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Introduction
Endocytosis, a process characterized by the internalization of 

extracellular materials and membrane proteins via vesicular 

 intermediates, plays many roles in regulating cell–cell signaling 

pathways. In addition to the well-established role of attenuat-

ing signaling activity by clearing active receptor molecules 

from the cell surface, endocytosis has been proposed to facili-

tate signaling by transporting active receptor molecules to sites 

where downstream effectors are localized (Entchev et al., 2000; 

Dubois et al., 2001; Sorkin and Von Zastrow, 2002). A novel 

role of endocytosis has recently been proposed for the Notch 

signaling cascade, in which the internalization of the ligand fa-

cilitates activation of the receptor (Lai, 2004; Le Borgne et al., 

2005a), although the exact mechanism of this critical event 

 remains elusive.

The Notch pathway is a signaling module that is highly 

conserved in all metazoans and has been implicated in a variety 

of developmental processes (Artavanis-Tsakonas et al., 1999). 

How Notch transduces signals from the plasma membrane and 

affects gene regulation has been extensively analyzed in 

 Drosophila melanogaster, as well as several other model systems. 

It is now apparent that proteolytic processing of the Notch re-

ceptor is tightly associated with its ability to transduce signals 

(Chan and Jan, 1998; Artavanis-Tsakonas et al., 1999). Notch is 

fi rst cleaved during its transit through the biosynthetic pathway, 

thereby reaching the cell surface as a heterodimer of Notch 

 extracellular domain (NECD) and a membrane-tethered intra-

cellular domain (Blaumueller et al., 1997; Logeat et al., 1998). The 

binding of Notch to its ligand induces two additional cleavage 

events, releasing a signaling-competent Notch intracellular do-

main fragment from the plasma membrane (Kopan et al., 1996; 

Lecourtois and Schweisguth, 1998; Schroeter et al., 1998). 

Notch intracellular domain then translocates into the nucleus 

and regulates gene expression by acting as a transcriptional 

 coactivator (Jarriault et al., 1995; Struhl and Adachi, 1998).

Endocytosis appears to play a key role in regulating the 

activity of the Notch pathway. The importance of vesicular traf-

fi cking in Notch signaling was fi rst noticed when mutations in 

D. melanogaster dynamin, a GTPase required for the detach-

ment of vesicles from plasma membrane (Kosaka and Ikeda, 

1983; van der Bliek and Meyerowitz, 1991), was found to pro-

duce a Notch-like phenotype (Poodry, 1990). Clonal analysis sug-

gested that in Notch signaling, dynamin function is required in both 

signal-sending and signal-receiving cells (Seugnet et al., 1997), 
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suggesting that endocytosis impinges on the pathway at two 

 independent steps. Although the role of endocytosis in signal-

receiving cells is less clear, the internalization of ligand for the 

Notch receptor in the signal-sending cells appears to be a key 

event in activating the Notch cascade (Parks et al., 2000).

In D. melanogaster, there are two known Notch ligands, 

Delta (Dl) and Serrate (Ser), members of the Dl, Ser, and 

 Caenorhabditis elegans Lag-2 protein family (DSL). Both Dl and 

Ser appear to use an ubiquitin-mediated endocytic pathway to 

activate Notch receptors (Lai et al., 2005; Le Borgne et al., 

2005b; Pitsouli and Delidakis, 2005; Wang and Struhl, 2005). 

The covalent addition of ubiquitin to polypeptides, besides being 

a tag for proteasome-mediated protein degradation, can serve 

as a sorting signal for membrane protein internalization (Hicke 

and Riezman, 1996; Terrell et al., 1998). The ubiquitination of 

Dl and Ser for subsequent internalization is mediated by neural-
ized (neur) and mind bomb (mib1), which encode two structur-

ally unrelated E3 ubiquitin ligases (Lai et al., 2001; Pavlopoulos 

et al., 2001; Yeh et al., 2001; Itoh et al., 2003; Le Borgne and 

Schweisguth, 2003; Koo et al., 2005). Although Neur and dMib 

regulate distinct Notch-dependent processes, they appear to be 

interchangeable in mediating the ubiquitination and internaliza-

tion of the DSL ligand (Lai et al., 2005; Le Borgne et al., 2005b; 

Pitsouli and Delidakis, 2005; Wang and Struhl, 2005). Another 

critical component of this process is liquid facets (lqf), the 

D. melanogaster homologue of epsin (Cadavid et al., 2000). Lqf 
contains an ubiquitin-interacting motif (Polo et al., 2002; Shih 

et al., 2002), as well as motifs that bind to clathrin and other 

classes of adaptors (Bonifacino and Traub, 2003). Thus, it is 

thought that lqf functions as a cargo-specifi c clathrin adaptor, 

capable of recognizing and sequestering monoubiquitinated 

DSL ligand into clathrin-coated vesicles (CCVs; Overstreet et al., 

2003, 2004; Wang and Struhl, 2004), although an alternative 

function for epsin in nonclathrin endocytosis has been proposed 

(Chen and De Camilli, 2005; Sigismund et al., 2005).

Although a requirement of ligand endocytosis for Notch 

activation seems clear, the mechanism of how the internaliza-

tion of the DSL ligand in the signal-sending cells promotes the 

proteolytic processing of Notch in the neighboring signal-

 receiving cells remains poorly understood. One set of models 

proposed that the internalization of Notch bound DSL ligand 

could either clear NECD from the extracellular space or gener-

ate physical force to dissociate NECD from the membrane-

 tethered intracellular domain, allowing the subsequent cleavage 

processing to occur (Parks et al., 2000). Alternatively, it has 

been suggested that endocytosis is required to transport DSL li-

gand to subcellular compartments, where the ligand is rendered 

signaling competent before being recycled back to the cell sur-

face (Wang and Struhl, 2004; Emery et al., 2005). Because, at 

present, the analysis of the roles of DSL endocytosis in Notch 

signaling relies on those mutations disrupting the assembly of 

cargo-containing CCVs, it is diffi cult to distinguish whether it is 

the internalization by itself or the transit of Dl through specifi c 

endocytic compartments that is critical for Notch activation. 

