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ABSTRACT We present a model of a financial market in
which naive diversification, based simply on portfolio size and
obtained as a consequence of the law of large numbers, is
distinguished from efficient diversification, based on mean-
variance analysis. This distinction yields a valuation formula
involving only the essential risk embodied in an asset’s return,
where the overall risk can be decomposed into a systematic and
an unsystematic part, as in the arbitrage pricing theory; and
the systematic component further decomposed into an essen-
tial and an inessential part, as in the capital-asset-pricing
model. The two theories are thus unified, and their individual
asset-pricing formulas shown to be equivalent to the pervasive
economic principle of no arbitrage. The factors in the model
are endogenously chosen by a procedure analogous to the
Karhunen–Loéve expansion of continuous time stochastic
processes; it has an optimality property justifying the use of
a relatively small number of them to describe the underlying
correlational structures. Our idealized limit model is based on
a continuum of assets indexed by a hyperfinite Loeb measure
space, and it is asymptotically implementable in a setting with
a large but finite number of assets. Because the difficulties in
the formulation of the law of large numbers with a standard
continuum of random variables are well known, the model
uncovers some basic phenomena not amenable to classical
methods, and whose approximate counterparts are not al-
ready, or even readily, apparent in the asymptotic setting.

Modern asset pricing theories rest on the notion that the
expected return of a particular asset depends only on that
component of the total risk embodied in it that cannot be
diversified away [refs. 1 and 2 (pp. 173–197)]. A market
equilibrium, by definition, precludes a price system under
which diversification earns a reward, and thus, in a world of
costless arbitrage, the fundamental question for asset pricing
reduces to the identification and measurement of the relevant
component of risk that exercises influence on an asset’s
expected return.
In the capital-asset-pricing model (CAPM; as in refs. 3 and

4), a particular mean-variance efficient portfolio is singled out
and used as a formalization of essential risk in the market as a
whole, and the expected return of an asset is related to its
normalized covariance with this market portfolio—the so-
called beta of the asset. The residual component in the total
risk of a particular asset, inessential risk, does not earn any
reward because it can be eliminated by another portfolio with
an identical cost and return but with lower level of risk (3–8).
On the other hand, in the arbitrage pricing theory (APT; as in
ref. 9), a given finite number of factors is used as a formal-
ization of systematic risks in the market as a whole, and the

expected return of an asset is related to its exposure to each
of these factors, and now summarized by a vector of factor
loadings. The reward to the residual component in the return
to a particular asset, unsystematic or idiosyncratic risk, can be
made arbitrarily small simply by considering portfolios with an
arbitrarily large number of assets.
The basic point, however, is that the two theories capture

two different sets of risks and address different aspects of the
premium-awarding scheme for taking such risks. The CAPM,
by its emphasis on efficient diversification in the context of a
finite number of assets, neglects unsystematic risks in the sense
of the APT; whereas the APT, with its explicit focus on
markets with a ‘‘large’’ number of assets, and by its emphasis
on naive diversification and on the law of large numbers,
neglects essential risks. The two theories seem to be inherently
disjoint. It is surprising, however, that a model which unifies
their basic ingredients can nevertheless be found; and more-
over, that it is one in which the absence of arbitrage oppor-
tunities is not only sufficient, but in contrast to the literature,
also necessary for the validity of the APT pricing formula. We
present this model here.
It is easy to see why such a unification has not been

considered so far. A natural way to proceed is to work with a
limit model of a financial market with a continuum of assets,
to identify the ensemble of systematic risks, and within this, the
essential risk emanating from a suitably constructed ‘‘market’’
portfolio. Standard methods, however, do not permit any
progress toward a limit model in which nontrivial portfolios
with genuinely unsystematic or asset-specific risks can be
included; the difficulties associated with a version of the law of
large numbers for a standard continuum of random variables—
say the Lebesgue unit interval as an index set—are well
understood [see refs. 10 (theorem 2.2), and 11–13]. An alter-
native way is to follow the APT literature and work with an
increasing sequence of asset markets, but here one has to
overcome at least three obstacles: unsystematic risks are never
completely eliminated, exogenous factor structures are not
sufficiently refined to yield orthogonal factor loadings, and
pricing formulas are approximate with convergent require-
ments on infinite series (see refs. 14–16). Under these con-
siderations, it is not evident how to introduce a simple explicit
formula for essential risk, or more generally, how to relate
important portfolios to the associated factor structures.
Our idealized limit model of asset pricing is based on a

