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To determine the evolutional relationship of bacterial retroelements ofMyxococcus xanthus and Stigmatella
aurantiaca, the nucleotide sequence of 3,060 bases encompassing msr, msd, and the upstream region of msd
(downstream of msr) of S. aurantiaca DW4 was determined and compared with the same region from M.
xanthus. An open reading frame was found 92 bases upstream ofmsd which encoded a polypeptide of480 amino
acid residues having 73% identity with the reverse transcriptase ofM. xanthus. Together with high homologies
in msr (86%) and msd (81%) regions, the present data indicate that the reverse transcriptase genes as well as

the retrons of M. xanthus (retron-Mxl62) and S. aurantiaca (retron-Sal63) were derived from a common

progenitor retron which possibly existed before the two myxobacterial species diverged.

Multicopy single-stranded DNA (msDNA) was originally
found in Myxococcus xanthus, a gram-negative soil bacte-
rium, as a satellite DNA consisting of a single-stranded DNA
of 162 bases (21). A highly homologous msDNA was subse-
quently found in Stigmatella aurantiaca DW4 (16), another
myxobacterium, and its entire primary structure of the
branched RNA linked msDNA was determined (2, 3).
msDNAs from M. xanthus and S. aurantiaca are desig-
nated msDNA-Mx162 and msDNA-Sa163, respectively (9,
10). msDNA-Sa163 consists of a 163-base single-stranded
DNA (msDNA) and a 76-base RNA (msdRNA). The 5' end
of the DNA is attached to the 2'-OH group of the rG residue
at position 19 of the RNA molecule by a 2',5'-phosphodi-
ester linkage. The 3' ends of the DNA and RNA molecules
are hybridized to each other by 8 bases. The proposed
secondary structure of msDNA-Sa163 is shown in Fig. 1A
(2, 3).
The structure of msDNA-Mx162 has also been determined

and shows a high homology (>80%) to msDNA-Sa163 (6).
msDNAs have been found in a variety of myxobacteria (4)
and also in a minor population of natural isolates of Esche-
richia coli (for reviews, see references 9 and 10). In addition
to msDNA-Mx162 and msDNA-Sa163, five other msDNAs
have been identified: msDNA-Mx65 (5), msDNA-Ec67 (14),
msDNA-Ec73 (18), msDNA-Ec86 (15), and msDNA-EclO7
(7). In all cases, msDNA is encoded from a single chromo-
somal locus, designated a retron, consisting ofmsr, msd, and
the gene for reverse transcriptase (RT), which is essential for
the biosynthesis of msDNA (for reviews, see references 9
and 10).

In this report, we determined the nucleotide sequence of
the RT gene of S. aurantiaca and found that the S. auranti-
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aca RT consists of 480 amino acid residues and has 73%
identity with the M. xanthus RT. Its evolutional implication
will be discussed. The RT gene is the first gene sequenced in
S. aurantiaca.
To determine the nucleotide sequence of the region up-

stream of msd (downstream of msr), the 3.6-kb BamHI
fragment (from Be to Bf; Fig. 1B) from pSTAl was sub-
cloned into the unique BamHI site of pUC9 (19) and the
resulting plasmid was designated pSTA5 (Fig. 1B). In
pSTA1, the 13.3-kb EcoRI fragment from S. aurantiaca (2)
was cloned into the EcoRI site of pACYC184 (1). The 3.6-kb
BamHI fragment was digested with XhoI, SmaI, and RsaI,
and the fragments thus generated were subcloned into
pUC9. The DNA sequence was determined by the chain
termination method (17). The nucleotide sequence of 3,060
bases encompassing msr, msd, and the gene for RT was thus
determined as shown in Fig. 2. A long open reading frame
starting from an initiation codon (ATG) was found 92 bases
upstream of msd. The open reading frame codes for a

polypeptide of 480 amino acid residues, and a ribosome-
binding sequence (AGG) is found 7 bases upstream of the
initiation codon (residues 753 to 755). In Fig. 2, msd, the
gene for msDNA, and msr, the gene for msdRNA, are
boxed, and inverted repeat sequences consisting of two
33-base sequences immediately upstream of the branched G
residue (residue 458) and downstream of the 5' end of
msDNA are indicated by al and a2. These inverted repeat
sequences have been shown to be essential in order to form
a stem structure in the primary transcript placing the
branched G at the end of the stem structure for the msDNA
priming reaction (8).
When the nucleotide sequence of S. aurantiaca from

