JOURNAL OF BACTERIOLOGY, June 1994, p. 3420-3427
0021-9193/94/$04.00+0
Copyright © 1994, American Society for Microbiology

Vol. 176, No. 11

Cloning and Sequencing of the Genes from Salmonella typhimurium
Encoding a New Bacterial Ribonucleotide Reductase

ALBERT JORDAN, ISIDRE GIBERT, ano JORDI BARBE*

Department of Genetics and Microbiology, Faculty of Sciences, Autonomous University
of Barcelona, Bellaterra, 08193 Barcelona, Spain

Received 22 November 1993/Accepted 20 March 1994

A plasmid library of Salmonella typhimurium was used to complement a temperature-sensitive nrd4 mutant
of Escherichia coli. Complementation was obtained with two different classes of plasmids, one carrying the E.
coli nrdAB-like genes and the second containing an operon encoding a new bacterial ribonucleotide reductase.
Plasmids harboring these new reductase genes also enable obligately anaerobic nrdB::Mudl E. coli mutants to grow
in the presence of oxygen. This operon consists of two open reading frames, which have been designated nrdE (2,145
bp) and nrdF (969 bp). The deduced amino acid sequences of the nrdE and nrdF products include the catalytically
important residues conserved in ribonucleotide reductase enzymes of class I and show 25 and 28% overall identity
with the R1 and R2 proteins, respectively, of the aerobic ribonucleoside diphosphate reductase of E. coli. The 3’ end
of the sequenced 4.9-kb fragment corresponds to the upstream region of the previously published proU operon of
both S. typhimurium and E. coli, indicating that the nrdEF genes are at 57 min on the chromosomal maps of these
two bacterial species. Analysis of the nrdEF and proU sequences demonstrates that transcription of the nrdEF genes
is in the clockwise direction on the S. typhimurium and E. coli maps.

In both eukaryotic and prokaryotic cells, the biosynthesis of
deoxyribonucleotides (ANTPs) from the corresponding ribo-
nucleotides is catalyzed by ribonucleotide reductases (RR),
with the exception of dTTP, whose synthesis is derived from
dCTP and dUDP. RR plays a crucial role in the balanced
supply of DNA precursors. Imbalances of the dNTPs have
been associated with different genetic effects, besides modify-
ing the sensitivity of cells to DNA-damaging agents (26). Three
classes of RR have been described so far (for a review, see
reference 35). Class I enzymes are aerobic and exist in higher
organisms and in some prokaryotes. Escherichia coli ribonucle-
oside diphosphate reductase (RDP reductase) is the best
known of this group. The nrd4 and nrdB genes encode the a
and B polypeptide chains, which form the R1 (a,) and R2 (B,)
subunits of the RDP reductase. The E. coli RDP enzyme
contains a stable radical located at Tyr-122 as an essential
component for catalysis (27). Class II enzymes, present in
many prokaryotes, employ adenosyl cobalamin as a radical
generator (3). Finally, the only enzyme of class III identified is
the anaerobic RTP reductase of E. coli, encoded by the nrdD
gene (39). This enzyme requires S-adenosylmethionine, which
probably is a glycine radical generator (for a review, see
reference 36).

The nrdAB genes of E. coli have been proposed as genes of
vital importance because for many years only conditional-
lethal nrdAB mutants were found (34, 40). Some years ago, it
was shown that null nrdB mutants, obtained as a consequence
of a Mud1 insertion, are viable in the absence of oxygen (21),
since under these conditions, an anaerobic RTP reductase is
active (13). In this respect, E. coli cells growing under either
fermentative or nitrate-respiring conditions have a lower basal
level of nrdAB gene transcription (6). Several regions involved
in either positive or negative control of the nrd4B genes of E.
coli have been detected upstream of the coding region (41, 42).
The activity of the E. coli RDP reductase is increased when
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DNA replication is inhibited (12, 16). Furthermore, DNA
damage enhances the transcription of nrdAB genes (18). This
increase is related to the SOS response (18).

We were interested in cloning the nrd4B genes of Salmo-
nella typhimurium to determine if these genes have the same
control regions as those of E. coli. Nevertheless, during these
experiments we isolated not only the nrd4B genes but also an
operon encoding a new RR. The DNA sequences and loca-
tions of these new RR-encoding genes and their predicted
amino acid sequences are reported in this paper.

The bacterial strains and plasmids used and their relevant
characteristics are shown in Table 1. E. coli and S. typhimurium
strains were grown at either 30, 37, or 42°C in Luria-Bertani
medium, Terrific Broth, or AB minimal medium containing
0.2% glucose and 0.4% Casamino Acids (38). Anaerobic
growth was in either plates or filled flasks for liquid cultures,
both being incubated in anaerobic jars with the GasPak system
(Becton Dickinson). Heterologous triparental matings were
done as described previously (4). Complementation of temper-
ature sensitivity was determined by either plating samples of a
liquid culture or streaking single colonies on minimal medium
plates at both 30 and 42°C. Abolition by the chromosomal
insert of the nrdBl mutation, which in the KK450 strain
decreases R2 activity (15), was tested by hydroxyurea resis-
tance (34). This characteristic was determined by plating equal
portions of appropriately diluted exponential-phase cultures of
the KK450 strain on minimal agar plates containing hydroxyu-
rea at 1 mg/ml. After 3 days of incubation, the presence or
absence of growth in these plates was analyzed. Restriction
enzyme digestions, subcloning procedures, plasmid extractions,
gel electrophoresis, DNA labelling with digoxigenin, and hy-
bridization procedures were carried out by standard methods
(38). E. coli DH5aF’ cells were transformed either by electro-
poration (9) or by using frozen competent cells (20). Prior to
DNA sequencing, a set of exonuclease III-mediated nested
deletions of the isolated S. typhimurium insert was created by
using the Erase-a-Base system (Promega Corporation). The
DNA sequence of each one of these clones was determined by
the dideoxy method with fluorescent primers and the Auto-
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TABLE 1. Bacterial strains and plasmids
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Strain or plasmid

Description

Source (reference)

E. coli K-12 strains
DH5aF’

recAl endAl hsdR17 supE44 thi-1 gyrA96 relAl A(lacZYA-argF)U169 deoR
$80dlacZM15 F’

KK450 nrdA(Ts) nrdB1 thyA thr leu thi deo tonA lacY supE44 gyrA
H1491 MC4100 aroB nrdB::Mud1
UA4851 KK450 Rif

