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An intracellular symbiont harbored by the aphid bacteriocyte, a specialized fat body cell, synthesizes in vivo
substantially only one protein, symbionin, which is a member of the chaperonin-60 family of molecular
chaperones. Nucleotide sequence determination of the symbionin region of the endosymbiont genome revealed
that it contains the two-cistron operon sym. Just like the Escherichia coli groE operon, the sym operon was
dually led by a heat shock and an ordinary promoter sequence. According to the nucleotide sequence,
symbionin was 85.8% identical to GroEL of E. coli at the amino acid sequence level. SymS, another protein
encoded in the sym operon, which is a member of chaperonin-10, was 79.6% identical to GroES. Comple-
mentation experiments with E. coligroE mutants showed that the chaparonin-10 and chaparonin-60 genes from
the endosymbiont are expressed in E. coli and that they can function as molecular chaperones together with
endogenous GroEL and GroES, respectively.

Prokaryotic endosymbionts harbored by the aphid bacte-
riocyte are inherited by the next generation at an early stage
of the host's embryogenesis (2). They live only in the host
cell cytoplasm, and they have no free-living stage. As a
result, they cannot propagate themselves when taken out of
the host cell. Aposymbiotic aphids that have lost these
endosymbionts as a result of antibiotic or heat treatment are
markedly undersized and sterile (14, 25). Thus, the aphid and
its endosymbionts are intimately mutualistic with each
other, which makes these endosymbionts unique organisms
quite different from common free-living bacteria. From the
nucleotide sequence data for 16S rRNA of pea aphid endo-
symbionts, it has been suggested that they are members of
the y subdivision of the class Proteobacteria and that they
diverged from Escherichia coli about 420 million years ago
(32).
The aphid endosymbiont synthesizes in vivo substantially

only one protein, symbionin, with a molecular mass of 63
kDa (13). To elucidate the biological role of symbionin, we
previously purified it (9) and partially determined its amino
acid sequence, which revealed that symbionin is very similar
to E. coli GroEL protein (8), a heat shock protein that is a
member of the chaperonin-60 (cpn6O) family of molecular
chaperones (11). Cpn6O is widely distributed from bacteria to
eukaryotic organelles and is involved in the folding (4),
assembly (4, 5), and translocation (1, 19) of other polypep-
tides. Our previous study showed that symbionin is able to
reconstitute dimeric ribulose 1,5-bisphosphate carboxylase/
oxygenase (RuBisCO) holoenzyme from its unfolded sub-
units in vitro, suggesting that this protein also functions as a
molecular chaperone in the endosymbiont.

In E. coli, cpn60 (GroEL protein) requires GroES protein,
another heat shock protein that is a member of the chaper-
onin-10 (cpnlO) family, in order to function as molecular
chaperone in the process of bacteriophage morphogenesis
(30, 31). The two proteins are also essential for cell viability
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at all temperatures in E. coli (3). In contrast, no information
is available about the involvement of cpnlO in the chapero-
nin function in vivo of organellar cpn60s such as mitochon-
drial hsp60 (15, 23, 26, 27) and the RuBisCO-binding protein
of chloroplasts (11). Since, according to the endosymbiosis
theory, the endosymbiont is supposed to be midway be-
tween a free-living bacterium and an organelle, it is intrigu-
ing to know whether symbionin, an endosymbiotic cpn6O,
requires cpnlO to function in vivo.

In the present study, to obtain additional information
about the chaperonin function of symbionin, we isolated a
DNA fragment encoding symbionin and its flanking regions
and determined its nucleotide sequence. Also, using this
cloned DNA from the endosymbiont, we performed comple-
mentation experiments withgroEL and groES mutants of E.
coli to assess the activity of endosymbiont chaperonins in
heterologous cells.

MATERUILS AND METHODS

Insect materials. A long-established parthenogenetic clone
of pea aphids, Acyrthosiphon pisum (Harris), was main-
tained on young broad bean plants, Vicia faba (L.), at 15°C
in a long-day regimen with 18 h of light and 6 h of dark.

Bacterial strains. E. coli mutant strains NRK233 (groES619
zje::TnlO) and NRK117 (groEL44 zje::TnlO), which are deri-
vatives of MC4100 jgroE' araD139 A(argF-lac)U169 rpsL150
relA flbB5301 deoClptsF25 rbsR], were kindly provided by
K. Ito (18).

