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Introduction
The Pumilio-Fem-3 binding factor (PUF) proteins are defi ned 

by the presence of a Pumilio (PUM-HD) domain. This domain 

is crucial for PUF protein function and has the capacity to bind 

to the 3′ untranslated region (UTR) of mRNAs and to regulate 

transcript  localization, translation, and/or decay (Zamore et al., 

1997; Wickens et al., 2002). PUF proteins are found in eukary-

otic cells, from yeast to humans. In Drosophila melanogaster, 

the PUMILIO protein binds to hunchback mRNA, to repress 

its translation at the posterior pole during early embryogen-

esis (Wreden et al., 1997). In Caenorhabditis elegans, PUF 

proteins regulate the switch from spermatogenesis to oogen-

esis through effects on fem-3 translation (Zhang et al., 1997), 

and germ line stem cell propagation through effects on gld-1 

expression (Crittenden et al., 2002). Recent studies indicate 

that the PUF proteins of Saccharomyces cerevisiae are com-

ponents of “posttranscriptional operons,” punctate, cytoplas-

mic structures that interact with RNAs encoding proteins that 

localize to the same subcellular location, are part of the same 

protein complex, or act in the same cellular pathway (Gerber 

et al., 2004).

Our recent studies support an unexpected role for Jsn1p/

Puf1p in mitochondrial motility and inheritance in budding 

yeast. During cell division, equal segregation of mitochondria 

between the mother cell and bud occurs by regulated, region-

specifi c mobilization and immobilization of the organelle. That 

is, mitochondria are actively transported to the opposite poles 

of the yeast cell, i.e., the bud tip and mother cell tip. During 

poleward movement, mitochondria exhibit linear movement 

 either in the anterograde direction, toward the bud tip, or in the 

retrograde direction, toward the mother cell tip. Thereafter, 

they are retained at the poles until the end of the cell division 

cycle (for review see Boldogh et al., 2005). The poleward 

movement of mitochondria during inheritance occurs using 

 actin cables, bundles of F-actin that align along the mother-bud 

axis and serve as tracks for movement (Simon et al., 1997; 

 Fehrenbacher et al., 2004; Pruyne et al., 2004). Binding of 

 mitochondria to F-actin in vitro and association of mitochon-

dria with actin cables during poleward movement and inheritance 

in vivo require the mitochore, an integral mitochondrial mem-

brane protein complex consisting of the proteins Mmm1p, 
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Mdm10p, and Mdm12p (Boldogh et al., 1998, 2003; Fehrenbacher 

et al., 2004).

Our studies support a role for Jsn1p/Puf1p in recruiting 

the Arp2/3 complex to mitochondria, for force generation dur-

ing anterograde movement along actin cables. In budding yeast, 

the Arp2/3 complex localizes to endosomes (Moreau et al., 

1996; Huckaba et al., 2004) and mitochondria (Boldogh et al., 

2001, 2005), where it stimulates actin nucleation and generates 

force for intracellular movement. Mitochondria-associated Arp2/3 

complex is required for normal mitochondrial morphology and 

for anterograde, but not retrograde, movement of the organelle 

during inheritance (Boldogh et al., 2001; Fehrenbacher et al., 

2004). Jsn1p/Puf1p localizes to the cytoplasmic face of the mito-

chondrial outer membrane and interacts with mitochondria-

associated Arp2/3 complex. Moreover, deletion of JSN1 results 

in a decreased association of Arp2/3 complex with mitochon-

dria, defects in mitochondrial morphology, and reduced levels 

of anterograde, but not retrograde, mitochondrial movement 

(Fehrenbacher et al., 2005). Together, these studies support 

the model that Jsn1p contributes to recruiting the Arp2/3 com-

plex to mitochondria in budding yeast. This, in turn, allows 

for Arp2/3 complex–mediated actin polymerization and force 

 production for anterograde movement of mitochondria, using 

actin cables as tracks, from mother cells to buds during yeast 

cell division.

In the current work, we found that another PUF protein, 

Puf3p, interacts with the machinery for mitochondrial motility 

and inheritance. Previous studies indicate that Puf3p binds 

preferentially to mRNAs for nuclear-encoded mitochondrial 

proteins. Specifi cally, 87% of the 154 transcripts that bind 

to Puf3p encode proteins that localize to mitochondria and 

contribute to mitochondrial protein synthesis, respiration, or-

ganization, and/or biogenesis. Moreover, Pum-HD of Puf3p 

binds to a consensus motif in the 3′ UTR of mRNAs that 

is found in the 3′ UTR of many nuclear-encoded mitochon-

drial proteins (Gerber et al., 2004). Other lines of evidence 

 indicate that Puf3p can promote the deadenylation (polyA-tail 

shortening) and decay of COX17 mRNA in vitro and that dele-

tion of PUF3 results in a decrease in mRNA deadenylation 

and a twofold  increase in the half-life of COX17 mRNA 

in vivo (Olivas and Parker, 2000; Foat et al., 2005). These fi nd-

ings support the model that Puf3p affects mitochondrial bio-

genesis through effects on the stability and/or targeting of 

mRNAs for nuclear-encoded mitochondrial proteins. Here, we 

report that Puf3p localizes to mitochondria, where it regulates 

not only mitochondrial biogenesis but also mitochondrial 

 motility during inheritance.

Results
Identifi cation of Puf3p as an Mdm12p-
interacting protein
Conventional two-hybrid screens have had limited success iden-

tifying proteins that interact with integral membrane proteins. 

Because mitochore subunits are integral membrane proteins, we 

used an unconventional two-hybrid screen that tests for protein–

protein interactions at the plasma membrane (Aronheim et al., 

1994; Aronheim, 1997). The system takes advantage of the fact 

that Ras must be activated at the plasma membrane to stimulate 

cell proliferation by using a strain, cdc25H, that carries a 

 temperature-sensitive mutation in CDC25, the guanyl nucleotide 

exchange factor for Ras. Incubation of cdc25H at 37°C results 

in a loss of Cdc25p function and traps Ras in its inactive GDP-

bound form, producing growth arrest. Expression and targeting 

of hSos, the human guanyl nucleotide exchange factor for Ras, 

to the plasma membrane rescues the growth defect of the 

cdc25H strain at 37°C.