Plasmids
F'143
pPS2 Tc* NrdAB*
pRK404 Tc" Mob*
pRK2013 Km" Tra* Mob™
pBluescript SK(+) Amp"
pUA326 pRK404 containing a 4.9-kb fragment carrying the nrdEF genes
pUA335 pBSK containing a 4.9-kb Xmal-PstI fragment carrying the nrdEF genes
pUA338 pBSK containing a 4-kb fragment by 3’ exonuclease III deletion from pUA335
pUA341 pBSK containing a 3.45-kb NotI-Accl fragment from pUA338, under P,,. control
pUA343 Like pUA341 but with the 3.45-kb Notl-Accl fragment in inverted orientation
pUA344 pBSK containing a 3.2-kb fragment by Clal-Clal deletion from pUA341
pUA345 pBSK containing a 3.2-kb fragment by SacI-Sacl deletion from pUA341
pUA395 pBSK containing a 3.6-kb fragment by 3’ exonuclease III deletion from pUA335
pUA396 pBSK containing a 4.7-kb fragment by 5’ exonuclease III deletion from pUA335

Laboratory stock

B. M. Sjoberg (34)
K. Hantke (21)
This study

B. Bachmann

B. M. Sjoberg (30)
G. Ditta (8)

G. Ditta (8)
Laboratory stock
This study

This study

This study

This study

This study

This study

This study

This study

This study

matic Laser Fluorescent DNA Sequencer (Pharmacia). The
entire nucleotide sequence was determined with both DNA
strands. Computer analysis was carried out with the University
of Wisconsin Genetics Computer Group package (version 7.2).
Sequences from several RR were obtained from the Swiss-Prot
data bank.

Isolation of genes encoding a mew RR. A library of S.
typhimurium LT2 chromosomal DNA was constructed by
cloning size-fractioned, partially digested Sau3Al restriction
fragments with an average size of 5 to 8 kb into the BamHI site
of the broad-host-range plasmid pRK404 (8) and then was
electrotransformed into E. coli DH5aF'. To isolate nrdAB
genes from S. typhimurium, the library was transferred by
triparental mating into the temperature-sensitive nrdA(Ts)
mutant of E. coli (strain UA4851), plating exconjugants onto
rifampin-, tetracycline-, and thymidine-supplemented Luria-
Bertani agar plates at 42°C. Several temperature-resistant
clones were observed after 2 days of incubation. Plasmid DNA
of each of these exconjungants was extracted and retrans-
formed into the KK450 strain to confirm the temperature-
resistant phenotype. Restriction and Southern analysis (with a
5.5-kb EcoRI-PstI fragment of the pPS2 plasmid containing the
nrdAB genes of E. coli as a probe [34]) of plasmid DNA
isolated from these retransformed clones indicated the pres-
ence of two kinds of clones. One kind hybridized with the
nrdAB genes from E. coli (Fig. 1A, lane 3), whereas the second
did not (Fig. 1A, lane 4). Only two types of RR genes have
been described for enterobacteria, i.e., the nrd4B and nrdD
genes from E. coli, encoding the aerobic and anaerobic en-
zymes, respectively. Since the anaerobic RR does not comple-
ment nrdAB mutants under aerobic conditions, these other
clones would contain the genes for a new aerobic RR. For this
reason, we decided to concentrate on the smallest chromo-
somal insert (about 4.9 kb) of this bacterium which did not
hybridize with the nrdAB genes from E. coli. The plasmid
carrying this insert was designated pUA326.

The hydroxyurea hypersensitivity of the nrdBI mutant strain
KK450 was also abolished by the chromosomal fragment
contained in the pUA326 plasmid (Fig. 2). The O, sensitivity of
the nrdB::Mudl mutant of E. coli H1491 (21) was also sup-
pressed by pUA326. Thus, the efficiency of plating of H1491

(pUA326) cells in the presence of oxygen was 0.75. Further-
more, Southern blot hybridization of total DNA from E. coli
and S. typhimurium digested with EcoRI-PstI and probed with
a 2.8-kb Clal-HindIII fragment of the 4.9-kb insert corrobo-
rated that the cloned fragment is present in the S. typhimurium
chromosome as well as in the E. coli chromosome (Fig. 1B),
although the species showed different banding patterns: the
chromosomal DNA of E. coli exhibited a band at 11 kb (Fig.
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FIG. 1. Southern hybridization of chromosomal DNA from E. coli
(lanes 1), S. typhimurium (lanes 2), a pRK404 plasmid derivative
containing the nrdAB-like genes from S. typhimurium (lanes 3), and
plasmid pUA326 carrying the nrdEF genes from S. typhimurium (lanes
4), all doubly digested with EcoRI and PstI. DNA was hybridized with
either the 5.5-kb EcoRI-Pst1 fragment.of the pPS2 plasmid carrying the
nrdAB genes from E. coli (A) or the 2.7-kb Clal-HindIII internal
fragment of the nrdEF genes from S. typhimurium contained in the
pUA326 plasmid (B). Lane 5 of panel B is a HindIII digest of
digoxigenin-labelled lambda DNA as a molecular weight marker.
Numbers on the right are sizes in kilobases.
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Complementation
Accl EcoRL Acel  Hincll Bsexd Ndel Hindll Ndel Plasmid nr M( w) nri dB 1
T g gt et g [ ESSSESSS) pUA326 0-67 0.3
ng nrdF groV'
[ ] pUA335 0.93 0.32
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F143 1 ND

FIG. 2. Physical map and complementation analysis of the inserts contained in plasmid pUA326 and their derivatives, obtained by either
subcloning or nested deletions of the original 4.9-kb fragment of the S. typhimurium chromosome abolishing temperature sensitivity of the KK450
mutant of E. coli. P,,. denotes plasmids at which the lac promoter has been inserted immediately upstream of the chromosomal fragment. The
complementation of the nrd4(Ts) and nrdB1 mutations by hybrid plasmids was derived from the efficiency of plating either on minimal medium
at 42°C or in the presence of hydroxyurea at 1 mg/ml, respectively. P, -mediated complementation was carried out in the absence of

isopropyl-B-D-thiogalactopyranoside (IPTG). ND, not determined.

1B, lane 1), while the DNA of S. typhimurium exhibited two
bands whose sizes were 0.9 and 13 kb (Fig. 1B, lane 2).
Furthermore, in both E. coli and S. typhimurium, the banding
pattern of the chromosomal DNA obtained with the nrd4B
probe was different from the one exhibited when the nrdEF
probe was used (Fig. 1).

Taking advantage of the Xmal and PstI sites of the
polylinker of the pRK404, which were flanking our insert, we
subcloned it in the pBluescriptSK(+) vector, giving rise to
plasmid pUA335. Starting with this plasmid, a combination of
subcloning and deletion analyses was performed, showing that
practically all of the 4.9-kb original insert was required to
support the growth of the KK450 strain at 42°C (Fig. 2).