Isolation of intracellular symbionts. Primary endosym-
bionts of the pea aphid A. pisum were isolated essentially as
described by Ishikawa (12) and Harrison et al. (10). Special
care was taken not to damage the endosymbionts mechani-
cally during homogenization of the insect materials. Living
pea aphids (about 5 g) were sterilized with 70% ethanol,
quickly washed twice with distilled water, and homogenized
carefully in 6 volumes of ice-cold buffer A (35 mM Tris-HCl
[pH 7.6], 0.25 M sucrose, 25 mM KCl, 1 mM MgCl2, 1 mM
dithiothreitol, 1 mM phenylmethylsulfonyl fluoride). The
homogenate was passed through a 90-p,m-pore-size nylon
mesh and centrifuged at 1,700 x g at 4°C for 20 min. The
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pellet was gently suspended in buffer A and layered over a
discontinuous Percoll density gradient that contained 9, 18,
27, 36, and 45% Percoll. Percoll solutions were prepared by
diluting 100% Percoll containing 1% bovine serum albumin,
5% polyethylene glycol 6000, 1% Ficoll, and 8.6% sucrose in
buffer A. The gradient was centrifuged at 1,000 x g at 4°C for
20 min. Endosymbionts concentrated at the boundary be-
tween 36 and 45% Percoll were recovered and washed in
buffer A.

Preparation of endosymbiont DNA. Isolated endosym-
bionts were incubated in lysis buffer (0.1 M Tris-HCI [pH
8.0] containing 0.1 M NaCl, 0.1 M EDTA, 1% sodium
dodecyl surlfate [SDS], and 0.1% proteinase K) at 42°C for 1
h. After lysis, ordinary phenol-chloroform extraction and
ethanol precipitation were performed, and the fibrous DNA
was collected with a glass rod.
DNA library construction and screening. To isolate the

symbionin gene, we first performed Southern blot analysis of
isolated endosymbiont DNA using an E. coli DNA fragment
containing the groEL coding region (EcoRV-EcoRV 2.1-kb
fragment) derived from X648 (17) as a probe. A 14-kb single
band was detected by EcoRI digestion under low-stringency
hybridization and washing conditions (data not shown).
Then, a genomic library of endosymbiont DNA fragments of
12- to 16-kb EcoRI digests in a XEMBL phage vector was
constructed and screened with the same E. coli DNA probe.
The hybridization buffer contained 50% (vol/Vol) formamide,
Sx SSPE-(lx SSPE is 0.18 M NaCl, 10 mM NaPO4, and 1
mM EDTA [pH 7.7]), 0.1% SDS, 5x Denhardt's solution,
and 100 p,g of denatured sperm DNA per ml, and the
hybridization was performed at 38°C. The filters were
washed for 30 min at 55°C with 2x SSC (l'x SSC is 0.15 M
NaCl plus 0.015 M sodium citrate) containing 0.1% SDS.
The insert from the positive clone (EcoRI 14-kb fragment)
was subcloned into pBluescriptKS+ (pOTKS1, shown in
Fig. 3c). Fragments of this DNA were subcloned 'into
plasmid'pBluescriptKS+ or SK+, and a series of overlap-
ping deletions of these plasmids were constructed as de-
scribed by Sambrook et al. (28). The nucleotide sequence
was determined by the dideoxy method (29).

Plasmid construction and complementation tests. pOTKS1
was constructed by inserting the 14-kb EcoRI fragment
encompassing the symS-symL region into pBluescriptKS+.
pOTKS2 was constructed as follows. pOTKS1 was digested
with PstI, and the resultant DNA fragments of 7.2 and 6.2 kb
were ligated and introduced into the host E. coli (XL1-Blue).
The direction of the ligated inserts of plasmids prepared from
the transformants was determined by restriction enzyme
digestion. Another DNA library of 6- to 8-kb HindIII frag-
ments in XL47 was screened with a probe containing only the
groES region of E. coli DNA to obtain the complete symS
and incomplete symL reiions. The inserted DNA fragments
from the positive clone were subcloned into' pBlue-
scriptSK+ (pSYHD2). E. coli NRK117 and NRK233 were
transformed by recombinant plasmids at 300C. After being
cultured at 30°C overnight, the colonies which grew were
spread on two ampicillin plates. One plate was incubated at
42°C, and the other was incubated at 301C. To examine
plaque-forming ability, 2 x 108 cells of each transformant
were mixed with a XjFMBL phage suspension (containing
about 103 phage) in top agar and plated on L plates. Plates
were incubated at 370C overnight.