We fused the bait—full-length Mmm1p, Mdm10p, or 

Mdm12p—to hSos, and the target, a yeast cDNA library, to the 

plasma membrane–targeting myristylation signal of Src (see 

Materials and methods). If fusion proteins containing the bait 

and target interact when coexpressed in the cdc25H strain, hSos 

is recruited to the plasma membrane, where it activates the Ras 

pathway and supports growth at 37°C. We did not detect any re-

producible two-hybrid interactions with Mmm1p or Mdm10p 

as bait. However, expression of MDM12-hSos resulted in growth 

Figure 1. Puf3p interacts with Mdm12p. (A) Sequence elements of Puf3p. 
The Puf repeats region is represented as a white rectangle (aa 549–828). 
(B) The yeast cdc25H was transformed with the pMyr-PUF3 (635–879) 
plasmid in combination with either the pSOS-MDM12 or the pSOS plasmid. 
Serial dilutions of transformants were plated onto SCGal (-Leu-Ura) plates. 
Cells were grown at 23 or 37°C for 7 d. (C) The yeast cdc25H was trans-
formed with the pMyr-PUF3 plasmids, which encode various truncated 
forms of PUF3 and pSOS-MDM12. Serial dilutions of transformants were 
plated onto SCGal plates. Cells were grown at 23 or 37°C for 7 d.
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at 37°C in nine clones from a pool of 42,000 transformants. One 

of them, pMyr-PUF3, contained amino acids 635–879 of Puf3p, 

which encodes the C terminus and part of the PUM-HD RNA 

binding domain of the protein (Fig. 1 A). pMyr-PUF3 (635–

879) rescued the temperature-sensitive growth defect of cdc25H 

cells when coexpressed with pSos-MDM12 but not with the 

pSos alone (Fig. 1 B). Thus, amino acids 635–879 of Puf3p in-

teract with Mdm12p in the two-hybrid assay. Finally, we found 

that Mdm12p can bind to the full-length PUF repeat region on 

Puf3p (aa 549–828), and to aa 635–879, a region encompassing 

the C-terminal 2/3s of the PUF region and the C terminus of 

Puf3p (Fig. 1 C).

Puf3p localizes to the cytoplasmic face 
of mitochondrial outer membranes
The localization of Puf3p was determined by optical imaging 

and subcellular fractionation. For imaging studies, cells ex-

pressing Puf3p tagged at its chromosomal locus with GFP and 

mitochondria-targeted Ds-Red were examined by deconvolu-

tion microscopy. The morphology of mitochondria using tar-

geted Ds-Red—long, tubular structures that aligned along the 

mother-bud axis and accumulated in the bud tip and mother cell 

tip—was similar to that observed in other wild-type cells. Thus, 

the Puf3p-GFP appears to be fully functional.

Previous studies indicate that PUF proteins localize pre-

dominantly to the cytoplasm in higher eukaryotes (Lehmann 

and Nusslein-Volhard, 1991; Zhang et al., 1997). In budding 

yeast, Puf3p localizes to punctate structures in yeast (Huh et al., 

2003; Gerber et al., 2004). However, it was not clear whether 

Puf3p-containing structures colocalized with mitochondria. 

With the improved spatial resolution of deconvolution micros-

copy combined with visualization of Puf3p and mitochondria 

in the same cells, we found that Puf3p-GFP localizes to punc-

tate and tubular structures that colocalized with mitochondria 

(Fig. 2 A). Although single projections of the 3D volumes are 

shown, colocalization of Puf3p with mitochondria was con-

fi rmed by examining the projections at multiple angles. Given 

the localization of Puf3p to punctate structures in these and 

 previous studies, it is likely that the tubular Puf3p-containing 

structures consist of multiple Puf3p puncta that are closely 

spaced on mitochondria.

For subcellular fractionation studies, whole cell extracts 

from cells expressing Puf3p-GFP were fractionated into mito-

chondria, microsomes, and cytosol by differential and Nycodenz 

gradient centrifugation (Fig. 2 B). Puf3p-GFP cofractionated 

with the mitochondrial marker protein cytochrome b2 (Cyb2p); 

that is, Puf3p was enriched in the mitochondrial fraction and 

depleted in the fractions containing microsomes and cytosol 

to the same extent as Cyb2p upon subcellular fractionation. 

 Carbonate extraction and protease-sensitivity studies were per-

formed to determine the disposition of Puf3p on mitochondrial 

membranes. Puf3p could be extracted from mitochondrial mem-

branes with Na2CO3 but remained associated with mitochondria 

after washes with KCl (Fig. 2 C). Moreover, Puf3p was de-

graded upon treatment of Nycodenz-purifi ed mitochondria with 

trypsin and chymotrypsin (Fig. 2 D). This protease treatment 

degraded a mitochondrial surface protein (Tom70p) without af-

fecting the integrity of the organelle, as assessed by the stability 

of Cyb2p, an intermembrane space protein. Together, these re-

sults indicate that Puf3p is a peripheral mitochondrial mem-

brane protein that is associated with the cytosolic face of the 

mitochondrial outer membrane.

Puf3p regulates mitochondrial biogenesis
Previous fi ndings (Gerber et al., 2004) indicated that deletion of 

PUF3 had no effect on growth rates on fermentable carbon 

sources and produces a subtle decrease in growth rates on 

 nonfermentable carbon sources. We fi nd that overexpression 

of PUF3 resulted in cell growth defects on glycerol at 37°C 

(Fig. 3 A). Using the DNA binding dye DAPI, we detected 

Figure 2. Puf3p is a peripheral mitochondrial outer mem-
brane protein. (A) Puf3p-GFP colocalizes with mitochondrial 
tubules. Yeast (LGY005) expressing Puf3p that was tagged at 
its chromosomal locus with GFP and plasmid-borne 
(pTDT104GAL1+PreF0ATPase-[subunit9]-DsRed) mitochondria-
targeted DsRed were grown to midlog phase in glucose-
based selective media. Z sections through the cell were 
collected using an epifl uorescence microscope. The images 
were deconvolved and reconstructed into a 3D volume. The 
images shown are 2D projections of reconstructed 3D vol-
umes. Mitochondria-targeted (mt) DsRed (A) is shown in red. 
Puf3p-GFP is shown in green. The merged image shows mito-
chondria (red) and Puf3p-GFP (green). Bar, 1 μm. (B) Puf3p-
GFP cofractionates with a mitochondrial marker protein upon 
subcellular fractionation. Puf3p-GFP cells (LGY001) were 
grown to midlog phase in SC medium and subjected to subcel-