Nucleotide and amino acid sequences of the new RR genes.
The nucleotide sequence of the 4.9-kb fragment of plasmid
pUA335 is presented in Fig. 3. Several open reading frames
can be identified in the insert, although the deduced products
of only the two largest have some identity with other RR
enzymes. The sequence between positions 836 and 2980 (con-
sisting of 2,145 bp) is suggested to correspond to one subunit
(designated nrdE) of the new reductase (Fig. 3). This protein
has been obtained in pure form and shown to have the
sequence ATTTPERVMQXTMD at its N-terminal end (24).

This is in complete agreement with the amino acid sequence
deduced from the 42 bp starting at position 839. We suggest
that translation starts with Met at the UUG triplet (positions
836 to 838), with eventual loss of this Met. In fact, it is known
that the UUG codon also specifies initiation in bacteria,
although at a low frequency (7). The loss of the N-terminal
methionine has also been reported to occur for the R1 and R2
subunits of the aerobic RR of E. coli (5). The second open
reading frame, called nrdF, is 960 bp long (Fig. 3, positions
2991 through 3950). The predicted molecular weights of the
deduced proteins of the nrdE and nrdF genes were 80,519 and
36,281, respectively. The nrdE and nrdF open reading frames
were separated by a small noncoding region of 10 bp. Putative
ribosomal binding sites were located 16 bp upstream of the
initiation codon for nrdE and 12 bp upstream of that for nrdF.
No canonical TATA box preceded by a —35 promoter consen-
sus sequence was detected upstream of the nrdE gene. How-
ever, the subcloning and deletion analysis shown in Fig. 2
(plasmids pUA396, pUA341, and pUA343) indicated that the
836 bp upstream of the nrdE open reading frame contains the
promoter from which the transcription of these genes occurs.
Downstream from the stop codon of the nrdF gene (TAA), a
putative transcriptional terminator was detected as a perfect
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GATCGGGCGTTCACGCCGCCATCCGGCAAAAATTAGCCATGCCTCCCCTACCCCGCGGCG
TTCATCAGCGGCGTTAAAATCAATCGAAAATTCCCATATC! ATCTTAAT
TCAACTACATCTAGTATTTCCTGTATCAACACACGACAATCCGACGCGTTTCATCGCGCC
GTTTTCTCATTTTAAATGGAAATACGAATCATGAGCATTACTATTTACACTCGCAATAAC
TGTGTTCAGTGCCACGCCACAAAGCGGGCGATGGAAAGCCGTGGATTTGAATTTGAGATG

GTGAACGTCGATCTGGTGCCGGATGCAGCGGAT: TTTCGTCAA
TTACCGGTGGTGATGGCGGGCGA' CGCCCGGACATGATTAAC
CGTCTGCACCCGACACCCCACGCGGCAAACGCATGAGCGCGCTCGTCTACTTCTCCAGCA
GCTCTGAAAATACGCACCGCTTT! AGCGTX TGCCTGCCACGC TCCGC
mumnscsscmsummmmcemmmmmmcmmms
GCGGCGGCGGGATGGC GCGACAGGTGATCCGCTTTTTAAATGATGAAC

muccecccccmmcc&ccmucecerccmumocumcmamccr
GGGGATGCGCTGGCGATGTGATAGCACAAAAATGCGGCGTCCCCTGGCTGTACCGCTTTG
AGCTCATGGGCACACAACGCGACATCGATAATGTCCGAAAAGGAGTAAATGAATTIITGRC

RB A
AACAACTACCCCGGAGCGCGTAATGCAGGAAACCATGGATTACCACGCCCTGAACGCGAT
T T T P E RV M Q BET M D Y HAULNAM
GCTGAATCTTTACGATAAAGCAGGCCATATTCAGTTCGACAAGGACCAGCAGGCGATCGA
L NL YDIKAGU HTI QT P®ODIKXKDOQOQA ATITD
CGCCTTCTTTGCCACCCACGTCCGCCCGCATTCCGTGACGTTTGCCAGCCAGCATGAACG
A F F ATHUVRUPUHESVTFPFASQHTER
TC G GATGACGCCGTCCTCGCGCGTTACGACCG
L GTLVREGYYDUDA AVUILARTYDR
CGCCTTCGTCCTTCGCCTGTTCGAGCACGCCCATGCCAGCGGCTTTCGCTTC

L GA WKUP Y TS YTULXTT FDGIE KR Y
TC' ACACTT T “GCTGGCGCAGGGTGACGA
L EHF EDRVTMVALTTILAQGT DR
AACGCTGGCCACCCAACTGACCGATGAAATGCTTTCTGGTCGCTTTCAGCCCGCTACCCC

'CTGCTC
T F L NCGXKOQQRGETLV VS CTVPFULILR
GATCGGGCGGGC TCGGCGCTGCAACTCTCCAA
I E D NMES I GRAVNSA ALUG QTL 8K
ACGCGGCGGCGGCMCGCWACTCTCCMTCTGCGCGAGGCGGGCGCGCCGATCM

TGC'J.’GGMGACGCGTT
M K M L E D AP
CGGCGC!
G A G AV Y L HAH

MCCTATATTMCGCCCGTGACWCAMCACTGGCGGAGAMGMTCCGG

N ARDUFU F QT A B I Q F B 8 G
GTATCCCTACATCATMTTGMGATACGG’!‘MACCGCGCGAA'I‘CCCA‘!'IGCNGTCGCA
Y P Y I M P E DTV NR R AN PTIABADGTR RTI
TAATATGAGCMCCTGTGCTCAGMAMACAGGNMTAGCGGITCCCGWACGACGA

8 C 8 BE I L Q V N S8 A 8 R Y D D
TMCCTTGACTATACCCACATCGGGCATGACA’I‘C‘I’CCTGCM TCGGCTCGCTGAATAT

GACGGCGGTGTCGGACATGAGCCATATACGCAGCGTGCCCTCAATAGCCGCCGGTAATGC
T A V 8 M 8 B I R 8 V P S I A A G N A

& P EALDPTNTLYU FYTTIT
CTGGCATGCCGTGCATACTTCAATGCGGCTAGCCCGCGAACGCGGCAAAACCTTCGCCGG
W HAV HT 8 M RLARERGTI KTTFAG
ATTTGCGCAGTCGCGCTATGCCAGCGGCGACTATTTTACGCAGTATTTACAGGACGACTG
F AQ S RYASGDYUPTOGQYULQDUDW
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NOTES