Nucleotide sequence data. The nucleotide sequence data
reported here will appear in the EMBL data base under the
accession number X61150.

RESULTS

Isolation and sequencing of a DNA clone for symbionin.
Since our previous study had indicated that symbionin is
very similar to the E. coli GroEL protein in amino acid
sequence, we used a DNA fragment from the groE operon to
probe the symbionin gene in an endosymbiont's genomic
library and detected a positive clone. After subcloning and
mapping this positive insert with restriction endonucleases,
we determined the nucleotide sequence of 2,739 bp contain-
ing the symbionin-coding region (Fig. 1).

It was found that the symbionin gene, designated symL,
codes for a polypeptide of 548 amino acids which apparently
belongs to the cpn60 family. An additional coding region,
de5ignated symS, for a polypeptide of 96 amino acids which
belongs to the cpnlO family was found upstream from symL.
Therefore, the fragment sequenced contained a two-cistron
operon structure, which we named the sym operon.

Characterization and homology analysis of the sym operon.
The promoter region of the sym operon was very similar to
that of the groE operon of E. coli, in which a heat shock and
an ordinary promoter sequence are adjacent. Around 10 bp
upstream of symS was a Shine-Dalgarno sequence. symL
was separated from symS by a 45-bp noncoding region, in
which another Shine-Dalgarno sequence was detected.
Around 50 bp downstream from the end of the symL coding
sequence was a sequence which may assume the stem-loop
structure that terminates the transcription of the sym operon
(Fig. 1).
Homology analysis (Fig. 2) revealed that SymL (symbio-

nin) and SymS from the endosymbiont are 85.8 and 79.6%
identical to GroEL and GroES of E. coli, respectively, at the
amino acid sequence level, indicating that these endosym-
biont chaperonins are the most identical to those of E. coli
among the chaperonins sequenced so far (7).
Rescue of E. coli groE mutants with symL and symS

expression plasmids. To examine whether SymL and SymS
are expressed and function in E. coli, we performed com-
plementation tests with E. coli groE mutants (Fig. 3). Two
mutants carrying groES619 (NRK233) and groEL44
(NRK117) were used (18). These mutants exhibit tempera-
ture-sensitive cell growth and do not support growth of
bacteriophage A (30).
Each strain was transformed with pOTKS2, pSYHD2, or

pBluescript, and complementation of the phenotypes of the
mutants was examined (see Materials and Methods). The
groEL(Ts) mutant, NRK117, regained viability at 42°C and
formed plaques with A phage when transformed with plasmid
pOTKS2 expressing SymL alone. Similarly, the gmES(Ts)
mutant, NRK233, was complemented with plasmid pSYHD2
containing the entire symS sequence but not complete symL.
Neither NRK117 nor NRK233 was rescued by the control
plasmid pBluescriptKS+ (Fig. 3a and b). The results indi-
cated that the heterologous chaperonin combinations of
symbionin (cpn6o of the endosymbiont) and GroES (cpnlO
of E. coli) and GroEL (cpn6o of E. coli) and SymS (cpnlO of
the endosymbiont) are functional as molecular chaperones in
E. coli.

DISCUSSION

The nucleotide sequence determination of the symbionin-
coding region revealed that it contains a two-cistron sym
operon. The sym operon is led by heat shock and ordinary
promoter sequences, which are arranged adjacently. This
finding suggests that in the transcriptional initiation of the
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FIG. 1. Nucleotide sequence of theA. pisum endosymbiont sym operon. The corresponding amino acid sequences of the SymS and SymL
proteins are indicated. Sequences resembling the E. coli consensus heat shock and ordinary promoters (6) are boxed [positions -35(hs) and
-10(hs) and -35 and -10, respectively]. Potential ribosome binding site is indicated by arrows. SD, Shine-Dalgarno sequence.

sym operon, as in that of the groE operon of E. coli (34),
alternative promoters will be involved depending on the
environmental conditions. Since it is harbored by the bacte-
riocyte, the aphid endosymbiont may be constrained to use

the heat shock promoter preferentially, just as does E. coli
stressed by heat shock, which will lead to a selective
production of symbionin (13).