lular fractionation as described in Materials and methods. Equal amounts of protein from whole cell extracts (H), S1 (the supernatant recovered after centrif-
ugation of homogenized spheroplasts at 2,000 g), microsome (Mc), cytosol (C), and Nycodenz-purifi ed mitochondria fractions (Mt) were analyzed using 
Western blots and antibodies that recognize the mitochondrial marker cytochrome b2 (Cyb2p), the cytosolic marker hexokinase (Hxk1p), and an ER marker 
(Sec61p). Anti-GFP monoclonal antibody was used to detect Puf3p-GFP. mw, molecular weight of proteins in kilodaltons. (C) Nycodenz-purifi ed mitochon-
dria prepared from yeast expressing Puf3p-GFP (LGY001) were treated with 0.1 M NaCl, 0.1 M Na2CO3, or 1 M KCl as described in Materials and 
 methods. Carbonate or NaCl extractable and inextractable material was analyzed using Western blots and antibodies raised against Puf3p-GFP, porin (Por1p, 
an integral mitochondrial membrane protein), and cytochrome b2 (Cyb2p, a peripheral mitochondrial inner membrane protein). P, pellet; S, supernatant. 
(D) Nycodenz-purifi ed mitochondria were washed with protease inhibitor–free breaking buffer and incubated with a protease inhibitor cocktail or trypsin 
and chymotrypsin (150 μg/ml) for 30 min at 23°C. After addition of protease inhibitors to the protease-treated sample, mitochondria were separated from 
the reaction mixture. Proteins in the mitochondrial pellets were analyzed using Western blots and antibodies raised against Puf3p-GFP, Tom70p (a mito-
chondrial outer membrane protein), and cytochrome b2 (Cyb2p).
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 mitochondrial DNA (mtDNA) in 90 and 85% of wild-type and 

PUF3 overexpressing cells examined, respectively (Fig. 3 B). 

Thus, the observed defect in respiration-driven growth at elevated 

temperatures in yeast overexpressing PUF3 is not due to a loss 

of mtDNA.

Previous studies revealed that Puf3p binds to and affects 

the stability and/or targeting of mRNAs for nuclear-encoded 

mitochondrial proteins. Here, we studied the effects of deletion 

or overexpression of PUF3 on the steady-state protein levels of 

Pet123p, porin (Por1p), and Cyb2p. Pet123p is a subunit of the 

mitochondrial ribosome that is encoded by a transcript that 

binds to Puf3p (Gerber et al., 2004). Por1p and Cyb2p localize 

to mitochondria but are encoded by mRNAs that do not exhibit 

high-affi nity binding to Puf3p (Gerber et al., 2004; Fig. 3 C). 

The steady-state level of mitochondria-associated Pet123p was 

elevated in puf3∆ cells and reduced in cells overexpressing 

PUF3. Overexpression of a Puf3p mutant that bears a deletion 

in the PUF repeat region has no effect on Pet123p levels (un-

published data). In contrast, Por1p levels were not affected by 

deletion or overexpression of PUF3. These fi ndings are consis-

tent with the proposed function of Puf3p in binding to and stim-

ulating the decay of specifi c mRNAs for nuclear-encoded 

mitochondrial proteins.

Although deletion of PUF3 also had no effect on the 

steady-state levels of Cyb2p, PUF3 overexpression resulted in a 

reduction in the amount of Cyb2p. Overexpression of a Puf3p 

mutant that bears a deletion in the PUF repeat region has no ef-

fect on Cyb2p levels (unpublished data). Because Puf3p does 

not exhibit high-affi nity binding to CYB2 mRNA, it is possible 

that Puf3p binds to nonrelevant targets when over expressed. 

 Alternatively, because Puf3p binds to transcripts that encode 

 mitochondrial protein import proteins (e.g., Tim9p, Tim44p, 

Tim17p, Tom22p, Tom6p, Ssc1p, and Hsp60p), PUF3 overexpres-

sion may affect Cyb2p levels through indirect effects on tran-

scripts for proteins that affect Cyb2p import and/or stability.

Puf3p levels decline when mitochondrial 
biogenesis is up-regulated
Here, we tested whether Puf3p protein levels are altered in two 

situations in which mitochondrial biogenesis is up-regulated: 

the diauxic shift and the shift in growth from a fermentable 

to a nonfermentable carbon source. Upon growth of budding 

yeast on glucose as the sole carbon source, budding yeast un-

dergo two sequential exponential growth phases (Johnston and 

 Carlson, 1992). The fi rst growth phase is largely a fermentative 

phase. The second phase is mostly driven by the aerobic me-

tabolism of ethanol produced during fermentative growth. The 

transition between fermentation- and respiration-driven growth 

phases is the diauxic shift. During this transition, there is an 

up-regulation in mRNAs for enzymes involved in gluconeo-

genesis, the glyoxylate cycle, the tricarboxylate cycle, and 

 respiration (DeRisi et al., 1997), and a large (up to 10-fold) 

 increase in mitochondrial abundance (Johnston and Carlson, 

1992). A similar induction is observed when yeast cells are 

shifted from growth on a fermentable to a nonfermentable 

 carbon source.

Because respiration-driven growth is slower than fermen-

tation-driven growth, the diauxic shift is detectable by monitor-

ing growth rates as a function of time in glucose-based liquid 

medium (YPD). Under our growth conditions, this occurs after 

10 h of growth (Fig. 4 A). We found that the steady-state level 

of Puf3p-GFP declines during the diauxic shift (Fig.  4 B) and 

that there is little detectable Puf3p-GFP in cells that are adapted 

Figure 3. Overexpression of PUF3 leads to respiratory defi ciency at 
 elevated temperature. (A) Growth of wild-type yeast (wt) that carry empty 
vector (pRS423; LGY008) and yeast that overexpress (o/e) PUF3 from the 
pRS423-PUF3 plasmid (LGY009) on selective, glucose-based medium at 
30°C. Serial dilutions of each strain were plated onto selective glucose- or 
glycerol-based solid medium, and cells were grown at 30°C for 3 d or at 
37°C for 7 d. (B) Overexpression of PUF3 has no effect on maintenance of 
mtDNA. Wild-type (LGY008) and PUF3 overexpressing (LGY009) cells 
were grown in selective glucose-based liquid medium at 37°C for 48 h, 
stained with DAPI, and visualized by epifl uorescence microscopy. The im-
ages shown are 2D projections of reconstructed 3D volumes that were ob-
tained as for Fig. 1. m, mitochondrial DNA; n, nuclear DNA. Bar, 1 μm. 
(C) Effect of deletion or overexpression of PUF3 on the steady-state levels 
of three nuclear-encoded mitochondrial proteins. Mitochondria were iso-
lated from midlog phase wild-type (LGY008), puf3∆ (OB1501), and PUF3 
overexpressing (LGY009) cells and analyzed by Western blots with anti-
bodies that recognize porin (Por1p), cytochrome b2 (Cyb2p), and Pet123p. 
The steady-state level of each protein was determined by densitometric 
analysis of Western blots and is expressed as a percentage of the levels 
detected in wild-type cells. 

