) cycle under aerobic conditions (1,
6-8, 13, 26, 30, 39). In contrast to S. putrefaciens, most of these
organisms are aerobes.

Methylotrophic bacteria utilize one, or more, of three
pathways for the assimilation of carbon: (i) the ribulose
bisphosphate (RuBP) pathway, used by organisms that fix
carbon at the level of carbon dioxide; (ii) the ribulose mono-
phosphate (RuMP) pathway; or (iii) the serine pathway, used
by those organisms that fix carbon at the level of formaldehyde.
While the oxidation of formate by numerous organisms during
anaerobiosis is common (15), the assimilation of formate is
usually an aerobic process (1, 18, 26). In those cases in which
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anaerobic growth on formate is known (2, 13, 18, 40), either
the RuBP pathway or the serine pathway has been implicated.
A number of “pseudo-methylotrophs” (1, 46), for example,
Paracoccus denitrificans (2, 40), and several strains of photo-
synthetic purple non-sulfur bacteria (13, 40), the latter requir-
ing light, are able to grow on methanol or formate anaerobi-
cally. Furthermore, they all fix carbon dioxide via the RuBP
pathway (1, 6, 11). Conversely, a number of strains of the genus
Hyphomicrobium are able to grow anaerobically on methanol
and formate by assimilating carbon at the level of formalde-
hyde via the serine pathway.

In this paper we present enzymological data that indicate
that S. putrefaciens uses the Entner-Doudoroff (EDD) pathway
to produce pyruvate, that under aerobic conditions it utilizes
the TCA cycle to oxidize carbon, and that under anaerobic
conditions it is capable of methylotrophic growth on formate,
utilizing the serine pathway for carbon fixation (Table 1). The
studies encompass strains MR-4, MR-7, MR-8, and MR-9, all
from the Black Sea (37), as well as strain MR-1, from Oneida
Lake, N.Y. (32). All strains were grown on either LB broth
(35) or a minimal salts medium (M1 [29]) supplemented with
a carbon source at 20 mM (or with 100 mM formate).
Anaerobic growth was facilitated with nitrate (40 mM) as the
electron acceptor. Cells were harvested by centrifugation and
lysed by sonication, and the crude preparations were clarified
by centrifugation at 30,000 X g.

Glucose metabolism of S. putrefaciens. S. putrefaciens has
been previously proposed to dissimilate glucose via the Emb-
den-Meyerhof-Parnas (EMP) pathway (41, 43), seemingly in
conflict with the fact that this organism is nonfermentative
(29). We thus began our studies with the examination of the
pathway used for conversion of glucose to pyruvate. As shown
in Table 1, extracts of S. putrefaciens exhibited no key enzymes
of the EMP pathway (6-phosphofructokinase and 1,6-bisphos-
phofructoaldolase), while there were key enzymes of the EDD
pathway (6-phosphoglucose dehydrogenase and 6-phosphoglu-
conate dehydratase). S. putrefaciens is apparently an EDD
pathway-utilizing bacterium. In addition, the key enzymes of
the pentose phosphate pathway (6-phosphoglucose dehydro-
genase and transaldolase) were also shown to be present
(Table 1). _

TCA cycle activity in S. putrefaciens. The activities of se-
lected enzymes of the TCA cycle were examined under aerobic
and anaerobic conditions. Extracts of aerobically grown S.
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TABLE 1. Enzymatic activities of extracts of S. putrefaciens and control strains®

Activity (wmol/min/mg of protein), mean + SD

Pathway Enzyme (reference) Aerobic Anaerobic
S. putrefaciens Control (S. putrefaciens)
TCA Isocitrate dehydrogenase (6) 0.033 £0.012 (n = 13)  0.040 = 0.051° (n = 1) 0.579 = 0.051 (n = 2)
Malate dehydrogenase (6) 0914 £ 0.153 (n = 4) 0.206° (n =1) 1.259 + 0359 (n = 4)

Pyruvate dehydrogenase (6)
2-Oxoglutarate dehydrogenase (6)
Citrate synthase (22)