hyperfinite continuum of assets (17, 18). In this setting, we can
appeal to a hyperfinite analogue of the Karhunen-Loéve
expansion of continuous time stochastic processes (18–22),
and derive factors endogenously from the process of asset
returns. These factors are used to formalize systematic risks
and to construct a ‘‘market’’ portfolio for a further specifica-
tion of essential risk. The valuation formula then shows that
the usual claim, based on the APT, that the market only
rewards the holding of systematic risks, is simply not sharp
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enough; systematic risk can be reduced still further until a
portfolio has only essential risk, and it is only this component
of systematic risk that earns a premium. Even in the presence
of many sources of industry-wide or market-wide factor risks,
there is surprisingly only a unique source of risk, characterized
by one random variable, that is rewarded by the market, and
the risk premium assigned to a particular factor risk only
reflects the role of that factor in the definition of essential risk.
In brief, our study clarifies three different types of risks in
financial markets, while previous work only focussed on two of
them; each, one at a time, and in a different setting. Our results
are asymptotically implementable; asymptotic arguments, be-
sides being pervasive in actuarial situations (ref. 23, especially
the final two paragraphs), furnish a valuable check on mea-
surability and other assumptions that are imposed on the limit.
Details of proofs will be presented elsewhere.
The work reported here does not simply provide a frame-

work in which epsilons can be rigorously equated to zero, or
somewhat less naively, rely on a particular stochastic process
for which the law of large numbers holds, as constructed for
example in refs. 24–27. It belongs to the genre of ideal limit
models that illustrate phenomena obscured in the discrete
case; for examples in economic science, see refs. 28 and 29 in
general equilibrium theory, see refs. 30 and 31 in cooperative
and noncooperative game theory, and ref. 32 in continuous-
time finance.

The Underlying Framework

In ref. 18, a hyperfinite Loeb space (17) is used to model
probabilistic phenomena involving a large number of random
variables in situations where there is no natural topology on the
index set. Just as the set {1, 2, z z z , n}, endowed with the
uniform probability measure, is a natural space of names for
a situation with n assets, a hyperfinite Loeb counting measure
space provides, by the very terms of the nonstandard exten-
sion, a useful framework for the situation of an increasing
sequence of asset markets indexed by {{1}, {1, 2}, z z z , {1,
2, z z z , n}, z z z}. Besides being asymptotically implementable,
a Loeb space is a standard measure space, and therefore allows
one to invoke mathematical structures not available in the
finite, or the large but finite, case. However, the fact that it is
constituted by nonstandard entities can be altogether ignored;‡
and attention focussed simply on its special properties not
shared by general measure spaces.
Let T be a hyperfinite set, 7 the internal power set of T, l

the internal counting probability measure on (T, 7), and (T,
L(7), L(l)) the standardization of the corresponding internal
probability space, the Loeb space. We shall use T as the space
of asset names, and another atomless Loeb space (V, L(!),
L(P)) as the sample space formalizing all possible uncertain
social or natural states relevant to the asset market. There are
two ways of formalizing how the index set intertwines with the
sample space.§ The completion of the standard product mea-
sure space (T 3 V, L(7) R L(!), L(l) R L(P)) can be
constructed in the conventional way by taking the product of
the two relevant Loeb spaces, while the Loeb product space is
the standardization (T 3 V, L(7 R !), L(l R P)) of the
internal product space (T 3 V, 7 R !, l R P). It is an
interesting fact that the former s-algebra, denoted here by 8,
is strictly contained in the Loeb product s-algebra, except in