To better understand the mechanism of this critical process, the 

effects of additional endocytic mutations in Notch signaling 

need to be assessed.

The clathrin coats of newly formed CCVs need to be dis-

sociated so the vesicles can fuse with target organelles and the 

released clathrin triskelions can be reutilized for subsequent 

rounds of endocytosis. D. melanogaster Hsc70, a constitutively 

expressed member of the Hsp70 chaperone family, has been 

 implicated in promoting the release of clathrin triskelions and 

other coat proteins from CCVs in vitro (Schlossman et al., 1984; 

Chappell et al., 1986; Ungewickell et al., 1995).

In addition to Hsc70, another important factor in the clath-

rin uncoating reaction is thought to be auxilin, which contains 

clathrin binding domains, as well as a J-domain (Ungewickell 

et al., 1995; Umeda et al., 2000). The J-domain, a conserved 

motif shared by members of the DnaJ protein family, can bind 

to Hsp70 family proteins and stimulate their low intrinsic 

ATPase activity (Ungewickell et al., 1995). Thus, auxilin is 

thought to function as a cofactor in the uncoating reaction by 

recruiting ATP bound Hsc70 proteins to CCVs (Ungewickell 

et al., 1995; Holstein et al., 1996). In support of this, inhibition 

of auxilin function in vivo using yeast mutants, RNAi, or injec-

tion of interfering peptides can disrupt clathrin function (Gall 

et al., 2000; Pishvaee et al., 2000; Greener et al., 2001). Recent 

biochemical analysis suggests that auxilin participates in other 

steps of the CCV cycle, in addition to clathrin coat disassembly 

(Newmyer et al., 2003). Still, it is unclear what the relevant 

 endocytic cargo of auxilin may be under physiological condi-

tions or whether auxilin has any role in regulating cell–cell sig-

naling in metazoan systems.

To further understand the roles of endocytosis in cell sig-

naling during animal development, we sought to generate loss-

of-function mutations in auxilin from an F2 complementation 

screen in D. melanogaster. From this screen, we isolated six 

loss-of-function mutations in auxilin. In support of previous 

biochemical data, we fi nd that auxilin interacts genetically with 

Hsc70 and clathrin. In addition, the location of the genetic le-

sion in one of our alleles suggests that the putative lipid binding 

tensin domain plays a role in regulating clathrin function. The 

auxilin mutations also interact specifi cally with Notch and dis-

rupt several Notch-mediated processes, suggesting that auxilin 

participates in an endocytic event critical for regulating the Notch 

cascade. Indeed, our analysis suggests that D. melanogaster 

auxilin is required for internalization of the Dl proteins that are 

critical for activating the Notch receptor.

Results
Isolation of loss-of-function mutations 
in D. melanogaster auxilin gene
The D. melanogaster genome contains a single auxilin homo-

logue (CG1107; hereafter referred to as dAux) located at the 

base of the third chromosome right arm (82A1). Conceptual 

translation of the dAux ORF reveals a polypeptide of 1,165 

amino acids, with an NH2-terminal kinase domain, followed by 

a tensin-related domain, a clathrin binding domain, and a 

COOH-terminal DnaJ domain (Fig. 1 A). The presence of this 

NH2-terminal kinase domain suggests that dAux is structurally 

more similar to the ubiquitously expressed cyclin G–associated 

kinase (Greener et al., 2000; Umeda et al., 2000) than the 
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 neuronal cell-specifi c bovine auxilin (Ungewickell et al., 1995). 

Indeed, as with cyclin G–associated kinase, dAux appears to 

be ubiquitously expressed throughout embryonic development, 

 although higher levels of dAux expression are detected in 

 embryonic Garland cell primordium and larval Garland cells 

(Tomancak et al., 2002).

To understand the role of auxilin under physiological con-

ditions, we set out to isolate loss-of-function mutations in dAux 

using an F2 noncomplementation screen with two deletions, 

Df(3R)ED5021 (81F6-82A5) and Df(3R)ED5092 (82A1-E7; 

FlyBase). Because of the cytological location of dAux, we rea-

soned that loss-of-function mutations in dAux should fail to 

complement Df(3R)ED5021 by lethality but complement 

Df(3R)ED5092 (Fig. 1 A). Using these criteria, we isolated one 

mutation in dAux from �1,600 chemically mutagenized third 

chromosomes. Sequencing analysis of this mutant revealed a 

single nucleotide change, which alters the Ile at position 670 to 

a Lys in the tensin-related domain (Fig. 1 A). Although isolated 

by lethality exhibited when placed over a deletion, homozygous 

dAuxI670K animals could survive until adulthood, suggesting that 

dAuxI670K is a partial loss-of-function allele. Furthermore, the 

emergence of homozygous mutant adults suggests that there are 

no other recessive lethal mutations on that chromosome.

Five additional dAux alleles were isolated by screening 

�4,000 ethyl methyl sulfonate–mutagenized chromosomes for 

noncomplementation with dAuxI1670K. Two of them, dAuxW328X 

and dAuxW1150X, have been characterized molecularly and con-

tain nonsense mutations at amino acids Trp328 and -1150, re-

spectively (Fig. 1 A). However, animals homozygous for these 

stronger mutations die before the larval stages, precluding the 

phenotypic analysis of the larval tissues.