GCMCCGMMCAGCGMAGTCAGGGCGCTAMGCCCGCAGCGGCATTACGCTGCCCAC
Q P XK TAKUVRALTFA AR S I T L P
ACGAGAMTGTGGCTAMGCTGCGCGACGATGTGATGCGCTATGGCATCTATMCCMM
R E M WL KULURUDUDV MR Y G I YN N
TTTGCAGGCGGTGCCGCCGACCGGTTCGATTTCTTACATTAATCATGCGACCTCCAGCAT

T E NL D M Y Q DAY DTIG
TCCGGAMAMTTATTGATACCTATGCCGAGGCCACGCGCCMGTCGATCMGGGC‘NTC
P EX I I DT ZYAZRA AT R EUVDIQGTUL S
GCTCACCCTGTTTTTCCCCGATACCGCCACGACCCGCGATATCAACAAGGCGCAGATCTA
L TLPF F PDTATT RDTINI KA AQTIZY

CTGGCGAAAAGGTATTAAGTCCC 'ATCCGGCTTCGCC. 'GCTGGA
A WRIKGTII K STULYYIURUILURAGQTULATLTE
AGGTACTGAAATTGAAGGCTGCGTATCCTGCGCGCTATAAGGAAAGCCATATGAAATTAT
G TEIEGTCV S8 CA L *RBS M K L 8§
CI'CGTATTAGCGCCATCMCNGAACMGATOCAGGACGACAMGATCMAGGTATGGA
R I 8 A I N WNIKIOQDUDI KUDTLTEUV W
ACCGGCTGACCAGTAACTTCTGGCTGCC! GGAMAAGTGCC@I‘TATCGAATGATATNCGG
R LT S8 NPF WL PEIKVZPILSNUDTIUPRA
GCTGAGCGCCGCCGAACAGCAGCTCACCATTCGCGTGTTTACGGGACTTA
E L T I RV F TG UL T

R G K L T
NAM'CG‘HTMTCANCGCGANMGCGGMACGGMAMATAMG@CTATM@PATC
L I I RDEBEAVHGY YTIGYZXKYQ
AGATAOCGCEACAAMACTATCGGCAATCGAGCGTGMGAGTTAMGCTMCGCGCTGG
I AL Q KL 8 A I ERETETL A L D
TTGA' "ACGAC.

A E M A D N P A I L A
CCGCGCTCTCGCCGAATGCCGACGAAAACCATGATTTCTTTTCCGGCTCAGGTTCATCTT
N A D E F FP S G S s

V M G K T V *
CCA‘I'GCCTT!‘ATTTCAAGCMTAGGGAG’BCAAATCGCG

ATGGGAATAACGTTACK;

CMATATTACMCATGI‘CCTACACTCMTACGAGTGACA’ITATI‘CACCTGGA’I‘TCCCCCA
ATIC TTT TGT" TCTTCCTCCCCATTCGCGTTCA
GCeC AATCACAGCC ACCTCGCAATATTCATGCCAGAAGCAA
ATTCA AAARGGTAA TTCTATCA

GGTAACATATCGACATMMAMTMCWTCA’I’ECTAMGCM@CMTTMAHAG
TCTGTATAAAATATTTGGAGAGCATCCGCAGCGTGCCTTCAAATATATTG
AAAAGGGACTATCGAAAGAGCAAATACTGGAAAAAACGGGGCTATCGCTTGGCGTTAAAG

ACGCCAGTCTGGCCATTGAAGAAGGCGAGATATT AT “CGGCTCGG
GTAAATCCACAATGGTACGCCTTCTCAA' TTGMCCCACCCGCGGACAGGPAC
TGAT" >GGC 'CAAA AGACGCTGAGCTTCGC GCAGGA
AAAAGATTGCGATGGTCTTCCAGTCATT 'GCTCATGCCGC CGTGC!

ATACGGCATTCGGTATGGAATT: GTCGCGAMMGCGC
'_['GGACGCCT"‘G“' TC TACGCTCACGCCTACCCGGATGAACTTT

’GTCAGC! 'TPTGCCCGCGCGCTGGCAATCAACCCTGATATCT
TA’I'I‘AATGGATGMGCG‘I'H'.I’CCGCCC’!’CGATCC

FIG. 3. Nucleotide and deduced amino acid sequences of the nrdEF genes of S. typhimurium LT2. The putative ribosome binding site (RBS)
sequences are underlined. A 12-bp palindrome which may serve as a transcription terminator is indicated by inverted arrows. The ribosome binding
site and the first coding triplet of the first gene (proV) of the proU operon of S. typhimurium (33) are boldface and underlined. The TTG triplet
proposed as the translation start of the nrdE subunit is boxed.

inverted repeat of 12 nucleotides separated by 8 nucleotides
(positions 3958 to 3989), followed by a run of AT base pairs.

The sequence of the 3’ end of our 4.9-kb fragment corre-
sponds to the 5’ regions of the proU operons of S. typhimurium
and E. coli, indicating that in the chromosomes of both species,

TABLE 2. Amino acid identity of the large and small subunits of
the class I RR from different species with products of the nrdEF
genes, respectively, of S. typhimurium®

% identity of RR subunit with:

the nrdEF genes are upstream of the proU operon and, Species
consequently, are located at 57 min on the chromosomal maps nrdE product nrdF product
of these two bacteria (Fig. 3). In agreement with this, plasmid  E. coli 25.0 271.7
F’143 (which contains the region around 57 min of the E. coli Bacteriophage T4 233 22.1
chromosome) abolishes the temperature sensitivity of the =~ Human 275 24.3
KK450 mutant (Fig. 2). From previously known data about the =~ Mouse 27.6 243
proU operon (19, 33), it is possible to conclude that the S cerevisiae 17.8 223
transcription of nrdEF genes is in the clockwise direction on ch‘j"l“a virus %i? ;gg
the S. typhimurium and E. coli maps. HSV-2 27 212
Comparison of the nrdEF predicted protein sequences with ;2 4 ella-zoster virus 26.2 26.8
those of other aerobic RR of class I shows a limited identity EBV 232 223
(Table 2). Thus, the nrdE and nrdF products have, respectively, Rir3-Yeast 24.5

25 and 28% overall amino acid sequence identities with the R1
and R2 subunits of the aerobic RR of E. coli. Amino acid
sequence alignments of the class I RR from different species
have shown that they are homologous within three groups: the

“ The sequences were aligned by using the Gap program of the University of
Wisconsin Genetics Computer Group package. HSV-1, herpes simplex virus type
1; HSV-2, herpes simplex virus type 2; EBV, Epstein-Barr virus; Rir3-Yeast,
product of the RNR3 gene of S. cerevisiae, encoding a duplicated R1 subunit.