the trivial case, inapplicable here, when one of the measures
L(l) and L(P) is purely atomic [refs. 18 and 38 (example
3.12.13 presents a special case of this fact)]. This observation
constitutes the technical point of departure for the approach
taken in (18) and also exploited here. If the structure of
one-period asset returns is modeled by a real-valued L(7 R
!)-measurable function x, its mean by m, and the unexpected
return by f 5 x 2 m, the conditional expectation E(fu8)
furnishes us with the key ‘‘smoothing operation’’ that we seek
for a viable formulation of the ensembles of unsystematic and
systematic risks embodied in the market as a whole. To see this,
we turn to some specific results in ref. 18.
We assume the process of asset returns x to have a finite

second moment, and work with the Hilbert space +2(L(l R
P)) of real-valued L(l R P)-square integrable functions on T
3 V. For each asset t in T, xt [ x(t, z)[ +2(L(P)), and for each
state v in V, xv [ x(z, v) [ +2(L(l)). Consider the
infinite-dimensional analogue of the covariance matrix of asset
returns, the autocorrelation function R(t1, t2)5 *V f(t1, v)f(t2,
v)dL(P), and use it as a kernel to define a compact, self-
adjoint and positive semidefinite operator on +2(L(P)). Sim-
ilarly, the sample autocorrelation function can be used to
define a dual operator on +2(L(l)). For each operator, let
{cn}n51

` and {wn}n51
` be the respective complete eigensystems,

adjusted to form an orthonormal family, and {ln2}n51
` their

common, nonincreasing sequence of all the positive eigenval-
ues, each eigenvalue being repeated up to its multiplicity.
Theorems 1–3 in ref. 18 show that f can be expressed, for L(l
R l)-almost all (t, v) [ T 3 V, as

f~t ,v! 5 x~t ,v! 2 m~t! 5 O
n51

`

lncn~t!wn~v! 1 e~t ,v!, [1]

where E(fu8)(t, v) 5 •n51
` lncn(t)wn(v),¶ and the residual

term e has ‘‘low’’ intercorrelation and satisfies the law of large
numbers in a strong sense with E(eu8) 5 0. Since Eq. 1 can be
seen as a hyperfinite analogue of the usual factor model (20,
39), the wn, cn, and ln are to be called factors, factor loadings,
and scaling constants.\
Now, for the purpose of this paper, let us refer to a risk as

any centered random variable defined on the sample space V
and with a finite variance. As usual, we shall use its variance
to measure its level of risk. The following is a precise formal-
ization of a basic intuition.

Definition 1: A centered random variable defined on the
sample space is an unsystematic (idiosyncratic) risk if it has
finite variance and is uncorrelated with xt for L(l)-almost all
t [ T.

By theorem 2 in ref. 18, one can require that for each t [ T,
et is uncorrelated with xs for L(l)-almost all s [ T. Thus et is
an unsystematic risk for t [ T and e represents the ensemble
of all unsystematic risks in the market. Since e satisfies the law
of large numbers in a strong sense, it is also easy to see that a
risk is unsystematic if and only if it is uncorrelated with all the
factors wn. It is thus natural to refer to all risks perfectly
correlated with some linear combinations of the factors, as
systematic risks. Formally,

Definition 2: A centered random variable defined on the
sample space exhibits systematic risk if it has finite variance‡The relevant analogy is to all those situations when the use of a

Lebesgue measure space does not depend on the Dedekind set-
theoretic construction of real numbers, or on the particular construc-
tion of Lebesgue measure. For details on Loeb spaces and on
nonstandard analysis, refs. 17, 24–27, 33, and 34.
§For the standard mathematical concepts in this and the next two
paragraphs, see ref. 35 (chapter 8), ref. 19 (chapter 8), and ref. 36
(chapter 2). For the relevant version of Fubini’s theorem, see refs. 37
and 38.

¶This is the analogue of the Karhunen–Loéve biorthogonal represen-
tation but for a setting without a topology on the universe T of asset
indices. The representation has had applications in many fields,
though not in financial economics to our knowledge; see refs. 20–22
and references therein.

\The infinite sum is replaced by a sum with m terms if there are only
m nontrivial factors in the market.
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and is in the linear space^ spanned by all of the factors wn, n$
1.