Mutant adults homozygous for dAuxI670K exhibited several 

morphological defects, including rough eyes, extra bristles, 

missing wing veins, and male and female sterility. Although 

wild-type compound eyes displayed regular arrays of �800 

ommatidia (Fig. 1 B), the eyes of dAuxI670K mutants were grossly 

disorganized, with patches of brown necrotic tissues on the sur-

face (Fig. 1 C). This rough eye phenotype exhibited by homozy-

gous dAuxI670K mutants showed temperature dependence, as the 

eye roughness was signifi cantly milder for mutants raised at 

18°C (Fig. 1 E) than those grown at 25°C (Fig. 1 C). At a higher 

temperature, such as 29°C, the homozygous mutant state was 

completely lethal.

Although dAuxW328X and dAuxW1150X are lethal over 

dAuxI670K at 25°C, mutant animals of heteroallelic combinations 

for dAuxW328X/dAuxI670K and dAuxW1150X/dAuxI670K could occa-

sionally survive until adulthood when raised at 18°C. The eye 

phenotypes of these animals, although raised at 18°C, were 

more drastic than the eye roughness exhibited by dAuxI670K at 

25°C (Fig. 1 F), suggesting that the increase in the severity of 

eye defects correlates with the decrease in dAux activity.

To ensure that the mutation in the dAux gene was respon-

sible for this fully penetrant rough eye phenotype, we intro-

duced a wild-type copy of the dAux gene in dAuxI670K mutants 

using the upstream activating sequence (UAS)–GAL4 expres-

sion system (Brand and Perrimon, 1993). Expression of dAux 

using the Act5C-GAL4 driver completely rescued the rough eye 

phenotype of dAuxI670K (Fig. 1 D).

In addition to rough eyes, homozygous dAuxI670K mutants 

contained supernumerary vibrissae (Fig. 1, compare G and H) 

and, frequently, extra anterior sternopleural bristles. Occasion-

ally, extra bristles were also detected on the notum or scutellum 

of mutant animals. Furthermore, at a low frequency, some mu-

tant animals had wings with incompletely formed posterior 

crossveins, and absent wing vein material at the posterior wing 

vein margin (unpublished data). Similar to the rough eye pheno-

type, the penetrance and the severity of these phenotypes 

are more pronounced in mutant animals heteroallelic for 

dAuxW328X/dAuxI670K and dAuxW1150X/dAuxI670K raised at 18°C (Fig. 1, 

compare I and J). Interestingly, each of the adult phenotypes 

Figure 1. Hypomorphic dAux mutations cause a rough eye. (A) A sche-
matic diagram of the dAux locus. The regions removed by the two dele-
tions are indicated in red. The exons of dAux transcript are indicated 
by green boxes. (B–F) Scanning electron micrographs of the adult eyes 
of wild-type (B), dAuxI670K/dAuxI670K (C), UAS-dAux; Act5C-GAL4/+; 
dAuxI670K/dAuxI670K (D), dAuxI670K/dAuxI670K grown at 18°C (E), and 
dAuxI670K/dAuxW328X grown at 18°C (F). Bar, 100 μm. (G–H) Scanning 
electron micrographs of the adult heads of wild type (G) and dAuxI670K/
dAuxI670K (H). The vibrissae bristles are indicated by arrows. (I and J) 
Whole mount wings of wild type (I) and dAuxI670K/dAuxW328X grown at 
18°C (J). The missing wing margins and the extra vein material are indi-
cated by black and white arrowheads, respectively. The Dl-like vein junc-
tion is indicated by an asterisk. Bar, 200 μm.
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 observed in dAuxI670K mutants resembled Notch phenotypes, 

suggesting a link between the role of dAux in endocytosis and 

Notch signaling.

dAux interacts with clathrin and Hsc70 in vivo
Because auxilin has been implicated in Hsc70-mediated disas-

sembly of the CCVs in vitro, we asked whether this dAuxI670K 

interacts with clathrin and Hsc70 in vivo. We expressed a 

dominant-negative form of Hsc70-4 (Elefant and Palter, 1999) 

in the eye using the GMR-GAL4 driver (Hay et al., 1994). 

 Expression of this ATP hydrolysis-defective Hsc70-4 caused a 

rough eye (Fig. 2 A), presumably the result of defective endo-

cytosis on developmental signaling pathways. Mutating one 

copy of the dAux gene with dAuxI670K intensifi ed the rough eye 

phenotype, indicating genetic interaction of dAux and Hsc70 

in vivo (Fig. 2 B).

To test whether dAux interacts with clathrin, we expressed 

the clathrin light chain (Clc) fused to GFP (Clc-GFP; Chang 

et al., 2002) using Act5C-GAL4 in a dAux homozygous back-

ground. Although expression of Clc under the control of Act5C-
GAL4 had no detectable effect on eye development or viability 

in wild-type animals, the expression of Clc-GFP greatly re-

duced the viability of dAux mutants. In rare escapers, the eyes 

of Act5C-GAL4, UAS-Clc-GFP/+; dAuxI670K/dAuxI670K were 

rougher, and there was dramatic enhancement of the wing 

 phenotypes, including severe notching, wing vein thickening, 

and ectopic vein formation (Fig. 2, compare C and D). Together, 

these data indicated that dAuxI670K interacts genetically with 

Hsc70 and clathrin in vivo.

To understand the role of dAux in vesicular traffi cking, 

we examined the subcellular localization of dAux proteins, 

using a fl uorescently tagged dAux fusion (UAS-dAux-mRFP). 