1

82

HSV1 NREPALMLEY FCRCAREETK RVPPRTFGSP PRLTEDDFGL LNYALVEMQR LCLDVPPVPP NAYMPYYLRE YVTRLVNGFK PLVSRSARLY RILGVLVHL.
Varicella .......... ...... MEFK RIFNTVHDII NRLCQHGYKE Y......... ...... IIPP ESTTPVELME YISTIVSKLK AVTRQDERVY RCCGELIHC.
Mouse «+..MHVIKR DGRQERVMFD KITSRIQKLC YGLNMDFVDP AQITMKVIQG LYSGVTTV.. ......... E L.DTLAAETA ATLTTKHPDY AILAA.....
Vaccinia ....MFVIKR NGYKENVMFD KITSRIRKLC YGLNTDHIDP IKIAMKVIQG IYNGVTTV.. ......... E L.DTLAAEIA ATCTTQHPDY AILAA.....
E. coli MNQNLLVTKR DGSTERINLD KIHRVLDWAA EGLH..NVSI SQVELRSHIQ FYDGIKTS.. ......... D IHETIIKAAA DLISRDAPDY QYLAA.....
NrdE el e eeeeas secescrsce cesesnecar seeesissse sesessaece seeas ATTTP ERVMQETMDY HALNAMLNLY
Cc - S O RNV, PR
83 164
HSV1 .RIRTREASF EEWLRSKEVA LDFGLTERLR EH.EAQLVIL AQALDHYDCL IHSTPHTLVE RG...LQ.SA LKYE.EFYLK RFGGHYMESV FQMYTRIAGF
Varicella  .RINLRSVSM ETWLTSP... .ILCLTPRVR QAIEGRRDEI RRAI..LEPF LKDQYPALAT LG...LQ.SA LKYE.DFYLT KLEEGKLESL CQFFLRLAAT
Mouse -RIAVSNLHK ETK....... ...... KVFS DVMEDLYNYI NPHNGRHSPM VASSTLDIVM ANKDRLN.SA IIYDRDFSYN YFGFKTLERS YLL..KINGK
Vaccinia .RIAVSNLHK ETK....... ...... KLFS EVMEDLFNYV NPKNGKHSPI ISSITMDIVN KYKDKLN.SV ITYERDFSYN YFGFKTLEKS YLL..KINNK
E. coli CRLAIFHLRK KAY....... ...... GQFE P..PALYDHV .VKMVEMGKY DNHLLEDYTE EEFKQMD.TF IDHDRDMTFS YAAVKQLEGK YLVQNRVTGE
NrdE DKAGHIQFDK DQQAIDAFFA THVRPHSVTF ASQHERLGTL VREGYYDDAV LARYDRAFVL RLFEHAHASG FRFQ..... T FLGAWKFYTS YTLKTFDGKR
CONSENSUS  —P - oo oo oo oo e e e e S= mmmmmmmmm mmeee e @-- —————m--—-
165 259
HSvV1 LACRATRGMR HIA..... LG REGSWWEMFK FFFHRLYDHQ IVPSTPAMLN LGT.RNYYTS LVNPQA. .TTNKATLRA ITSNVSAILA RNGGIGLCVQ
Varicella VTT.EIVNLP KIATLIPGIN DGYTWTDVCR VFFTALACQK IVPATPVMMF LGR.ETGATA LMDPES. .ITVGRAVRA ITGDVGTVLQ SRGGVGISLQ
Mouse VAERPQHMLM RVSVGI.... .HKEDIDAAI ETYNLLSEKW FTHAPPTLFN AGT.NRPQLS LLSMKD. .DSIE.GIYD TLKQCALISK SAGGIGVAVS
Vaccinia IVERPQHMLM RVAVGI.... .HOWDIDSAI ETYNLLSEKW FTHASPTLFN AGT.SRHQMS LLNMID. .DSIE.GIYD TLKRCALISK MAGGIGLSIS
E. coli IYESAQFLYI LVAACLFSNY PRETRLQYVK RFYDAVSTFK ISLPTPIMSG VRT.PTRQFS LIE.CG. .DSLD.SINA TSSAIVKYVS QRAGIGINAG
NrdE YLEHFEDRVT MVALTL.... .AQGDETLAT QLTDEMLSGR FQPATPTFLN CGKQQRGELV LLRIEDN MESIGRAVNS ALQ....LSK RGGGVAFLLS
C L i ittt P---- - g--==~--= L --g6-g----
260 351
HSV1 AFN....... DSGPGTASVM PALKVLDSLV AAHNKESA.R PTGACVYLEP WHTDVRAVLR MKGVLAGEEA QRCDNIFSAL WMPDLFFKRL IRHLDGEKNV
Varicella SIN..... LI PTENQTKGLL AVLKLLDCMV MAINSDCE.R PTGVCVYIEP WHVDLQTVLA TRGMLVRDEI FRCDNIFCCL WTPDLFFERY LSYLKGASNV
Mouse CIRATGSYIA GTNGNSNGLV PMLRVYNNTA RYVDQGGNKR PGAFAIYLEP WHLDIFEFLD LKKNTGKEE. QRARDLFFAL WIPDLFMKRV ...... ETNQ
Vaccinia NIRASGSYIS GTNGISNGII PMLRVYNNTA RYIDQGGNKR PGVMAIYLEP WHSDIMAFLD LKKNTGNEE. HRTRDLFIAL WIPDLFMKRV ...... KDDG
E. coli RIRALGSPIR GGEAFHTGCI PFYKHFQTAV KSCSQGG.VR GGAATLFYPM WHLEVESLLV LKNNRGVEG. NRVRHMDYGV QINKLMYTRL ...... LKGE
NrdE NLREAGAPIK RIENQSSGVI PVMKMLEDAF SYANQLGA.R QGAGAVYLHA HHPDILRFLD TKRENA.DEK IRIKTLSLGV VIPDITFR.. .... LAKENA
C - g-- p-—--——--= —-——————o R ~----- y--- WH-d----L- -k------e- -R--=----- --pdl---p- -----uu---
352 449
HSV1 TWTLFDRDTS MSLADF...H GEEFEKLYQH LEVMG.FG.E QIPIQELAYG IVRSAATTGS PFVMFKDAVN RHYIYDTQGA AIAGSNUQTE IVHP......
Varicella  QWTLFDNRAD I.LRTL...H GEAFTSTYLR LEREG.LGVS SVPIQDIAFT IIRSAAVTGS PFLMFKDACN RNYHMNTQGN AITGSNLCTE IVQK......
Mouse DWSLMCPNEC PGLDEVW... GEEFEKLYES YEKQGRVRKV .VKAQQLWYA IIESQTETGT PYMLYKDSCN RKSN.QQNLG TIKCSNUQTE IV........