Figure 4. Puf3p is down-regulated during the diauxic shift and growth 
in nonfermentable carbon sources. (A) A yeast strain expressing Puf3p-
GFP (LGY001) was inoculated in glucose- (circles) or lactate-based 
(squares) liquid media and incubated with aeration at 30°C overnight. 
At each time point indicated, cell growth was determined by optical 
 density measurements at 600 nm. (B) Steady-state levels of Puf3p-GFP 
and a cytosolic marker protein, hexokinase (Hxk1p), as a function of 
cell growth on fermentable or nonfermentable carbon sources. At each of 
the time points indicated, equal amounts of total cellular protein were 
 analyzed using Western blots and antibodies that recognize GFP or 
hexokinase. Numbers in parentheses are molecular weights of proteins 
in kilodaltons. 
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to growth on lactate, a nonfermentable carbon  (Fig. 4 B). 

 Together, these fi ndings provide additional support for a role of 

Puf3p in the down-regulation of mitochondrial biogenesis. 

Given the localization of Puf3p described here, it appears that 

this regulation occurs on the surface of mitochondria in bud-

ding yeast.

Finally, we studied the level of Cyb2p and Pet123p in 

cells grown in different carbon sources. First, we confi rmed a 

previous study that Cyb2p levels are increased by 15-fold in 

cells grown on nonfermentable carbon source compared with 

that observed in glucose-repressed cells (Lodi and Guiard, 

1991). In addition, we found that Pet123p levels are elevated by 

30% in wild-type and puf3∆ cells grown on a nonfermentable 

carbon source compared with wild-type, glucose-grown cells 

(unpublished data). These results are consistent with the estab-

lished up-regulation of mitochondrial biogenesis upon release 

from glucose repression and provide correlative evidence for a 

role of Puf3p in this process.

Puf3p contributes to recruitment 
of the Arp2/3 complex to the mitochore
We identifi ed two links between PUF proteins and the mito-

chondrial motility machinery. First, Jsn1p/Puf1p interacts with 

mitochondria-associated Arp2/3 complex and contributes to an-

terograde mitochondrial movement through effects on recruit-

ing the Arp2/3 complex to the organelle (Fehrenbacher et al., 

2005). Second, Puf3p interacts with the mitochore, the protein 

complex that is required to link mitochondria to actin cables for 

anterograde and retrograde movement during cell division. 

Here, we studied these protein–protein interactions and their 

role in mitochondrial motility and morphology.

To determine whether Puf3p is an Mdm12p binding part-

ner, we tested whether Mdm12p coimmunoprecipitates and 

colocalizes with Puf3p. Both studies were performed using 

a yeast strain in which the chromosomal genes PUF3 and 

MDM12 were tagged with GFP and multiple copies of the Myc 

epitope, respectively. Because cells expressing Puf3p-GFP and 

Mdm12p-Myc exhibited normal growth rates on fermentable 

and nonfermentable carbon sources and normal mitochondrial 

morphology (unpublished data), both fusion proteins appear to 

be fully functional.

Puf3p-GFP was recovered in the pellet obtained upon 

immunoprecipitation of Mdm12p-Myc using a monoclonal 

anti-Myc antibody (Fig. 5 A). Puf3p-GFP was not recovered in 

the immunoprecipitated pellet from yeast expressing untagged 

Mdm12p or in antibody-free immunoprecipitation controls 

(Fig. 5 A). Moreover, OM45p, an abundant, unrelated integral 

mitochondrial outer membrane protein, did not coimmunopre-

cipitate with Mdm12p-Myc or Puf3p-GFP (unpublished data). 

Thus, Puf3p-GFP coimmunoprecipitates with Mdm12p-Myc. 

Consistent with this, punctate structures stained with Puf3p-

GFP frequently colocalized with Mdm12p-Myc. Colocalization 

was greatest in punctate structures that exhibited high levels 

of Mdm12p-Myc and Puf3p-GFP (Fig. 5 B) and was detected 

when the imaging threshold was adjusted to eliminate struc-

tures with low GFP or Myc signal. These results indicate that 

the  association between Puf3p and Mdm12p detected in our 

unconventional two-hybrid screen is both specifi c and physi-

ologically relevant.

Genome-wide affi nity purifi cation screens revealed that 

Puf3p can bind to several subunits of the Arp2/3 complex (Ho 

et al., 2002). We found that Arp2p coimmunoprecipitated with 

Puf3p-GFP upon immunoprecipitation of mitochondrial  extracts 

from Puf3p-GFP–expressing cells but not from cells expressing 

untagged Puf3p or from antibody-free control samples (Fig. 

5 C). Under these conditions, OM45p, an abundant mitochon-

drial outer membrane protein, was not immunoprecipitated. 

Thus, Puf3p interacts with mitochondria-associated Arp2p.

Finally, we tested whether the mitochore coimmunopre-

cipitates with the Arp2/3 complex in a wild-type cell and a 

puf3∆ mutant. Mdm12p-Myc coimmunoprecipitated with Arp2p 

from mitochondrial extracts in wild-type cells (Fig. 6 A). Deletion 

of PUF3 results in a 60% reduction in the amount of Arp2p that 

is recovered with Mdm12p-Myc after coimmunoprecipitation. 