Eq. 1 now tells us that E(fu8) represents the ensemble of
systematic risks in the market. In the context an individual
asset t, its total risk ft is decomposed into two components, a
systematic risk component •n51

` lncn(t)wn and an unsystem-
atic risk component et.
Note that the factors wn are constructed endogenously from

the given process of asset returns, and thereby respond to the
criticism of the arbitrariness of the choice of factors in the APT
(40, 41). From another point of view, a principal motivation
behind factor analysis is to find a small enough set of latent
variables so that the systematic behavior of the directly ob-
served random variables can be adequately identified and
explained (20, 39). If one is allowed to use only m sources of
risk to measure the ensemble of systematic risks of the market,
then the m random variables ought to be chosen in a way that
any other set of m random variables makes a smaller contri-
bution towards explaining the correlational structure of the
process of asset returns. It can be shown that this kind of best
approximation is indeed achieved by using the firstm elements
of the set of factors {wn}.
The specification of our underlying framework is now

complete, and we turn to the formulation of APT and CAPM,
and to a further decomposition of systematic risks.

Results

Aportfolio p constituted from a process x is a square integrable
function on T, its cost C(p) is given by *Tp(t)dL(l), its
expected return by E(p) 5 *Tp(t)m(t)dL(l), and its random
return 5p(v) by *Tp(t)x(t, v)dL(l). The ensemble of unsys-
tematic risks identified above in the market as a whole satisfy
a consistent version of the law of large numbers in the sense
that the sample averages of various variations of e are L(P)-
almost surely equal to zero (ref. 18, theorems 1 and 3). Such
a statement can be informally expressed as ‘‘aggregation
removes individual uncertainty,’’ or in another context, ‘‘no
betting system can ever break the house’’ (18, 23). This fact
allows us to compute, from Eq. 1 and5p(v), the variance V(p)
5 •n51

` ln2 (*Tp(t)cn(t)dL(l))2 of any portfolio p by ignoring
the unsystematic risk component. This formula shows that a
riskless portfolio, namely one with zero variance, is orthogonal
to all of the factor loadings cn, and that every portfolio is
completely diversified in the sense that it embodies only factor
variance and no unsystematic variance.
We can now present the basic theorem of APT, but without

the assumption of an exogenously given, exact or approximate,
factor structure. It needs to be emphasized that the no
arbitrage condition is not only sufficient but also necessary for
the validity of the asset pricing formula. Such a necessity
condition is surprisingly absent in the APT literature.

Definition 3: The market permits no arbitrage opportunities
if and only if for any portfolio p, V(p) 5 C(p) 5 0 implies E(p)
5 0.

THEOREM 1. The market permits no arbitrage opportunities
N there is a sequence {tn}n50` of real numbers such that for
L(l)-almost all t [ T, m(t) 5 t0 1 •n51` tncn(t).
Next, we turn to our results on the equivalence between the

APT and the CAPM.

THEOREM 2. The following equivalence holds: There is a
portfolioM and a real number r such that for L(l)-almost all t[
T, m(t) 5 r 1 cov(xt, M) N there is a sequence {tn}n50` of real
numbers such that •n51` (tn2yln4), `, and for L(l)-almost all t[
T, m(t) 5 t0 1 •n51` tncn(t).

Theorem 2 does not furnish a precise specification of the
portfolio M. We can construct a portfolio I0 based on param-

eters extracted from the given market process of asset returns
x and use it to identify the essential risk embodied in the
realized return of a particular asset. Let sn, mn be the inner
products (1, cn), (m, cn), h a risk-free portfolio defined by h5
(1 2 •n51

` sncn), and m0 5 (m, h)y(h, h), if h Ó 0 and m0 5
0 if h 5 0. We can now define the index portfolio I0 to be •n51

`

((mn 2 m0sn)yln2)cn, with a net random return X0 5 •n51
` ((mn

2 m0sn)yln)wn, cost C(I0) 5 •n51
` sn(mn 2 m0sn)yln2, mean

E(I0) 5 •n51
` mn(mn 2 m0sn)yln2 and variance V(I0) 5 •n51

`

(mn 2 m0sn)2yln2. We can use I0 to present

Definition 4: A centered random variable defined on the
sample space exhibits essential risk if it is in the linear space
generated by the net random return X0 of the index portfolio
I0, and exhibits inessential risk if it is in the orthogonal
complement of X0 in the space ^ of systematic risks.