Both dAux-mRFP and Clc-GFP were expressed in larval Gar-

land cells using Act5c-GAL4. Although intense vesicular Clc 

staining was seen around the cell periphery, the vesicular 

dAux-mRFP appeared more centrally localized and showed 

little overlap with Clc (Fig. 2, E–G). Interestingly, although 

dAuxI670K interacts with the Clc in vivo, no apparent difference 

in Clc-GFP pattern was detected between wild type and 

 homozygous mutant Garland cells by confocal microscopy 

(unpublished data).

dAux is required for the proper 
specifi cation of photoreceptor cell fate
To further understand the roles of dAux during development, we 

investigated the cause of the rough eye phenotype by tangential 

sectioning of the adult retina. In wild-type eyes, rhabdomeres of 

the eight photoreceptors are organized in a stereotypical manner 

in lattices of ommatidia (Fig. 3 A). In contrast, sections of 

dAuxI670K mutant retina showed that regular arrays of ommatidia 

were disrupted. Furthermore, supernumerary photoreceptor 

cells were detected in 39.67% (n = 510) of dAuxI670K mutant 

clusters (Fig. 3 B). The identities of these extra photoreceptors 

could be either outer (cells with large rhabdomeres; 21.42%) or 

inner (cells with small rhabdomeres; 18.25%), suggesting that 

dAuxI670K is not affecting the determination of a particular 

 photoreceptor cell fate.

To understand the origin of these extra photoreceptors, we 

stained eye imaginal discs, the monolayer epithelia that give 

rise to adult eyes, with αElav antibody, which labels the nuclei 

of neuronal photoreceptor cells (Robinow and White, 1988). 

Organized clusters of eight normal Elav-positive cells were seen 

in wild-type eye discs (Fig. 3 C, inset). In contrast, Elav- positive 

cell clusters were clearly disorganized in dAuxI670K tissues, and 

there were supernumerary Elav-positive cells in some of the 

clusters (Fig. 3 D, inset). These data suggest that the extra 

 photoreceptor cells in adult retina were the result of a disruption 

in photoreceptor recruitment caused by dAuxI670K.

To be sure that this defect in photoreceptor recruitment 

results from a decrease in dAux function, we examined the 

number of Elav-positive cells in eye discs isolated from mutants 

raised at 25°C but heteroallelic for dAuxW328X/dAuxI670K. The 

number of Elav-positive cells appeared to increase in eye discs 

mutant for stronger dAux alleles (Fig. S1, available at http://

www.jcb.org/cgi/content/full/jcb.200602054/DC1), suggesting 

that dAux activity is critical in controlling formation of the 

proper number of photoreceptor cells.

To analyze this disruption in the organization of omma-

tidia arrays, we stained the eye discs with αBoss antibody,  

which specifi cally labels the apical surfaces of the R8 cells, the 

fi rst photoreceptor specifi ed in each cluster. Although the Boss 

staining is evenly spaced in wild-type eye discs (Fig. 3 E), the 

spacing between Boss-positive cells in dAuxI670K mutant discs 

varied greatly, and clusters with multiple Boss-positive cells 

were occasionally detected (Fig. 3 F, inset). This periodic 

Figure 2. dAuxI670K interacts genetically with Hsc70 and clathrin. (A and B) 
Scanning electron micrographs of the adult eyes of UAS-Hsc70-4K71S/+; 
GMR-GAL4/+ (A) and UAS-Hsc70-4K71S/+; GMR-GAL4/dAuxI670K (B). 
Bar, 100 μm. (C and D) Adult wings of dAuxI670K/dAuxI670K(C) and Act5C-
GAL4, UAS-Clc-GFP/+; dAuxI670K/dAuxI670K (D). Bar, 200 μm. (E–G) Con-
focal micrographs of Act5C-GAL4, UAS-Clc-GFP/UAS-dAux-mRFP larval 
Garland cells. The optical section of the adjacent cells shows a tangential 
view of the cell on the left and a cross-section of the cell on the right. 
(G) The subcellular localizations of dAux (E) and Clc (F) are indicated in 
red and green, respectively. n, nucleus. Bar, 5 μm.
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 spacing of R8s is thought to require Notch-mediated lateral in-

hibition (Baker, 2002), and the phenotype exhibited by dAuxI670K 

suggests a disruption in this process.

dAux is required for the proper 
patterning of neural tissues during 
embryonic development
The Notch signaling cascade participates in the formation of 

neuronal tissues during embryonic development. To determine 

whether dAux has a role in the specifi cation of neuronal cell 

fate during embryogenesis, we inhibited dAux function using 

dsRNA injection and stained the injected embryos with αElav 

antibodies. 73% of embryos injected with dAux dsRNA exhib-

ited a strong neurogenic phenotype, with transformation of 

nearly all epidermis to neural tissues (Fig. 4 B). In contrast, in-

jection of buffer (Fig. 4 A) or GFP dsRNA (not depicted) did 

not affect neural patterning, suggesting that the phenotype of 

embryos injected with dAux dsRNA was specifi c. A quantitative 

summary of the phenotypes exhibited by injected embryos is 

tabulated in Fig. 4 C. This RNAi data, along with other dAux 

phenotypes, suggests that dAux acts in the general regulation of 

neuronal development.

To determine whether the formation of embryonic neural 

tissues depends on the zygotic or the maternal dAux transcripts, 

embryos derived from the mating of dAuxI670K homozygous 

 mutant females with wild-type males were stained with αElav 

antibodies. Elav staining of embryos derived from wild-type 

Figure 3. dAuxI670K causes the formation of supernumerary photorecep-
tor cells. (A and B) Tangential section of adult retina of wild type (A) and 
dAuxI670K/dAuxI670K (B). Bar, 10 μm. (C and D) Eye imaginal discs of wild 
type (C) and dAuxI670K/dAuxI670K (D) stained with α-Elav antibodies (green) 
and phalloidin (red). The boxed regions are shown in the insets without 
Elav staining to highlight the number of cells in a cluster. Bar, 10 μm. 
(E and F) Eye imaginal discs of wild type (E) and dAuxI670K/dAuxI670K 
(F) stained with α-Boss antibodies (green) and phalloidin (red). A single 
cluster is shown in the inset at a higher magnifi cation. Bar, 15 μm.