This assumption is compatible with the previous results on



1872 OHTAKA ET AL.

Percentage - 85.77 %

10 20 30 40 S0 60 70 90 90 100 110 120
VRXMKVT=PAVI2RCNVE WVVLDItRVVDS ELED12IlD;AC ASKNMGWmAKhDAGTTrAIIIEGAQAVMKAGMN{PMDLIMG

_M_FMLRKLGYVA)VKVTLGpSRNVVtIDKSGASITl@GVSVARieRuWEAK DAGGDGTTATLLQSIVNEGLltAVAAGMMLCRGI
10 20 30 40 50 60 70 80 90 100 110 120

130 140 150 160 170 190 190 200 2i0 220 230 240

DKRVTAAVEEDLVPCIDSKIAQVrSEVGISANSD1WKLIAFAMVITMVTGLQDILDVVDVVGMGYSYFINIPErNKVETLAELPFsliLAIciLLSDasiRElPVIEv
DLVIn***************** ******** ** ** ****** ***A***** * ******* ** **********--*-* *E-E*NEEe*a*-**- *- *

130 140 150 160 170 190 190 200 210 220 230 240

250 260 270 280 290 300 310 320 330 340 350 360
MAaKPLLIIAEDVGEMALTAVVNrIRiCIVECVAAVIQzPFGDltRIVljM= ISEEIGF5ELEKATLEDLGQAKRVVINKTrrI NGEEAAIQGRVAQIRQ0IEEATSDY

AKSGPLIELGEKLPLVLSRIVIVAVUGWRSI.ISILTGSVSED-SIITEDG=KRISQ IGVGMCSRIISIIQEIQOT TSY
250 260 270 280 290 300 310 320 330 340 350 360

370 380 390 400 410 420 430 440 450 460 470 480
DREKLaER[VAXLI7V9VI0 3R9040 40 42G40ED 4054IKVALRA004LRRQIVNCGEEPSVVANTV0DGNYGYNA

DKE EIVVVATVKVnLARAEGVL RVAGKIADLRGQNEDQNVGIRVALRAEPlRQI VSNSGEEPSVVMKGNYGYNA
370 380 390 400 410 420 430 440 450 460 470 480

490 500 510 520 530 540 550
ATEENDMItDPRLOYSVAN PAAGVTGrGM
** *** *** ********************** .* ***

ATDEYGDP490 5ILD00V 510A 520I530T540K50PAGGG

49 0 Soo 510 520 530 540 550

b Percentage - 79.59 %

10 20 30 40 50 60

GroES NIRPLHDRVIVICKEVETKSAGGIVLTGSAAAKSTRGEVLAVGNGRILENGEVKPLDVK
* ******** *** *** ************* ***** * *** ** * ** ******

SymS MCIRpLHDRVLVKRQEVESKSAGGIVLTGSAAGKSTRGTVTAVGKGRVLDNGDIKPLDVK
10 20 30 40 50 60

70 60 90 100
VGDIVIFNDGYGVKSEKIDNEEVLIMSESDILAIVEA
*** **** *** * ******* ** t*********

VGDVVIPNMEGYGAKTEKIDNEELLILTESDILAIVE
70 80 90 100

FIG. 2. Comparison between the amino acid sequences of GroEL and symbionin (SymL) and GroES and SymS. Identical amino acid
residues are indicated by asterisks. The percent identity is indicated above each alignment.

protein synthesis by the isolated endosymbiont in vitro.
Under in vitro conditions, the synthesis of symbionin is
markedly lowered and other numerous proteins are pro-
duced by the endosymbiont, a phenomenon which is remi-
niscent of a cell recovered from heat shock (13). In addition,
when stressed by heat shock or other stresses such as heavy
metals and ethanol, the isolated endosymbiont resumes the
selective synthesis of symbionin in large amounts (22).
These results suggest that the intracellular environment
constrains the endosymbiont to synthesize symbionin pref-
erentially.
As expected from the close similarity of symbionin to