Vaccinia EWSLMCPDEC PGLDNVW... GDEFERLYTL YERERRYKSI .IKARVVWKA ITESQIETGT PFILYKDACN KKSN.QQNLG TIKCSNUQTE II........
E. coli DITLFSPSDV PGLYDAFFAD QEEFERLYTK YEKDDSIRKQ RVKAVELFSL MMQERASTGR IYIQNVDHCN THSPFDPAIA PVRQSNUQLE IALPTKPL..
NrdE QMALFSPYDI QRRYGKPFGD IAISER.YDE LIADPHVRKT YINARDFFQT LAEIQFESGY PYIMFEDTVN RA...NPIAG RINMSNUQSE ILQVNSASRY
Cc ---L --1 ---fe--Y-- -e -- t6- p----- D--N —---emmeee - i--SNUG-E T---------
450 539
HSVI ..., ASKR SS LGSV NLARCVSRQ. .TFDFGRLRD AVQACVLMVN IMIDSTLQ.P TPQCTRGNDN LRSMGIGMQG LHTACLKLGL DLESAEFQDL
Varicella ...... ADAH QHGMONLAST NLTTCLSKGP VSFNLNDLQL TARTTVIFLN GVLAAGNF.P CKKSCKGVKN NRSLGIGIQG LHTTCLRLGF DLTSQPARRL
Mouse EYTSKD EVAMONLASL ALNMYVTPEH .TYDFEKLAE VTKVIVRNLN KIIDINYY.P IPEAHLSNKR HRPIGIGVQG LADAFILMRY PFESPEAQLL
Vaccinia ....QYADAN EVAVCNLASV ALNMFVIDGR ..FDFLKLKD VVKVIVRNLN KIIDINYY.P IPEAEISNKR HRPIGIGVQG LADAFILLNY PFDSLEAQDL
E. coli . .NDVNDENG EIAUQTLSAF NL...... GA .INNLDELEE LAILAVRALD ALLDYQDY.P IPAAKRGAMG RRTLGIGVIN FAYYLANDGK RYSDGSANNL
NrdE DDNLDYTHIG HDIYONLGSL NIAHWM.... ... DSPDIGR TVETAIRGLT AVSDMSHIRS VPSIAAGNAA SHAIGLGQMN LHGYLAREGI AYGSPEALDF
Consensus ~ —--------- --- L-s- -1----=--n —=-oounlom —-emev--1- ——-d-----p -p-------- -r--GiG--- l--------- -—- s--a--1
540 625
HSV1 NKHIAEVMLL SAMKTSNALC .VRGARPFNH FKRSMYRAGR FHWERFPD.. .......... .ARPRYEGE. ...WEMLRQS MMKHGLRNSQ FVALMPTAAS
Varicella  NVQIAELMLY ETMKTSMEMC KIGGLAPFKG FTESKYAKGW LHQDGFST.. .......... . I.SYLDLP. ...WCTLRDD ICAYGLYNSQ FLALMPTVSS
Mouse NKQIFETIYY GALEASCELA KEYG..PYET YEGSPVSKGI LQYDMWN... .......... VAPTDL.WD. ...WKPLKEK IAKYGIRNSL LIAPMPTAST
Vaccinia NKKIFETIYY GALEASCELA EKEG..PYDT YVGSYASNGI LQYDLWN... .......... VVPSDL.WN. ...WEPLKDK IRTYGLRNSL LVAPMPTAST
E. coli THKTFEAIQY YLLKASNELA KEQG..ACPW FNETTYAKGI LPIDTYKKDL DT........ TANEPLHYD. ...WEALRES IKTHGLRNST LSALMPSETS
NrdE TNLYFYTITW HAVHTSMRLA RERG.KTFAG FAQSRYASGD YFTQYLQDDW QPKTAKVRAL FARSGITLPT REMWLKLRDD VMRYGIYNQN LQAVPPTGSI
Consensus  -----e---- ---=-S--1- ---G-----= ---§----G- - ---W--L--- ----G--Ns- --A-mPt---
626 688
HSvV1 AQISDVSEGF APLFTNLFSK VTRDGETLRP NTLLLKELER TFS.GKRLLE VMDSLDAKQW SVAQALPCLE PTHPLRRFKT AFDY.DQKLL IDLCADRAPY
Varicella AQVTECSEGF SPIYNNMFSK VTTSGELLRP NLDLMDELRD MYSCEEKRLE VINILEKNQW SVIRSFGCLS NSHPLLKYKT AFEY.EQEDL VDMCAERAPF
Mouse AQILGNNESI EPYTSNIYTR RVLSGEFQIV NPHLLKDLTE R...GLWNKE MKNQITIACNG SIQSIPEIPD DLKQL..YKT VWEIS.QKTV LKMAAERGAF
Vaccinia AQILGNNESV EPYTSNIYTR RVLSGEFQVV NPHLLRVLTE R...KLWNDE IKNRIMADGG SIQN.TNLPE DIKRV..YKT IWEIP.QKTI IKMAADRGAF
E. coli SQISNATNGI EPPRGYVSIK ASKDGILRQV VPDY...... ceveuniiins tiiinennne vevennnnn E HLHDA..YEL LWEMPGNDGY LQLVGIMQKF
NrdE SYINHATSSI HPIVAKIEIR KEGKTGRVYY PAPFMTN... ...viiiier tiiiennnnn vvvnnnnene ou ENLDMYQD AYDIGPEK.I IDTYAEATRH
Cc -qi -P —---g----- - mmme mmmmmeeee e ¥ - a-----
689 761
HSV1 VDHSQSMTLY VTEK..ADGT LPASTLVRLL VHAYKRGLKT GMYYCKVRKA TNSGVFGGDD NI L
Varicella IDQSQSMTLF IEER..PDGT IPASKIMNLL IRAYKAGLKT GMYYCKIRKA TNSGLFAGGE .L L ittt it s
Mouse ~IDQSQSLNIH TAEPNYG... .... KLTSMH FYGWKQGLKT GMYYLRTRPA ANPIQFTLNK EKLKDKEKAL KEEEEKERNT AAMVCSLENR E %S..
Vaccinia IDQSQSMNIH IADPSYS... .... KLTSMH FYGWSLGLKT GMYYLRTKPA SAPIQFTLDK DKIK...... ...o.eenn. PPVWC...DS E ..
E. coli IDQSISANTN YDPSRFPSGK VPMQQLLKDL LTAYKFGVKT .LYYQNTRDG AEDAQ..... ...pepmier cevennnnnn DDLVPSIQD. Sué(l
NrdE VDQGLSLTLF FPD...... T ATTRDINKAQ IYAWRKGIK. SLYYIRLRQL A....LEGTE IE L it ciiiiiieee teeieeeae
Consensus  -Das-S---- —-—---ooom —mmmmemn e G-Kt --YY---r--