Figure 4. dAux is required for neural development during embryogenesis. 
(A and B) Elav staining of stage 15 embryos injected with buffer (A) or 
dAux dsRNA (B). Anterior is oriented toward the left, and dorsal is upward. 
Bar, 200 μm. (C) Classifi cation of neural development in injected embryos. 
Wild-type embryos injected with buffer, GFP dsRNA, or dAux dsRNA were 
aged to stage 15 and immunostained with α-Elav antibody to reveal their 
neural development. Embryos were designated as members of one of four 
classes: normal, mild, moderate, and strong. Normal class embryos exhib-
ited wild-type Elav staining, with highly organized nervous tissues. The lat-
ter three classes refer to the degree of neural hypertrophy (neurogenic 
phenotype) observed. Mild embryos exhibited slight excess in numbers of 
neurons in the peripheral or central nervous system but overall were similar 
to wild type. The moderate class is composed of embryos with more signifi -
cant excess in neuropositive cells but with distinction maintained between 
chordotonal and sensory neurons, and the amount of epidermal tissue was 
reduced moderately. In the strong class, embryos exhibited a nearly com-
plete transformation of epidermis into neuropositive cells, a neurogenic 
phenotype characteristic of Notch signaling mutants. In some embryos, 
morphological defects were observed as well. However, only the degree 
of Elav staining is reported in this table. (D–G) Lateral (D and E) and ventral 
(F and G) views of stage 13 embryos immunostained with α-Elav antibody. 
Wild-type (D and F) and an embryo maternally defi cient but zygotically 
heterozygous for dAuxI670K (E and G).
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parents revealed highly organized central and peripheral ner-

vous systems with characteristic numbers of neuropositive cells 

(Fig. 4, D and F). In contrast, embryos maternally defi cient but 

zygotically heterozygous for dAux showed mild hypertrophy in 

the ventral nerve cord, disorganization and slight reduction in 

the peripheral nervous system, and abnormal body morphology 

(Fig. 4, E and G). This suggests that the maternal dAux contri-

bution plays a critical role in embryonic patterning of neural 

tissues and may explain the apparent female sterility associated 

with dAuxI670K mutant adults.

dAux exhibits specifi c genetic interactions 
with Notch
The dAuxI670K phenotypes of supernumerary photoreceptors, 

bristles, and embryonic neuronal cells are all reminiscent of 

those exhibited by mutants defi cient in Notch signaling. To test 

for dAux participation in Notch pathway regulation, we asked 

whether the dAux mutations interact with mutant alleles of 

Notch. 36.36% (n = 44) of heterozygous N264-39, a null allele of 

Notch, exhibits a haploinsuffi cient phenotype of wing “notching” 

at the posterior margins (Fig. 5 A). Mutating one copy of dAux, 

by dAuxI670K, increased the severity of both the penetrance 

(100%; n = 36) and the phenotype (Fig. 5 B), indicating that 

dAux interacts genetically with Notch. In support of the notion 

that dAuxI670K represents a loss-of-function allele, a similar in-

crease in the penetrance and the severity of the phenotype was 

seen with other alleles of dAux, as well as the deletion that 

 removes the entire dAux locus.

In addition to wing development, Notch is involved in 

many developmental decisions during retina formation, and 

overexpression of a full-length Notch (Go et al., 1998), using 

the GMR-GAL4 driver, causes a rough eye (Fig. 5 C), presum-

ably disrupting some of these Notch-dependent processes. 

 Although animals heterozygous for dAuxI670K are normal, dis-

ruption of one copy of the dAux gene strongly reduced the eye 

size and worsened the rough eye of UAS-Notch; GMR-GAL4 

(Fig. 5 D), suggesting that dAux has a role in regulating the 

Notch-mediated signaling pathway.

To test the specifi city of this interaction, we overexpressed 

a full-length EGF receptor (EGFR) under the control of GMR-
GAL4. EGF signaling is involved in the differentiation of all cell 

types during retina development (Freeman, 1996), and as for 

Notch, overexpression of EGFR with GMR-GAL4 causes a 

rough eye (Fig. 5 E). However, mutating one copy of the dAux 

gene by dAuxI670K had no effect on the rough eye phenotype 

caused by UAS-egfr; GMR-GAL4 (Fig. 5 F). This suggests that 

dAux does not participate in all signaling pathways required for 

eye development but that it may specifi cally regulate signaling 

activity of the Notch cascade.

dAux acts upstream of a constitutively 
activated Notch in the signal-sending cells
To ask which cells require functional dAux for activation of the 

Notch pathway, we performed mosaic analysis in the adult retina. 

We reasoned that if dAux is required in the signal-sending cells, 

mutant clusters near the border of the clone would be less af-

fected than those near the center of the clone because they can re-

ceive signals from the nearby wild-type cells. On the other hand, 

if dAux is required in the signal-receiving cells, mutant clusters 

should exhibit defects regardless of their location in the clone. 

Because of the proximity of dAux to the centromere, mitotic 

clones of dAuxI670K, marked by the absence of the white gene, 

were generated by γ-ray irradiation. Tangential sections through 

these clones showed that, consistent with the homozygous mutant 

eyes, some mutant clusters contained supernumerary R-cells. 

Mutant clusters near the border of the clone were mostly wild 

type, whereas the mutant clusters in the center of the clones ex-

hibited a stronger mutant phenotype (Fig. 6 A). Thus, it appears 

that dAux acts noncell autonomously in Notch activation.

To position the function of dAux in the Notch pathway, we 

performed epistasis tests using dAuxI670K and a truncated form of 

Notch, which mimics the signal-competent Notch fragment after 

proteolytic cleavage (Go et al., 1998; Matsuno et al., 2002). 