We can now present a further refinement of systematic risks,
and thereby a tri-partite decomposition of the total risk of an
asset. If V(I0) Þ 0, let the normalized covariance of any asset
t with the index portfolio be given by bt 5 cov(xt, I0)yV(I0).
It can be checked that Yt(v) 5 •n51

` (lncn(t) 2 ((mn 2
m0sn)yln)bt)wn(v) is orthogonal to X0 and its sum with
btX0(v) is the portion of systematic risk •n51

` lncn(t)wn in
asset t. Then, by Eq. 1, the total risk of asset t can be written
as

xt~v! 2 m~t! 5 bt X0~v! 1 Yt~v! 1 et~v!. [2]

The importance of this decomposition lies in the fact that the
risk premium of almost all assets is equal to the beta of the
asset multiplied by the risk premium of the index portfolio.

THEOREM 3. Assume that •n51` (mn2 m0sn)2yln4 , ` and the
market is nontrivial in the sense that the expected return function
m is not the constant function m0. Then there is no arbitrage N
there is a sequence {tn}n50` of real numbers such that for
L(l)-almost all t[ T, mt5 t01 •n51` tncn(t)N for L(l)-almost
all t [ T, mt 5 m0 1 cov(xt, I0) 5 m0 1 bt(E(I0) 2 m0C(I0)).

Once we move to the asymptotic setting of an increasing
sequence of finite asset markets, the insights of the limit model
can only be extracted in an approximate form. The structure
of asset returns is now formalized by a triangular array of
random variables {xn}n51

` defined on the product space (Tn 3
V, 7n R !, ln R P), Tn 5 {1, 2, z z z , n} endowed with a
uniform probability measure ln on its power set 7n, and (V,
!, P), a fixed common probability space. For the nth market,
the realized return of asset t in Tn is given by xnt, and its mean
by mnt 5 *V xnt(v)dP. The square integrability restriction on
portfolios in the idealized case translates to a limitation to
sequences of portfolios {pn}n51

` , for which supn$1{*Tn pnt
2 dln

5 (1yn) •t [ Tn pnt
2 } is finite, and that on the processes of asset

returns by the requirement that there is a positive number M
such that * *Tn3V xnt2 dL(ln R P) # M, for all n $ 1. In
particular, in the context of each finite market in this sequence,
one can draw on the raw intuition developed for the ideal case,
and identify the component of unsystematic risks, the residual
error terms en(t, v), and the factors, factor loadings and scaling
constants, {wni, cni, lni} i51

sn , sn the number of factors, all
pertaining to the nth market. Furthermore, sn can be chosen
to be much smaller than the number of assets in the precise
sense that limn3` snyn 5 0, and the en’s satisfy the law of large
numbers in an approximate way. Space considerations force us
to defer a fuller elaboration of the asymptotic interpretation of
the model; we only present the asymptotic analogue of The-
orem 2 for illustrative purposes.

THEOREM 4. The following equivalence holds: There is a
sequence {Mn}n50` of portfolios, and a sequence {rn}n51` of real
numbers such that limn3` imnt 2 (rn 1 cov(xnt, Mn))i2 5 0 N
there is a sequence {tni} i50

sn of real numbers and a positive number
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B such that for all n $ 1, •i51
sn (t ni2 ylni4 ) # B and limn3` imn 2

(tn0 1 •i51
sn tnicni)i2 5 0.

Concluding Remarks

The concrete nature of the idealized limit model that we report
above allows us to explore conditions for the existence of
various important portfolios—risk-free, factor, mean, cost,
and mean-variance efficient—and to develop explicit formulas
for them. The hyperfinite model, besides being asymptotically
implementable, also exhibits a universality property in the sense
that the distributions of the individual random variables in the
ensemble of unsystematic risks may be allowed any variety of
distributions (18).
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