0.139+0.024 (n=6)  0.058 = 0.010° (n = 6)
0.196 +0.050 (n =6)  0.039 + 0.006° (n = 4)
03110053 (1 =3)  0.537 = 0283 (n = 4)

0.049 *+ 0.026 (n = 6)

0.019 = 0.012 (n = 6)

0.272 + 0.063 (n = 3),
0.178 = 0.001° (n = 2)

One-carbon metabolism  Hydroxypyruvate reductase (25) NA“ 0.477 = 0.038%% (n = 3) 0.085 = 0.008° (n = 7)
3-Hexulose-6-phosphate synthase (25) NA 033 (n=1) 0.010 = 0.004° (n = 2)
Dye-linked formate dehydrogenase (31)  0.079 % 0.04% (n = 8) ND* 0.312 * 0219 (n = 8)
NAD-linked formate dehydrogenase (25) NA 0.501 * 0.231%¢ (n =3)  <0.001* (n = 10)
Anaplerotic enzymes Phosphoenolpyruvate (5) 0.070 = 0.051 (r = 8) ND 0.098 * 0.058 (n = 10)
Isocitrate lyase (12) 0.009 + 0.001 (» = 6), ND 0.003 = 0.0001 (r» = 11)
0.009 = 0.0028 (n = 3) ND
Carbohydrate metabolism 6-Phosphoglucose dehydrogenase 0.067 = 0.021 (n =21)  0.084 * 0.024** (n = 2) ND
EDD 2-Keto-3-deoxygluconate aldolase (16) 0.095 = 0.025 (n = 8) 0.117 = 0.049% (n = 12) ND
EMP 1,6-Bis-phosphofructose aldolase (10) 0.015 = 0.08 (n = 5) 0.306 + 0.251° (n = 1) ND
6-Phosphofructose kinase (10) 0.006 = 0.007 (» = 16)  0.251 £ 0.166" (n = 9) ND
Pentose monophosphate  Transaldolase (20) 0.539+026 (n=17) 0.167 = 0.005* (n = 2) ND
“E. coli. '
b Strain(s) grown with 20 to 100 mM formate as the sole source of carbon at 20 to 22°C.
€ NA, not applicable.

4 Strain(s) grown with 1.0 or 0.1% methanol as the sole source of carbon at 30°C.
¢ M. extorquens.

£ Strain(s) grown with LB (35) supplemented with 20 mM formate at 20 to 22°C.
£ Strain(s) grown with 20 mM acetate as the sole source of carbon at 20 to 22°C.

% M. methylotrophus.
‘ND, not determined.

/ Strain(s) grown with LB (35) supplemented with 20 mM gluconate at 20 to 22°C.

k See reference 19 for methods.

putrefaciens exhibited all enzymes of the TCA cycle (citrate
synthase, pyruvate dehydrogenase, malate dehydrogenase,
isocitrate dehydrogenase, and 2-oxoglutarate dehydrogenase
[Table 1]), suggesting that the TCA cycle is a principal route of
assimilation and catabolism and that acetyl coenzyme A is a
pivotal intermediate of intermediary carbon metabolism dur-
ing aerobic growth.

In marked contrast, extracts of anaerobically grown cells
(with nitrate as the terminal electron acceptor) had depressed
(2- to 20-fold less) specific activities of 2-oxoglutarate dehy-
drogenase and pyruvate dehydrogenase, suggesting that the
TCA cycle is truncated and no longer plays the important role
that it does in aerobic metabolism. These results contradict the
supposition of other investigators (41, 43) that the intermedi-
ary carbon metabolism of S. putrefaciens is akin to that of other
nonfermentative anaerobes, such as Pseudomonas stutzeri,
Pseudomonas aeruginosa, Pseudomonas denitrificans, and Para-
coccus denitrificans (41, 42, 44). While S. putrefaciens does
share a number of metabolic features with nonfermentative
pseudomonads (i.e., utilization of the EDD pathway in defer-
ence to the EMP pathway for the oxidation of glucose), there
is no evidence that it utilizes a complete TCA cycle during
anaerobiosis. On the contrary, it appears that the intermediary
carbon metabolism of S. putrefaciens is more closely related to
that of other enteric bacteria, such as Escherichia coli, which
also display a truncated TCA cycle during anaerobiosis (22).