Figure 5. Puf3p has physical and functional interactions with  mitochondria-
associated Arp2/3 complex. (A) Coimmunoprecipitation of Puf3p with 
Mdm12p. Mitochondria were purifi ed from strains expressing Puf3p-GFP 
(LGY001) or Puf3p-GFP and Mdm12p-Myc (LGY002) and solubilized with 
buffer containing 0.5% digitonin. Monoclonal anti-Myc antibody was 
added to immunoprecipitate Mdm12p-Myc (see Materials and methods). 
Immunoprecipitated proteins were probed using antibodies that recognize 
Myc or GFP. mw, molecular weight of proteins in kilodaltons. (B) Puf3p co-
localizes with some Mdm12p-containing puncta and some mtDNA nucle-
oids. Yeast expressing Puf3p-GFP and Mdm12p-Myc (LGY002) were 
grown to midlog phase, fi xed, converted to spheroplasts, and stained for 
Mdm12p using a monoclonal antibody against the Myc epitope and for 
DNA using DAPI (see Materials and methods). The images shown are 2D 
projections of reconstructed 3D volumes that were obtained as for Fig. 1. 
Puf3p-GFP was detected as punctate structures that partially colocalize 
with DAPI and punctate Mdm12p mitochondrial structures. (a–c) Localiza-
tion of DAPI-stained nuclear and mtDNA (blue), Puf3p-GFP (green), and 
Mdm12p-Myc (red). (d) Merged image of DAPI-stained material (green) 
and Puf3p-GFP (red). (e) Merged image of DAPI-stained material (green) 
and Mdm12p-Myc (red). (f) Merged image of Puf3p-GFP (green) with 
Mdm12p-Myc (red). Bar, 1 μm. (C) Coimmunoprecipitation of Arp2p with 
Puf3p. Mitochondria purifi ed from wild-type strains expressing GFP-tagged 
(LGY001) or untagged Puf3p (BY4741) were solubilized with buffer con-
taining 0.5% digitonin. Monoclonal anti-GFP antibody was added to the 
lysates, as indicated, to immunoprecipitate Puf3p-GFP. Immunoprecipitated 
proteins (IP) were analyzed using Western blot and antibodies that recog-
nize GFP, Arp2p, or OM45p. T, 100 μg of mitochondrial lysate from a 
wild-type strain expressing Puf3p-GFP (LGY001); mw, molecular weight of 
proteins in kilodaltons.
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Thus, we obtained evidence that mitochondria-associated Arp2/3 

complex interacts with the mitochore and that Puf3p contributes 

to this interaction.

Because Jsn1p/Puf1p contributes to recruiting the Arp2/3 

complex to mitochondria in budding yeast, it is possible that the 

reduced interactions between the mitochore and the Arp2/3 

complex detected in puf3∆ cells are due to a decreased associa-

tion between the Arp2/3 complex and mitochondria. To address 

this issue, we compared the amount of Arp2p that is recovered 

with mitochondria during subcellular fractionation in wild-type 

cells, PUF3 deletion mutants, and cells that overexpress PUF3. 

Deletion or overexpression of PUF3 had no effect on the recov-

ery of Arp2p with mitochondria (Fig. 6 B), indicating that Puf3p 

and Jsn1p are not functionally redundant. In contrast, our  results 

indicate that Puf3p contributes to recruiting the Arp2/3 complex 

to the mitochore.

Puf3p is required for normal mitochondrial 
motility and morphology
Previous studies indicate that mutations in the mitochore and 

Arp2/3 complex/Jsn1p/Puf1p have different effects on mito-

chondrial morphology and motility. Mutations of mitochore 

subunits result in an accumulation of large, spherical mitochon-

dria that fail to move in either the anterograde or retrograde di-

rections (Boldogh et al., 2003; Fehrenbacher et al., 2005). In 

contrast, mitochondria from yeast carrying mutations in JSN1 

or Arp2/3 complex subunits are largely tubular, not spherical. 

However, they are fragmented and aggregated and exhibit de-

fects in anterograde, but not retrograde, mitochondrial move-

ment. If Puf3p contributes to recruiting the mitochore to the 

Arp2/3 complex, then mitochondrial motility and morphology 

in PUF3 deletion mutants should resemble those observed in 

the Arp2/3 complex or Jsn1p mutants.

Analysis of mitochondrial morphology in deconvolved 

3D projections revealed that 14% of wild-type cells exhibited 

aggregation or fragmentation of mitochondria (n = 55). In 

contrast, 44% of cells in a PUF3-null population showed 

 abnormal mitochondrial phenotypes, with 32% of cells con-

taining aggregated mitochondria and 32% fragmented mito-

chondria (n = 63; Fig. 7). The observed defects in mitochondrial 

morphology were not due to defects in actin organization or 

in the interaction between mitochondria and actin cables 

 (unpublished data). Thus, mitochondrial morphology in a 

puf3∆ mutant is similar to that observed in JSN1 and Arp2/3 

complex mutants.

Consistent with this, puf3∆ cells show defects in mito-

chondrial motility that are similar to those observed in yeast 

bearing a deletion in JSN1 or mutation of Arp2/3 complex sub-

units (Fig. 7 B). In wild-type yeast, 40% of mitochondria moved 

in the anterograde direction, and 24% move in the retrograde 

direction during 1 min of analysis (n = 123). Deletion of PUF3 

had no obvious effect on retrograde mitochondrial movement. 

In contrast, we observed a 35% decrease in the amount of an-

terograde mitochondrial movement in a puf3∆ population as 

compared with wild type (n = 109; Fig. 7 B). These fi ndings 

support a role for Puf3p in recruiting the mitochore to the Arp2/3 

complex to promote anterograde mitochondrial motility and 

normal mitochondrial morphology in budding yeast. 

Because Puf3p has been implicated in mitochondrial 

biogenesis and mRNA stability, it is possible that the motility 

defects observed in puf3∆ cells are a consequence of Puf3p 

 effects on mRNA turnover that are critical for mitochondrial 

morphology or biogenesis. To address this issue, we measured 

mitochondrial motility in yeast bearing mutations in MAS37 

Figure 6. Deletion of PUF3 results in a reduction in interactions between 
Mdm12p and mitochondria-associated Arp2p without affecting recruit-
ment of Arp2p to the organelle. (A) Coimmunoprecipitation of Mdm12p 
and Arp2p in wild-type cells and puf3∆ mutants. Mitochondria, purifi ed 
from wild-type (LGY002) and puf3∆ (LGY012) strains expressing Myc-
tagged Mdm12p, were solubilized with buffer containing 0.5% digitonin 
and subjected to immunoprecipitation using a monoclonal anti-Myc anti-
body. Immunoprecipitated proteins (IP) were analyzed using Western blot 
and antibodies that recognize Myc or Arp2p. T, 100 μg of the mitochon-
drial lysate used for immunoprecipitation; mw, molecular weight of pro-
teins in kilodaltons. (B) Effect of deletion or overexpression of PUF3 on 
association of Arp2p with mitochondria. Mitochondria were purifi ed from 
wild-type (wt) cells (BY4741), puf3∆ cells (OB1501), or yeast that overex-
press plasmid-borne PUF3 (LGY009) and analyzed by Western blot analysis 
using antibodies that recognize Arp2p or porin (Por1p, a mitochondrial 
marker protein). Figure 7. Mitochondrial morphology and motility are abnormal in cells 