 Consistent with its role in lateral inhibition, expression of this 

 activated form of Notch in the eye discs using the GMR-GAL4 

driver greatly reduced the number of Elav-positive cells, indicat-

ing a strong inhibition of photoreceptor recruitment (Fig. 6 C). In 

contrast, there were excessive Elav-positive cells in homozygous 

dAuxI670K eye discs (Fig. 6 D). However, in mutant eye discs that 

also expressed the activated form of Notch, the number of Elav-

positive cells was reduced (Fig. 6 E), indicating that activated 

Notch is epistatic to dAux. This suggests that dAux acts upstream 

of the generation of this signal-competent fragment of Notch.

dAux1670k causes an increase of Dl proteins 
near cell periphery
Recent evidence indicates that internalization of the DSL ligand 

may play a critical role in regulating Notch activity. Because our 

Figure 5. dAuxI670K interacts specifi cally with Notch. Adult wings of 
N264-39/+ (A) and N264-39/+; dAuxI670K/+ (B). Bar, 200 μm. Scanning 
electron micrographs of the adult eyes of UAS-N/+; GMR-GAL4/+ (C), 
UAS-N/+; GMR-GAL4, dAuxI670K/+ (D), UAS-egfr/+; GMR-GAL4/+ (E), 
and UAS-egfr/+; GMR-GAL4, dAuxI670K/+ (F). Bar, 100 μm.
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data suggest that dAux acts noncell autonomously and upstream 

of activated Notch in Notch signaling, we suspected that Dl 

 endocytosis could be regulated by dAux. To investigate whether 

the traffi cking of Dl proteins is disrupted, eye discs from wild-

type, homozygous dAuxI670K, and dAuxW328X/dAuxI670K mutant 

animals were dissected and stained with antibody raised against 

the extracellular domain of Dl.

In wild-type eye discs, evenly spaced Dl staining was 

fi rst seen in cells that are recruited to form photoreceptor 

clusters behind the morphogenetic furrow (Fig. 7, A and D). 

The Dl staining in these cells appeared to overlap with corti-

cal phalloidin (not depicted), suggesting that most Dl protein 

initially localized at or proximal to the plasma membrane. 

In more mature clusters located in the posterior region of the 

eye disc, the Dl staining became more vesicular. These Dl-

positive structures showed little or no colocalization with the 

Clc, Rab11, or Grasp65, which are markers for clathrin-coated 

structures, recycling endosomes, and Golgi, respectively, but 

overlapped moderately with Rab5 and extensively with Rab7, 

suggesting that most of the internalized Dl proteins are in 

the early and late endosomes (unpublished data). To ensure 

that our determination of Dl subcellular localization was not 

infl uenced by fi xatives or histological techniques, we gener-

ated UAS-Dl-mRFP, a functional Dl chimera with an mRFP 

(Campbell et al., 2002) fused to the intracellular COOH ter-

minus of the Notch ligand, placed under the control of UAS 

regulatory element (Brand and Perrimon, 1993). As with the 

antibody staining of endogenous Dl, Dl-mRFP in live eye 

discs also appeared vesicular and exhibited overlap with Rab5 

and -7 endosomal markers (Fig. S2, available at http://www.

jcb.org/cgi/content/full/jcb.200602054/DC1).

In dAuxI670K homozygous mutant eye discs, Dl staining 

appeared more excessive and disorganized in cells behind the 

furrow, refl ecting the defects in photoreceptor specifi cation 

(Fig. 7, B and E). Although Dl- and Rab7-positive vesicular 

structures could still be detected in mature clusters in the more 

posterior region of the mutant eye discs (not depicted), there 

appeared to be an increase in the peripheral staining of Dl in 

the fi rst few rows of cells immediately posterior to the furrow 

(Fig. 7, B and E). This suggests that Dl internalization in these 

cells, where Notch signaling is thought to participate in the 

proper spacing of photoreceptor cell clusters, was disrupted. 

The dAuxW328X/dAuxI670K eye discs showed even more severe dis-

ruption of Dl localization, with excessive, peripheral Dl stain-

ing extended from the region behind the furrow to the posterior 

edge of the disc, consistent with a greater decrease in dAux 

 activity in heteroallelic animals (Fig. 7, C and F).

The apparent increase in Dl staining in the dAuxI670K mu-

tants could result from either a block in Dl internalization and 

degradation or an increase in Dl gene expression. Because an 

increase in Dl expression in larval eye discs mutant for lqf was 

previously reported (Wang and Struhl, 2004), it seemed likely 

that the level of Dl expression would be affected in dAux mutant 

cells. To determine if this was the case, we monitored the tran-

scriptional activities of the endogenous Dl promoter by measur-

ing the β-gal activities from a Dl enhancer trap line (Fanto and 

Mlodzik, 1999). Unlike lqf, we did not observe a signifi cant 

 increase in β-gal activity in dAuxI670K eye discs (unpublished 

data), suggesting that the apparent increase in Dl staining was 

not due to elevated Dl transcription.

Figure 6. dAux functions upstream of Notch. 
(A) A tangential section of a dAux mutant 
clone in adult retina. The boundary of the 
clone is delineated by a dashed line. Genotyp-
ically mutant but phenotypically wild-type clus-
ters are indicated by white asterisks, and 
genotypically and phenotypically mutant clus-
ters are indicated by black asterisks. Bar, 10 μm. 
(B–E) Confocal micrographs of eye discs 
stained with α-Elav antibodies (red). (B) GMR-
GAL4/+; (C) UAS-NAct/+; GMR-GAL4/+; 
(D) GMR-GAL4/+; dAuxI670K/dAuxI670K; and 
(E) UAS-NAct/+; GMR-GAL4, dAuxI670K/
dAuxI670K. Bar, 15 μm.