FIG. 4. Amino acid sequence alignment of the large subunit of RR from herpes simplex virus type 1 (HSV1), varicella-zoster virus, mouse,
vaccinia virus, and E. coli and the nrdE product of S. typhimurium. The N-terminal domain of the herpes simplex virus type 1 sequence, which is
unrelated to all other sequences shown here, has been omitted. The numbering refers to the E. coli sequence. A residue is given in the consensus
sequence if it is present in at least all but one of the sequences and is in capital letters if it is completely conserved. The five specific cysteine residues

representing the essential thiols of the R1 protein (11) are boxed.
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1 97
HSV1 PALTALTDQS ATADLAIQIP KCPDPERY.F YTSQCPDINH .LRSLSILNR WLETELVFVG |OEEDVSKLSE GELSFYRFLF AFLgﬁDLV TENLGG. LSG
Varicella .......... coveennnn M DQKDCSHF.F YRPECPDINN .LRALSISNR |WLESDFIIED |OYQYLDCLTE DELIFYRFIF TFL DLV NVNLGS.LTQ
Mouse DSAELESKAP TNPSVEDEPL LRENPRRFVV FPIEYHDIWQ .MYKKAEASF WTAEEVDLSK [(IQHWEALKP DERHFISHVL AFFAASOIGIV NENLVERFSQ
Vaccinia  ......ie ieaas MEPI LAPNPNRFVI FPIQYYDIWN .MYKKAEASF EEVDISK |JINDWNKLTP DEKYFIKHVL AFFAASOGIV NENLAERFCT
E. coli AYTTFSQTKN DQLKEPMFFG QPVNVARY.. .DQQKYDIFE KLIEKQLSFF [WRPEEVDVSR |RIDYQALPE HEKHIFISNL KYQTLLUOSIQ GRSPNVALLP
NdrF  oiiiies ceeee. MKLS RISAINWNKI QDDKDLEVWN RLT....SNF MLPEKVPLSN |JIPAWQTLSA AEQQLTIRVF TGLTLUOTIQ NIAGAPSLMA
Cc di-- - W O L-- -F--momm o o 0--- --—-—-—--—-—-

98 193
HSV1 LFEQKDILHY YVEQEC RMYNIIQL VLFHNNDQAR REYVAGTINH PAIRAKVDWL EA........ c.eivvvnnr connannans .RVRE.CASV
Varicella LFSQKDIHHY YIEQECIEVV [HAR IQL MLFRGDESLR VQYVNVTINN PSIQOKVQWL EE........ ccoieriienr vevnnnnnne .KVRD.NPSV
Mouse EVQVTEARCF YGFQIAMENI [HSEMY[SLL.I DTYIKDPKER EYLFNAIETM PCVKKKADWA LR........ ittt eeeieaeaa WIGDKEATY
Vaccinia EVQITEARCF YGFQMALENI [HSEMYSLL.I DTYVKDSNEK NYLFNAIETM PCVKKKADWA QK........ covevencos asocecnanns .WIHD.SAGY
E. coli LISIPELETW VETWAFSHTI [HSR IIR NIV..NDPSV ..VFDDIVTN EQIQKRAEGI SSYYDELIEM TSYWHLLGEG THTVNGKTVT VSLRELKKKL
NdrF DAITPHEEAV LSNISFM V [HARSYSSIFS TLC..QTKEV DAAYAWSEEN PPLQRKAQII LAHY...... .ciiiiiinr vivnnnanns VSDEPLKKKI
CONSensus  —-----——-e ———oe-d B ¥ p----K----

194 - - 291
HSV1 PEKFILMILI EGIA AIAYLRTNNL LRVTCQSNDL ASCYIY.... ...... NNYL GGHAKPPPDR VYGLFRQAVE IEIGFIRSQA
Varicella  AEKYILMILI EGIRAVS AIAYLRNNGL FVVTCQFNDL S ASCCIY.... ...... NNYV PE..KPAITR IHQLFSEAVE IECAFLKSHA
Mouse GERVVAFAAV EGIARASG SIFWLKKRGL MPGLTFSNEL D FACLMF.... ...... KHLV H...KPAEQR VREIITNAVR IEQEFLTEAL
Vaccinia GERLIAFAAV EGIAASG SIFWLKKRGL MPGLTFSNEL D FACLMF.... ...... KHLL H...PPSEET VRSIITDAVS IEQEFLTAAL
E. coli YLCLMSVNAL |EATIRFYV CSFAFAEREL MEGNAKIIRL . LTGTQHMLNL LRSGADDPEM AEIAEECKQE CYDLFVQAAQ QEKDWADYLF
NdrF ASVF..... L [ESFURYS LPMYFSSRGK LTNTADLIRL YIGYKYQIAL QKLSAIER.. .... EELKLF ALDLLMELYD NEIRYTEALY
Cc E-i4H-- 1 L a-- -E

292 376
HSV1 PTDSHILSPA ALAAIENYVR FSADRLLGLI HMKPLFSAPP PDASFPLSLM ...STDKHTN FFECRST! GAVUNDL... ......unn
Varicella PKTRLV.... NVDAITQYVK FSADRLLSAI NVPKLFNTPP PDSDFPLAFM ...IADKNTN FFERHST GTVINDL... .........
Mouse PVK...LIGM NCTLMKQYIE FVADRLMLEL GFNKIFRVEN ..... PFDFM ENISLEGKTN FFEKRVGENQ RMGVMSNSTE NSFTLDADF
Vaccinia PVK...LIGM NCEMMKTYIE FVADRLISEL GFKKIYNVTN ..... PFDFM ENISLEGKTN FFEKRVG KMGVMSQ.ED NHFSLDVDF
E. coli RDGS. .MIGL NKDILCQYVE YITNIRMQAV GLDLPFQTRS NPIPWINTWL VSDNVQVAPQ ..EVEVS VGQIDSEVDT DDLSNFQL.
NdrF AETG. .WYND VKAFLC.... YNANKALMNL GYEALFPPEM ADVNPAILAA LSPNADENHD FFSGSGS MGK. ..TVET ED.EDWNF.
Ce Yom ——@mmmmmmm e - 1 XS R ——.