lacking Puf3p. (A) Mitochondrial morphologies are shown for diploid wild-
type cells (LGY013; left) and yeast bearing deletions in both copies of the 
PUF3 gene (LGY014; middle and right). Cells expressing mitochondria-
targeted GFP (pCS1-GFP) were grown to midlog phase in selective media 
and analyzed by fl uorescence microscopy. The images shown are 2D 
 projections of reconstructed 3D volumes that were obtained as for Fig. 2. 
Deletion of PUF3 resulted in an increase of cells showing aggregated 
and fragmented mitochondria. Examples of mitochondria in puf3∆/puf3∆ 
cells with fragmented (middle) or aggregated (right) mitochondria are 
shown. (B) Quantitation of defects in mitochondrial morphology and 
 motility in diploid wild-type cells and yeast bearing deletions in PUF3 
(puf3∆/puf3∆). FG, fragmented mitochondria; AG, aggregated mitochon-
dria; ANT, anterograde mitochondrial movement; RET, retrograde mito-
chondrial movement.
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or TOM7 (Fig. 8). Mas37p is a subunit of the SAM/TOB 

 complex, which mediates assembly of newly imported β- barrel 

proteins into the mitochondrial outer membrane and pro-

motes the segregation of Mdm10p from the SAM/TOB com-

plex (Wiedemann et al., 2003; Meisinger et al., 2006). Tom7p 

is a subunit of the protein-translocating mitochondrial outer 

membrane pore (Honlinger et al., 1996). Deletion of TOM7 

results in defects in mitochondrial protein import and pro-

duces defects in mitochondrial morphology that are similar to 

those observed in mdm12∆ cells (Meisinger et al., 2001, 2006). 

Deletion of MAS37 or TOM7 had no major effect on the level 

of anterograde and retrograde mitochondrial movement. There-

fore, mutations that affect mitochondrial biogenesis or mor-

phogenesis do not produce motility defects that resemble 

those observed in mitochore or mitochondria-associated PUF 

family proteins.

Finally, we studied poleward mitochondrial movement in 

wild-type and puf3∆ cells upon growth on media containing 

fermentable or nonfermentable carbon sources (Fig. 8). Because 

Puf3p is present in cells grown in glucose-based media and se-

verely down-regulated in cells grown on glycerol-based media, 

mitochondria motility in yeast grown on nonfermentable carbon 

sources should be similar to that observed in puf3∆ cells. We 

did not detect any carbon source effects on the extent of retro-

grade mitochondrial movement. In contrast, we found that 

growth on glycerol results in a 50% decrease in anterograde mi-

tochondrial motility compared with that observed in yeast 

grown on a fermentable carbon source. Thus, two conditions 

that result in severe down-regulation of Puf3p levels, i.e., dele-

tion of the PUF3 gene or growth on nonfermentable carbon 

source, produce a decrease in anterograde but not retrograde 

mitochondrial motility. Consistent with this, mitochondrial 

 motility in wild-type cells that were grown in a glycerol-based 

medium was not appreciably different from that observed in 

puf3∆ deletion mutations that were grown in media containing 

either glucose or glycerol.

Discussion
Puf3p, one of the six PUF proteins found in S. cerevisiae, binds 

preferentially to cytoplasmic mRNAs for nuclear-encoded mi-

tochondrial proteins and promotes the decay of bound mRNA 

by enhancing mRNA deadenylation (Olivas and Parker, 2000; 

Gerber et al., 2004). Another PUF protein of budding yeast, 

Jsn1p/Puf1p, localizes to mitochondria, where it contributes 

to the recruitment of the Arp2/3 complex to the organelle for 

anterograde movements that lead to inheritance (Fehrenbacher 

et al., 2005). Here, we report that Puf3p also localizes to mito-

chondria in budding yeast, where it contributes to both mitochon-

drial motility during inheritance and mitochondrial biogenesis.

Puf3p cofractionates with a mitochondrial marker protein 

during subcellular fractionation and localizes to punctate struc-

tures that colocalize with mitochondria in living yeast cells. 

Carbonate extraction, salt washes, and protease-sensitivity stud-

ies indicate that Puf3p is a peripheral membrane protein that is 

associated with the cytoplasmic face of the mitochondrial outer 

membrane. Thus, two of the six PUF proteins of budding yeast, 

Jsn1p/Puf1p and Puf3p, localize to mitochondria and to the 

same submitochondrial compartment.

Role for Puf3p in mitochondrial motility 
and inheritance
All known motor molecules contain two distinct activities: they 

link cargo to the cytoskeleton and generate forces for cargo 

movement along cytoskeletal tracks. Our previous studies indi-

cate that these two activities occur during mitochondrial move-

ment in budding yeast. However, the activities exist in two 

distinct protein complexes. The mitochore is required for the 

interaction of mitochondria with actin cables for poleward 

movement (Boldogh et al., 2003), whereas the Arp2/3 complex 

generates forces for movement of the organelle along its cyto-

skeletal tracks (Fehrenbacher et al., 2004). Here, we report that 

Puf3p contributes to mitochondrial movement during inheri-

tance by linking the force generator for anterograde mitochon-

drial motility (the Arp2/3 complex) to the adaptor that links the 

organelle to the cytoskeleton (the mitochore).

Several lines of evidence support a link between Puf3p 

and the machinery for mitochondrial motility and inheritance. 

A genome-wide affi nity precipitation screen revealed that Puf3p 

can bind to several subunits of the Arp2/3 complex (Ho et al., 

2002). We found that that Puf3p binds to a mitochore subunit in 

a two-hybrid assay and coimmunoprecipitates with mitochore 

and Arp2/3 complex subunits. Thus, the interactions detected 

by two-hybrid and affi nity-precipitation assays appear to be 

physiologically relevant.

Mutations of mitochore subunits result in the accumulation 

of large spherical, nonmotile mitochondria (Boldogh et al., 2005). 