Figure 7. Dl endocytosis is disrupted in dAux mutant eye discs. Confocal 
micrographs of third instar larval eye discs immunostained with Dl anti-
body at low (A–C) and high magnifi cation (E–F). (A and D) Wild-type 
dAuxI670K/dAuxI670K (B and E) and dAuxW328X/dAuxI670K (C and F). The 
cells immediately posterior to the morphogenetic furrows are shown in the 
higher magnifi cation images. The location of the morphogenetic furrow is 
indicated by the arrows. Images are the projections of 4 (low magnifi ca-
tion) or 10 optical sections (high magnifi cation). Bar, 100 μm.
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Discussion

To understand the physiological roles of J-domain–containing 

proteins during metazoan development, we isolated and charac-

terized mutants in D. melanogaster auxilin. In support of its 

well-known biochemical role in Hsc70-mediated disassembly 

of CCVs, we showed that this dAuxI670K mutation interacts ge-

netically with Hsc70-4 and the Clc. The in vivo link between 

auxilin and Hsc70 is further strengthened by the observation 

that a nonsense mutation (dAuxW1150X) near the very COOH ter-

minus, where the J-domain is located, can strongly disrupt dAux 

function. These genetic observations are in agreement with in 

vivo analyses of auxilin function from other systems, which 

showed that clathrin function was disrupted in auxilin-defi cient 

cells (Gall et al., 2000; Greener et al., 2001; Morgan et al., 

2001). In addition, our genetic data of dAuxI670K suggest a rele-

vance of the tensin-related domain, a putative lipid binding do-

main, in clathrin-mediated endocytosis, despite the fact that it 

does not appear to be required for catalyzing the dissociation of 

clathrin triskelions from CCVs in vitro (Holstein et al., 1996; 

Newmyer et al., 2003).

It has been suggested that, in addition to disassembling 

clathrin coats, auxilin participates in the dynamin-mediated 

constriction during CCV formation (Newmyer et al., 2003). 

However, our subcellular localization analysis did not reveal 

dAux proteins colocalizing with clathrin at the cell periphery. 

Instead, most auxilin proteins appear to be associated with in-

tracellular structures, in regions devoid of clathrin staining. This 

lack of overlap between dAux and Clc seems more consistent 

with the notion that auxilin is required for the dissociation of 

clathrin coats from CCVs under physiological conditions.

Our analysis of dAux clearly suggests that auxilin plays 

an important role in the Notch cascade in multiple Notch-

 dependent processes. Supportive evidence comes from the strong 

genetic interactions between dAux and Notch and the pheno-

typic similarities ranging from eye and wing development to 

neural development during embryogenesis. Moreover, the in 

vivo function of auxilin in the Notch signaling cascade seems 

specifi c, as dAuxI670K has no dominant effect on the phenotype 

caused by the overexpression of EGFR. Together, these obser-

vations argue that dAux acts specifi cally as a general compo-

nent in the Notch cascade.

Analysis from several groups has suggested that ligand 

internalization is a key event for Notch activation. The neuro-

genic phenotypes exhibited by dAuxI670K tissues and other ge-

netic data further support this notion. The distribution of 

phenotypically mutant clusters in a genotypically mutant clone 

suggests that dAux acts noncell autonomously. In addition, the 

epistasis analysis places dAux function upstream of an activated 

form of Notch. Based on the phenotypic resemblance of dAuxI670K 

to those reported for neur (Lai et al., 2001; Pavlopoulos et al., 

2001) and lqf (Overstreet et al., 2003), we suspect that dAux 

functions along with neur and lqf in the ubiquitin-dependent 

endocytic pathway in the signal-sending cells.

The identifi cation of dAux as a critical factor in Notch 

 ligand endocytosis has strong implications on the mechanism 

of Notch activation. Unlike neur and lqf, which are postulated 

to tag and sequester cargos into vesicles, auxilin is thought be 

involved in disassembly of clathrin coats. Thus, the revelation of 

dAux as another component in this pathway suggests that Dl-

containing endocytic vesicles need to proceed past the clathrin 

uncoating step to activate Notch. One possible mechanism is that 

recycling of Dl is a prerequisite to form signaling-competent 

Dl-containing exosomes (Mishra-Gorur et al., 2002), although 

the presence of these structures under physiological conditions 

remains to be demonstrated. Alternatively, it may be that, as 

previously proposed, the DSL ligand is not signaling competent 

before endocytosis but is “activated” during transit through 

 recycling compartments. Indeed, the transit through Rab11-

positive recycling endosomes has been suggested as a critical 

step for Dl activity (Emery et al., 2005). However, although Dl 

appears to colocalize extensively with coalesced perinuclear 

Rab11-positive structures in the sensory organ precursor cells 

(Emery et al., 2005), our analysis found little spatial overlap be-

tween Rab11 and Dl in cells near the furrow. One possible ex-

planation for this apparent difference is that the transit of Dl 

through Rab11-positive structures in the eye disc cells occurs 

more transiently, therefore evading detection by immunostain-

ing at a steady state.

Another explanation for the relevance of ligand endo-

cytosis hypothesizes that Dl internalization causes a mechanical 

stress on the Notch receptors, which then induces subsequent 

cleavages. A variation of this model proposes that the objective 

of Dl internalization is to remove the NECD fragment from the 

intercellular space so proteolytic processing can occur. If auxi-

lin is solely involved in clathrin-coat disassembly, it will be dif-

fi cult to reconcile our data with these two models because the 

internalization of Dl into CCVs, the presumed force-generating 

event, should have already been completed in dAux mutants.

Materials and methods
Fly genetics
All fl y crosses were performed at 25°C in standard laboratory conditions 
unless otherwise specifi ed. To screen for loss-of-function dAux alleles, 
w; iso 2; 3 males were mutagenized with 25 mM ethyl methane sulfonate 
(Sigma-Aldrich) and mass mated with w/w; TM3, Sb/TM6B, Hu virgins. 
Progeny were then individually mated with Df(3R) ED5021/TM3, Sb fl ies, 
and those that failed to complement the deletion were recovered and main-
tained over TM6B or TM3 balancers. Using these criteria, 11 lines were 
isolated from �1,600 crosses. They were then mated with Df(3R)ED5092/
TM3, Sb fl ies, and those that complemented were characterized further. 
Of the 11 lines, 3 complemented Df(3R)ED5092.