GroEL in amino acid sequence (Fig. 2), it was shown that
symbionin is functional as an assembly factor in vitro (16)
and in vivo in E. coli, a heterologous cell (Fig. 3). These

findings raise the possibility that in the aphid endosymbiont,
symbionin also functions as an assembly factor. Actually, it
has been suggested that in the bacteriocyte, many polypep-
tides synthesized by the cytoplasmic ribosomes are found
associated with the endosymbiont (12). Moreover, when the
synthesis of symbionin by the endosymbiont is somehow
arrested, the endosymbiont structure in the bacteriocyte is
destroyed (14, 25). All these, taken together, suggest that
symbionin is a molecular chaperone like GroEL and that,
just like organellar cpn6Os, it is involved in the assembly of
polypeptides imported into the endosymbiont from the host
cell.

In the complementation experiment shown in Fig. 3, not
only symL but also symS of the endosymbiont was ex-
pressed in the E. coli mutant cell and complemented the

a
GroEL
symbionin
(SymL)
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FIG. 3. Restoration of viability at 42°C (a) and phage plaque
formation ability (b) of temperature-sensitive E. coli groEL and
groES mutants with symS and symL expression plasmids. (a)
Mutants were transformed with the control and recombinant plas-
mids shown in panel c. 1 and 2, NRK117 (groEL)/pBluescriptKS+;
3 and 4, NRK117/pOTKS2; 5 and 6, NRK233 (groES)/pBlue-
scriptKS+; 7 and 8, NRK233/pSYHD2. Plates were incubated at
42°C or 30°C. (b) Transformants were infected with the same

number of PFU of X phage. +, plaques were observed; -, plaques
were not observed. (c) Physical map of the sym region. The inserted
DNA fragments of the recombinant plasmids are indicated below the
map. A, deletion obtained by removal of the PstI fragment in the
symS region. Hd, HindIll; E, EcoRI; Hc, HincII; P, PstI; K, KpnI.

defect in groES. This represents the first example of a
functional cpnlO in any heterologous cell. As shown in this
experiment, SymS acts like cpnlO in E. coli, taking the place
of GroES. In addition, symbionin is able to chaperone
RuBisCO in vitro, replacing GroEL only in the presence of
GroES (16). In this regard, an apparent contradiction is that
in the endosymbiont, the synthesis of SymS relative to that
of symbionin seems to be very low (16). In E. coli (24) and
cyanobacteria (33), the level of expression of cpnlO is almost
equivalent to that of cpn60.

In mitochondria, no direct evidence is available about the
in vivo levels of cpnlO, although the presence of a cpnl0-like
protein has been suggested (20). One possibility is that
although cpnlO may be required for some synergistic func-
tion with cpn60, cpnlO is not as essential as cpn60 because
functions dependent on cpn60 alone are more numerous in
organelles. Actually, even in E. coli, not all GroEL-depen-
dent processes have been shown to require GroES (1, 19). In
mitochondria and chloroplasts, although the cpn60 gene is
found in the nuclear genome, the gene encoding cpnlO has

T

Sym L (symbionin)

symL protein (symbionin)

GAAAu A

C*G
U*A
AU
U,U.aSUD 8ymL

AAACCACAUGC __AUGUCAjEg3CCGCUAAAGA

FIG. 4. Model for gene expression of the sym operon of the
aphid endosymbiont. P1, heat shock promoter; P2, ordinary pro-
moter; T, terminator. A stem-loop structure shown below is as-
sumed to enhance the expression of SymL selectively at the
translational level. SD, Shine-Dalgarno sequence.

not been found in the same operon. In the aphid endosym-
biont, the expression of cpnlO (SymS), although encoded in
the same operon that encodes cpn60 (symbionin), may be
repressed in vivo because of its organellelike environment.
Judging from the polarity of the sym operon (symS arranged
upstream of symL), the repression of symS could be at the
posttranscriptional level. In this context, it may be notewor-
thy that a region preceding the Shine-Dalgarno sequence of
symL tends to assume a stem-loop structure, which does not
seem to be formed either in the Shine-Dalgarno region of
symS or in the corresponding region of groE (Fig. 4). The
similar structures are often observed with multicistronic
mRNAs of E. coli and reported to enhance the translational
level of the relevant cistron (21). Further studies of the aphid
endosymbiont should provide important insights into the
origin of the system in cell organelles, since the endosym-
biont is thought to be an organelle at a primitive stage.
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