In contrast, mitochondria in yeast PUF3, JSN1, or Arp2/3 com-

plex mutants are fragmented and aggregated. Moreover, deletion 

of PUF3, JSN1, ARC15, or ARP2 impairs anterograde, bud-

 directed mitochondrial movement, but has no obvious effect 

on retrograde, mother cell–directed movement of the organelle 

 (Fehrenbacher et al., 2005). Thus, deletion of PUF3 does not pro-

duce phenotypes that are similar to those observed in mitochore 

mutants. Rather, puf3∆ cells exhibit defects in mitochondrial mor-

phology and anterograde motility that are similar to those observed 

in yeast bearing mutations in the Arp2/3 complex or in Jsn1p.

Figure 8. Effect on mitochondrial motility of carbon source and mutation 
of genes implicated in mitochondrial biogenesis. Mitochondrial motility 
was monitored in midlog phase wild-type (WT; LGY013) and mutant strains 
(LGY014, LGY016, and LGY017) grown in either glucose- or glycerol-
based media. Quantitation of the percentage of mitochondria that were 
 either nonmotile or exhibited anterograde or retrograde movement was 
performed as for Fig. 7.
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Although puf3∆ and jsn1∆ mutants exhibit similar defects 

in mitochondrial morphology and Jsn1p and Puf3p share struc-

tural similarity, these proteins do not appear to be functionally 

redundant. First, Puf3p is reduced 10-fold during the diauxic 

shift and in cells grown on a nonfermentable carbon source. 

In contrast, Jsn1p is readily detectable in cells grown on a non-

fermentable carbon source (Fehrenbacher et al., 2005). Second, 

deletion of JSN1 results in a 50% decrease in recruitment of 

Arp2/3 complex to mitochondria (Fehrenbacher et al., 2005). 

In contrast, deletion of PUF3 has no effect on the association of 

the Arp2/3 complex with mitochondria. Finally, we fi nd that 

 mitochondrial motility in a jsn1∆ puf3∆ mutant does not resemble 

that observed in either jsn1∆ or puf3∆ single mutants (unpub-

lished data). Thus, we obtained genetic evidence that these pro-

teins have distinct roles in mitochondrial motility.

Rather, our fi ndings support the model that Puf3p stimulates 

mitochondrial motility through effects on recruiting mitochondria-

associated Arp2/3 complex to the mitochore complex. Arp2/3 

complex subunits coimmunoprecipitate with and are therefore 

physically associated with mitochore subunits. Moreover, dele-

tion of PUF3 results in a large (>60%) decrease in the amount 

of Arp2p that coimmunoprecipitates with the mitochore sub-

unit Mdm12p. Because deletion of PUF3 does not completely 

 abolish interactions of Arp2/3 complex with the mitochore, 

there may be other proteins that play a role in this process. 

Nonetheless, our data indicate that Puf3p serves as an adaptor to 

link Arp2/3 complex, the force generator for anterograde mito-

chondrial movement, to the mitochore, the protein complex that 

is required for reversible interaction of mitochondria with the 

cytoskeletal track for movement. Thus, Puf3p may stimulate 

anterograde mitochondrial movement by bringing the two 

 fundamental functions of a motor molecule—present in two 

separate protein complexes—together into one physical and 

functionally effi cient unit.

Role for Puf3p in mitochondrial biogenesis 
and respiratory activity
Previous fi ndings support a role for Puf3p in regulating the sta-

bility of mRNAs for mitochondrial proteins (Gerber et al., 

2004). Moreover, a recent study indicates that Puf3p destabili-

zation of mitochondrial mRNAs is carbon source dependent. 

Specifi cally, transcripts for nuclear-encoded mitochondrial pro-

teins, which undergo Puf3p-dependent degradation, are de-

graded in yeast grown on fermentable carbon sources but are 

stabilized in yeast grown on nonfermentable carbon sources 

(Foat et al., 2005).

Our fi ndings provide additional support for a role of 

Puf3p in the regulation of mitochondrial biogenesis. The tran-

script for Pet123p, a subunit of the mitochondrial ribosome, 

binds to Puf3p with high affi nity (Gerber et al., 2004). We 

fi nd that deletion of PUF3 results in an increase in the level 

of Pet123p but has no obvious effect on the levels of two mito-

chondrial proteins whose mRNAs do not bind to Puf3p. 

 Conversely, overexpression of PUF3 results in a decrease in 

Pet123p levels. Thus, Puf3p levels are inversely proportional to 

the levels of a protein whose transcript exhibits high-affi nity 

binding to Puf3p. This fi nding provides additional support for a 

role of Puf3p in regulation of mitochondrial biogenesis through 

effects on mRNAs for nuclear-encoded mitochondrial proteins. 

Moreover, because Pet123p is a subunit of the mitochondrial 

 ribosome, our results also indicate that Puf3p can affect mito-

chondrial biogenesis through effects on synthesis of mtDNA-

encoded mitochondrial proteins.

We also provide evidence that Puf3p contributes to the 

down-regulation of mitochondrial biogenesis during glucose 

repression. Growth of yeast on glucose represses mitochondrial 

biogenesis, up to 10-fold in some genetic backgrounds  (Carlson, 

1987). Previous microarray studies have revealed an increase in 

893 mRNAs and a decrease in 1,233 mRNAs during the diauxic 

shift (DeRisi et al., 1997). Thus, regulation of transcription is 

a key contributor to glucose repression. However, it is possible 

that regulation of mRNA stability may also contribute to  glucose 

repression. As described above, Puf3p promotes mRNA decay 

and regulates mRNA stability in a carbon source– dependent 

manner. We fi nd that Puf3p is present in cells grown on glucose 

and is down-regulated during both the diauxic shift and adapta-

tion to growth on nonfermentable carbon sources. Moreover, 

we fi nd that Pet123p, a protein whose transcripts exhibits high-

affi nity binding to Puf3p, is reduced in cells grown on glucose 

compared with nonfermentable carbon sources. These fi ndings 

support the model in which Puf3p regulation of mRNA stability 

contributes to down-regulation of mitochondrial biogenesis 

during glucose repression.

Finally, previous fi ndings indicate that mRNAs for many 

nuclear-encoded mitochondrial proteins localize to mitochon-

dria in yeast and human cells (Suissa and Schatz, 1982; Egea 

et al., 1997; Corral-Debrinski et al., 2000; Marc et al., 2002). 