For the genetic interaction and epistasis analysis, UAS-Hsc70-4K71S 
(Elefant and Palter, 1999), UAS-Clc-EGFP (Chang et al., 2002), UAS-
Notch, UAS-NAct (Go et al., 1998), UAS-egfr (Freeman, 1996), N264-39, 
GMR-GAL4, and Act5C-GAL4 were used. To label subcellular structures, 
UAS-GFP-Rab5 (Wucherpfennig et al., 2003), UAS-GFP-Rab7 (Entchev 
et al., 2000), UAS-GFP-Rab11 (this study), UAS-dGrasp65-GFP (this study), 
and UAS-Clc-EGFP (Chang et al., 2002) were used.

For mosaic analysis, w; P[SUPor-P]KG08740/TM3 fl ies were mated 
with w/w; dAuxI670K/TM6B. First instar larvae were then irradiated with a 
1,000 rad γ-ray (Gammacell 220), and fl ies containing mosaic clones 
were identifi ed by the presence of w− patches on the adult retina.

Histology and immunohistochemistry
Immunostaining of eye discs and tangential sections of adult retina were 
performed according to Wolff (2000). Embryos were aged to stage 15 af-
ter injection and fi xed as described previously (Kennerdell and Carthew, 
1998). Rat α-Elav 7E8A10 (Developmental Studies Hybridoma Bank), mouse 
α-Boss, and mouse α-Dl C594.9B (Developmental Studies Hybridoma Bank) 
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were used at 1:100, 1:3,000, and 1:100 dilutions, respectively. Alexa 
Fluor 568 phalloidin (Invitrogen) and fl uorescently conjugated secondary 
antibodies were used according to the manufacturer’s instructions. Fluores-
cently labeled samples were mounted in V E C T A S H I E L D  Mounting Medium 
(Vector Laboratories). Light micrographs and fl uorescent images were ac-
quired at 25°C with 20× (0.5) and 40× (0.75) lenses on a microscope 
(BX61; Olympus) equipped with a camera (DP70; Olympus) and DP 
 Manager software. All confocal microscopy images were acquired at 
25°C with 20× (0.5) and 60× (1.25) lenses using a confocal microscope 
(OPTIPHOT-2 [Nikon]; MRC1024 system [Bio-Rad Laboratories]) and 
 LaserSharp 3.0 software (Bio-Rad Laboratories). Images were 3D recon-
structed in Volocity (Improvision) and then processed in Photoshop (Adobe) 
to adjust γ levels and image size.

Adult wings were dissected and mounted in Gary’s magic mountant. 
Scanning electron microscopy was performed as previously described with 
a scanning electron microscope (JSM-840 [JEOL]; Wolff, 2000).

Molecular biology
To construct UAS-dAux, an EcoRI–XhoI fragment containing the entire 
 auxilin (CG1107) ORF was excised from GH26574 (Research Genetics) 
and subcloned into pUAST. To construct UAS-dAux-mRFP, a 0.7-kb COOH-
 terminal portion (containing the internal SpeI site) of dAux was PCR amplifi ed 
and cloned into pHFK-mRFP-KB as an EcoRI–XhoI fragment. After sequenc-
ing verifi cation, the NH2-terminal half was inserted as a 2.9-kb EcoRI–SpeI 
fragment, and the entire dAux fusion was then subcloned as an EcoRI–NotI 
fragment into pUAST. To construct UAS-Dl-mRFP, PCR-amplifi ed mRFP was 
fused the to the COOH terminus of Dl (pBS-Dl, DGRC) as an NdeI–HindIII 
fragment, and the resulting Dl-mRFP was cloned into pUAST an EcoRI–XhoI 
fragment. To construct UAS-GFP-Rab11, Rab11 coding sequence was 
 amplifi ed by PCR and subcloned as a ClaI–BamHI fragment into the 
COOH terminus of GFP in pHFK-GFP-RC. To construct UAS-dGrasp65-GFP, 
dGrasp65 coding sequence was amplifi ed by PCR and subcloned as an 
EcoRI–KpnI fragment into the NH2 terminus of GFP in pHFK-GFP-KB. The re-
sulting GFP-Rab11 and dGrasp65-GFP fusions were verifi ed by sequenc-
ing and subcloned as NotI fragments into pUAST, respectively. Transgenic 
fl ies carrying these constructs were generated by P-element–mediated 
transformation as previously described (Rubin and Spradling, 1982).

dsRNA synthesis and RNAi injections
Synthesis of dsRNA was done according to Kennerdell and Carthew 
(1998). PCR primers bearing T7 promoter sequence at the 5′ ends were 
used to amplify 610- and 599-bp fragments of auxilin (5′-T C G A G T C G-
A C G T A C A A G A C G -3′ and 5′-G C C T G A T A C A A C C G C A T T T T -3′) and GFP 
(5′-G T C A G T G G A G A G G G T G A A G G -3′ and 5′-C C C A G C A G C T G T T A C A-
A A C T C -3′) coding sequence, respectively. In vitro transcription of the PCR 
fragments produced dsRNAs, which were then prepared as 5-μM aliquots 
for injection as described previously (Kennerdell and Carthew, 1998). 
RNAi injections into w1118 embryos were done as previously described 
(Kennerdell and Carthew, 1998).

Online supplemental material
Fig. S1 shows that the severity of photoreceptor recruitment defects cor-
relates with the decrease in dAux function. Fig. S2 shows that Dl proteins 
are localized in Rab5- or Rab7-positive vesicular structures in wild-type 
eye discs. Online supplemental material is available at http://www.jcb.
org/cgi/content/full/jcb.200602054/DC1.
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