residues 122 to 3060 is compared with the corresponding
nucleotide sequence of M. xanthus (12), homologies of msr
and msd are 86 and 81%, respectively (6). There are 18 base
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substitutions, 16 base insertions, and 1 base deletion within
the 92-base sequence between the 5' end of msDNA and the
initiation codon (residues 763 to 765) in S. aurantiaca.
Within the 1,440-base open reading frame (residues 763 to
2202), there are 281 base substitutions, 17 base insertions,
and 32 base deletions. The homology of this region is 77%
between S. aurantiaca and M. xanthus. The homology at the
region of the 3'-end-encoding sequence (residues 2203 to
2205) drops to 50% as a result of many deletion mutations.
As expected from the homology of the DNA sequence, the
RT amino acid sequence deduced from the DNA sequence is
significantly similar to that of RT-Mx162. M. xanthus has
been shown to contain two independent retrons, retron-
Mx162 and retron-Mx65, responsible for two different spe-
cies of msDNA, msDNA-Mx162 (6) and msDNA-Mx65 (5).
Each retron contains a unique region coding for its own RT,
RT-Mx162 for retron-Mx162 (12) and RT-Mx65 for retron-
Mx65 (11). Figure 3 shows the amino acid sequence of the S.
aurantiaca RT together with those of RT-Mx162 and -Mx65.
There are 351 identical amino acid residues out of 480
residues between RT-Sa163 and RT-Mx162 (73% identity).
When the 239-residue sequence encompassing only the RT
domain (reference 20 and see below) is compared with
RT-Mx162, the identity increases to 80%. This high identity
between the two RTs is unique among all the other known
bacterial RTs, which do not share more than 40% identities.
It is also interesting that the identity between RT-Sa163 and
RT-Mx65 is only 35%, as is the identity between RT-Mx162
and RT-Mx65. These results indicate that ratron-Sal63 and
retron-Mx162 were possibly derived from a common progen-
itor retron which was most likely acquired before the two
myxobacterial species diverged. Supporting this is the fact
that all 20 independent, natural isolates of M. xanthus from
various locations in the world contain retrons which have
greater than 80% nucleotide sequence homologies to retron-
Mx162 (13).

In contrast to M. xanthus, only 13% of E. coli natural
isolates contain retrons, and these retrons show substantial
diversities in their primary sequences and sizes of msDNAs,
msdRNAs, and RTs (for reviews, see references 9 and 10).
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FIG. 1. (A) Proposed structure of msDNA-Sa163. The sequence in the box is RNA. The branched rG is circled. (B) Restriction maps of

pSTAl and pSTA5. The locations and the orientations of msr, msd, and the RT gene are indicated with arrows. E, B, and X, EcoRI, BamHI,
and XhoI sites, respectively.
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FIG. 2. Nucleotide sequence of 3,060 bases encompassing msr, msd, and the RT gene of S. aurantiaca. Base 1 corresponds to 468 bases
upstream of the Xe site in Fig. 1B, and base 3060 corresponds to 727 bases downstream of the Bf site in Fig. 1B. The sequence from base 421
to base 720 which contains msr and msd is shown double stranded. The boxed regions of the upper strand (bases 440 to 540) and the lower
strand (bases 508 to 670) correspond to the sequences of msdRNA and msDNA, respectively (3). The starting sites for msDNA and msdRNA
are indicated by open arrows. The circled G at the position 458 is the branched rG of msdRNA linked to the 5' end of msDNA. Long solid
arrows labeled with al and a2 represent inverted repeated sequences proposed to form the secondary structure in the primary RNA transcript
which serves to prime msDNA synthesis (6). Amino acids are indicated by single letters. The YXDD sequence highly conserved among
known RTs is boxed. Xe and Bf sites are indicated by arrows. Numbers on the right-hand side and numbers with asterisks represent numbers
for bases and amino acids, respectively.
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MX65 RT NSWFDTTLSR LKGLFSRPVT RSTTLDVPL DAHGRPQDVV TRTVSTSGPL 50

Sa163 RT DKQKAAWKEK KKAEATZRRA QKRLSAWEK ATHIHEHGVG VHWDEAGGPD XFDVAGRNER AKANGLP8GL DSVVALAKAL 157
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FIG. 3. Amino acid sequence alignment of RT-Sa163, RT-Mx162, and RT-Mx65. Amino acids conserved in both RT-Sa163 and RT-Mx162
are marked with solid circles. Amino acids conserved in all known RTs (20) are indicated with asterisks. The YXDD is boxed.
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Therefore, retrons are considered to be acquired into the E.
coli genome after this bacterial species was established.
From the sequence alignment of 82 bacterial and eukary-

otic RTs, the RT structure can be divided into 7 subdomains
and contains 17 conserved amino acid residues plus 25
functionally homologous residues (20). In this alignment, 14
out of 17 identical and 18 out of 25 functionally homologous
residues are found in RT-Sa163. These identical and homol-
ogous residues are marked with asterisks in Fig. 3. The
GenBank-EMBL accession number for the RT-Sa163 gene is
M86352.
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