Formate metabolism in S. putrefaciens. S. putrefaciens grows
anaerobically, but not aerobically, with formate as the sole
source of carbon and energy (23). Extracts of formate-grown S.
putrefaciens exhibited high levels of hydroxypyruvate reductase
but no detectable levels of hexulose phosphate synthase,
indicating that it is a serine pathway-utilizing methylotroph
(Table 1). S. putrefaciens is the first member of the gamma-
purple family of proteobacteria known to utilize the serine
pathway (1, 11, 26, 46); all other serine pathway methylotrophs
are in the alpha-purple group (17, 45). This raises the inter-
esting possibility that the serine pathway may be more ubiqui-
tous (possibly present in nonmethylotrophic anaerobes) than
was previously thought.

The biochemistry and physiology of formate oxidation to
CO,, have not been elucidated for S. putrefaciens, but it has
been reported that cytoplasmic membrane vesicles prepared
from strain NCMB 1735 (grown anaerobically with trimethyl-
amine oxide as the terminal electron acceptor) use formate as
an electron donor (43). In vitro studies with strain MR-1 (31)
have shown that formate is the preferred electron donor for
the direct reduction of iron. Our own studies with cell extracts
from S. putrefaciens grown either aerobically or anaerobically
have yielded only dye-linked formate dehydrogenase activity
(Table 1); no activity for an NAD- or NADP-liked formate
dehydrogenase was detected.

On the basis of biochemical data presented here, we propose
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FIG. 1. Proposed route of carbon during anaerobiosis for S. putre-
faciens.

that, under aerobic conditions, S. putrefaciens is metabolically
akin to many enteric bacteria, with the EDD pathway feeding
pyruvate into the TCA cycle via acetyl coenzyme A. As with
many facultative methylotrophs, multicarbon compounds can
be converted into acetyl coenzyme A, which can be metabo-
lized to CO, aerobically.

In contrast, under anaerobic conditions (Fig. 1), formate,
but not acetate, is the central intermediate in carbon assimi-
lation. Substrates that can be converted to formate can be
utilized, with carbon being assimilated at the level of formal-
dehyde. The proposed pathway is similar to that described for
other serine pathway methylotrophs (1, 6, 8, 14, 18, 24, 26, 30,
39): an amalgam of the serine pathway and several TCA cycle
enzymes. The key intermediate is formate or formaldehyde,
but not acetate, which is excreted when glucose, pyruvate, or
lactate is the sole source of carbon (23, 27, 28, 41). In fact,
Ringo et al. (41) showed that anaerobic growth on lactate leads
to the accumulation of acetate, while serine, an intermediate of
the serine pathway, was oxidized completely to CO,. We make
this point because some controversy .exists in the literature
concerning the ability of S. putrefaciens to grow anaerobically
on acetate, and the view held previously by our laboratory, that
acetate can serve as a carbon and energy source for this
organism under anaerobic conditions (34, 36), is not compat-
ible with the proposed pathway nor the physiological evidence
and is evidently not correct. The validity of our proposed
pathway (Fig. 1) can be proven by using a combination of label
incorporation and enzymatic studies, which are now a primary
focus of work in our laboratory.

Other reports have suggested that S. putrefaciens can grow
anaerobically with hydrogen as the electron donor, iron as the
electron acceptor, and CO, as the carbon source (28). We have
seen no evidence, either physiological or genetic, for RuBP
activity (3), although we cannot eliminate this possibility at this
point. Such considerations may be very important in terms of
interpreting the hydrogen uptake studies of Klueber and
Conrad (21).

We gratefully acknowledge M. L. P. Collins, D. A. Saffarini, and J.
Kostka for their comments and suggestions concerning the manuscript.
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