FIG. 5. Amino acid sequence alignment of the small subunit of RR from herpes simplex virus type 1 (HSV1), varicella-zoster virus, mouse,
vaccinia virus, and E. coli and the nrdF product of S. typhimurium. The N-terminal domains of the mouse and herpes simplex virus type 1 sequences,
which are unrelated to all other sequences shown here, have been omitted. The numbering refers to the E. coli sequence. A residue is given in the
consensus sequence if it is present in at least all but one of the sequences and is in capital letters if it is completely conserved. Conserved amino
acid residues involved in the iron ligands, the hydrogen-bonding network, or the R1-binding surface, as well as the tyrosyl radical and its

environment (31), are boxed.

eukaryotic proteins, the herpesvirus-type virus proteins, and
the E. coli and bacteriophage T4 proteins (31). Among these
three groups there is a low level of homology, i.e., between 20
and 30% identity. It is worth noting that the homology of the
nrdEF products with all of these RR is in this range of identity
(Table 2), suggesting that NrdEF proteins may belong to a
fourth group.

Several consensus residues of aerobic RR of class I are
conserved in both the nrdE and nrdF deduced products,
including the five specific cysteine residues representing the
essential thiols (35) of the R1 protein, Cys-225, Cys-439,
Cys-462, Cys-754, and Cys-759 (Fig. 4). Likewise, the iron
ligands (Asp-84, Glu-115, His-118, Glu-204, Glu-238, and
His-241), the tyrosyl radical and its environment (Tyr-122,
Phe-208, Phe-212, and Ile-234), the hydrogen-bonding network
(Asp-237 and Trp-48), and the R1-binding surface (Asp-58,
Arg-236, and Tyr-356) of the R2 protein (14) are also pre-
served in the nrdF protein (Fig. 5). These homologies suggest
that this new RR belongs to class 1.

The results presented in this paper clearly show that in both
S. typhimurium and E. coli there are two sets of genes encoding
the function of aerobic synthesis of ANTPs. Other examples of
duplication of the same function in which the homologous
genes map to distinct loci in E. coli include argl and argF (2, 43)
and tufA4 and tufB (1, 44). The arg genes have diverged to the
point that the two enzymes are biochemically distinguishable
(28, 29) despite the fact that their amino acid sequences differ
by not more than 5% (28). The tuf genes are nearly identical,
and the only difference between the 339-residue structural

proteins is a single substitution at the C terminus (17). Since
the gene products of the tuf loci are functionally indistinguish-
able (30), it has been suggested that the duplication provided
an emergency backup when demand for the translational
elongation factor EF-Tu was high (1). In this respect, and
because of the great importance of the RR to any organism, it
seems reasonable that more than one nrd system is available in
bacterial cells to guarantee the production of dNTPs required
for DNA replication.

In Saccharomyces cerevisiae the R1 gene of RR is duplicated
(for a review, see reference 10). This organism contains the
genes for the large subunit (RNRI) and the small subunit
(RNR2) but in addition a third gene (RNR3). RNR1 and
RNR3 proteins are 80% identical in the portions of their genes
that have been sequenced (10). RNRI and RNR2 mutations are
lethal, whereas RNR3 mutants have no obvious growth defects
and are not sensitive to hydroxyurea. Also, similarly to the case
with the nrdEF genes in nrdAB mutants of E. coli, an RNRI
mutant cannot be complemented by the RNR3 chromosome
copy, but the RNR3 gene can abolish the deficiency of RNRI
mutants when introduced in a high-copy-number vector (10).
On the other hand, NrdAB and NrdEF proteins are very
divergent despite the fact that both seem to be fully functional.
In fact, preliminary analysis showed that extracts of E. coli
nrdA(Ts) cells containing a multicopy plasmid carrying nrdEF
genes have, at the restrictive temperature, RR activity (25). In
this respect, it is also worth noting that the principal functional
residues of RR enzymes of class I are conserved in the NrdEF
proteins. Complementation data for several deleted plasmids
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(Fig. 2) also indicate that both nrdEF genes must be present to
suppress the nrdAB-defective phenotype, indicating that some
interaction must exist between NrdE and NrdF proteins to
form an active RR. Furthermore, R2 and NrdE proteins can-
not form a functional complex in vivo, since plasmid pUA395
lacking the 3’ end of the nrdF gene was unable to abolish a
nrdA(Ts) phenotype (Fig. 2).

This work raises a very intriguing question: why does the
nrdA(Ts) KK450 mutant of E. coli die at 42°C if it has another
gene for aerobic RR? The answer to this question is not
known, but the following alternatives appear to be excluded by
our results: (i) an additional mutation in the nrdEF genes of
this strain, (ii) the nrdEF genes being repressed genes belong-
ing to either a cryptic prophage or a plasmid integrated in the
bacterial chromosome, and (iii) expression of the nrdEF genes
requiring a high gene dosage. The first explanation must be
discarded since the temperature sensitivity of the nrdA(Ts)
mutation when present in other genetic backgrounds is also
abolished by cloned nrdEF genes. The second possibility does
not account for the fact that the nrdEF genes are present in the
same locus of both E. coli and S. typhimurium, since in this case
the hypothetical prophage or plasmid would already be present
in the ancient ancestor of these two bacterial species, which are
believed to have diverged between 120 and 160 miltion years
ago (32). Moreover, there are characteristics that help to
identify genes acquired by a bacterial species from a foreign
source such as a phage or a plasmid. One of these character-
istics is the G+C content, and another is the codon usage (37).
The G+C content (52.9%) as well as the codon usage of the
nrdEF genes are within the range of values typical for S.
typhimurium genes. Our results with plasmid F’143 (Fig. 2) and
the low-copy-number plasmid pHSGS575 carrying these genes
(data not shown) lead us also to discard the third hypothesis.

Finally, the remaining possibility is that the structure of the
region of the chromosome containing nrdEF genes has a
negative effect, as with the expression of other genes in E. coli,
such as bgl and tonB, which is influenced by supercoiling (22).
Likewise, in the proU operon (which is downstream of the
nrdEF genes), the only frans-acting mutations isolated so far
affect DNA supercoiling (23). Further work is in progress to
better characterize the new aerobic RR as well as the regula-
tion of its expression.

Nucleotide sequence accession number. The nucleotide se-
quence in Fig. 3 has been assigned accession number X73226
in the EMBL data library.
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