In light of this and our fi ndings regarding Puf3p localization and 

function in mitochondrial biogenesis, it is tempting to speculate 

that Puf3p could have one additional function. That is, it may 

serve, like Puf6p, to transport mRNAs to specifi c sites (Gu 

et al., 2004). In this scenario, Puf3p could bind to the 3′ UTR of 

mitochondrial mRNAs and guide those transcripts to the sur-

face of the organelle. In agreement with this hypothesis, it has 

been reported that the 3′ UTR of mitochondrial mRNAs is re-

quired for their localization to the vicinity of the organelle, a 

function that is conserved from yeast to human cells (Sylvestre 

et al., 2003).

Is there a relationship between 
Puf3p functions in down-regulation of 
mitochondrial biogenesis and up-regulation 
of mitochondrial motility?
We fi nd that Puf3p is a bifunctional protein that (1) links the 

adaptor for mitochondrial–cytoskeletal interactions to the force 

generator for cytoskeleton-dependent anterograde mitochon-

drial movement and (2) regulates mitochondrial biogenesis and 

respiratory competence through effects on the stability and/or 

localization of mRNAs for select nuclear-encoded mitochon-

drial proteins. Our previous studies revealed that the mitochore 

is functionally equivalent to the kinetochore. That is, it links the 

minimum heritable unit of mitochondria (mitochondrial mem-

branes and mtDNA) to actin cables for segregation of the organ-

elle during cell division. The fi nding that the mitochore is also 
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associated with Puf3p provides additional evidence for a role of 

the mitochore in mitochondrial motility and inheritance. More-

over, it raises the possibility that the machinery regulating mito-

chondrial transcript stability and/or traffi cking may be part of 

the minimal heritable unit of the organelle.

What is the benefi t of having a single protein with dual 

functions in mitochondrial biogenesis and bud-directed motil-

ity? Anterograde mitochondrial movement results in the transfer 

of the organelle from mother to daughter cell and is therefore 

a critical contributor to mitochondrial inheritance. Because 

 mitochondrial inheritance is essential for cell viability, there is 

a greater burden on the cell division machinery to ensure that 

mitochondria are inherited when the organelle is present in 

low abundance. In light of this, Puf3p function in mitochon-

drial biogenesis during glucose repression and anterograde 

mitochondrial motility may promote cellular vitality because 

it down-regulates mitochondrial abundance in response to 

environmental conditions and ensures that the few mito-

chondria that are present during repression of mitochondrial 

biogenesis are transferred from mother to daughter cell dur-

ing cell division. Thus, Puf3p serves both as a modulator of 

mitochondrial abundance and as an effector that allows the 

cell division machinery to compensate for changes in mito-

chondrial abundance.

Materials and methods
Yeast strains and growth conditions
Yeast strains used in this study are listed in Table I. Strains were derivatives 
of BY4741 or BY4743 (Open Biosystems). Yeast cells were cultivated and 
manipulated according to Sherman (2002).

Construction of plasmids
Standard molecular techniques for cloning procedures were used  (Sambrook 
et al., 1989). In all cases, PCR was performed using Pfu Ultra HF DNA poly-
merase (Stratagene) according to the manufacturer’s instructions.

Baits used for the two-hybrid screen were encoded on plasmids 
(pSos-MMM1, -MDM10, and -MDM12) that express fusion proteins of 
Mmm1p, Mdm10p, or Mdm12p with the hSos (Aronheim et al., 1994; 
Aronheim, 1997). Primers used for construction of these plasmids are 
listed in Table II. In all cases, the entire open reading frame of each 
gene of interest was amplifi ed by PCR from S. cerevisiae genomic DNA. 
The primers used for these amplifi cations contained restriction sites 
(BamHI or MluI). To subclone amplifi ed genes into the pSos plasmid, 
PCR products were cut with BamHI and MluI and inserted into the 
polylinker region of the pSos plasmid after linearization with BamHI and 
MluI. The nucleotide sequences of the cloning junctions were sequenced 
to verify that the bait proteins were expressed in frame with the hSos 
protein. DNA encoding the bait proteins was sequenced to verify the ab-
sence of mutations.

pRS423-PUF3 is a multicopy plasmid containing the complete PUF3 
coding sequence fl anked by 300 kb upstream of the ATG start codon and 
300 kb downstream of the TGA stop codon. The PUF3 open reading frame 
was amplifi ed by PCR from S. cerevisiae genomic DNA. Primers used for 
this cloning were as follows (underlined sequences correspond to XhoI and 
BamHI restriction sites sequences): forward, 5′-T G C A C T C G A G A C C A T T A-
G C A C A C T T G A G A A T G T A T A T T G G -3′, and reverse, 5′-T G C A G G A T C C T T C-
T C T A T C T G T T G C A G A A A T A A G A A G A G C G -3′. The PCR product was cut 
with XhoI and BamHI and integrated into the polylinker of the pRS423 
plasmid after linearization with XhoI and BamHI.

LGY015 (pRS423-PUF3[1–548]-GFP) transformed cells overex-
press a chimeric protein in which the PUM-HD domain of Puf3p has 
been replaced with GFP. For this construction, part of the open read-
ing frame of PUF3 (aa 1–548) was amplifi ed by PCR from S. cerevisiae 
genomic DNA with the following primers: forward, 5′-T G C A C T C G A G-
A C C A T T A G C A C A C T T G A G A A T G T A T A T T G G -3′, and reverse, A T G C G G A-
T C C G A T C T T T G C A A A A C T C T A A G G -3′. The underlined sequences in the 
forward and reverse primers correspond to XhoI and BamHI restriction 
sites, respectively. The residue shown in bold font is a G that was inserted 
into the reverse primer and allows GFP to be expressed in frame. GFP 
was amplifi ed from the plasmid pFA6a-GFP (S65T)-TRP1 (Longtine et al., 
1998) with the following primers: forward, C A A C A T G G T C G G A T C C C C G-
G G T T A A T T A A -3′, and reverse, 5′-A T G C G A A T T C G A G C T C G T T T A A A C -3′. 
The underlined sequences in the forward and reverse primers correspond 
to BamHI and EcoRI restriction sites, respectively. PCR products were 
cut with XhoI and BamHI (for truncated PUF3) and BamHI and EcoRI 
(for GFP). Both fragments were ligated, and the resulting product was 
inserted into the polylinker of the pRS423 vector as an XhoI–EcoRI frag-
ment. The nucleotide sequence of the cloning junction between PUF3 and 
the GFP was sequenced to verify that the GFP was expressed in frame 
with the Puf3p.

Table I. Yeast strains used in this study

Strain Genotype Source or reference

cdc25H MATa, ade2-101, his3-200, leu2-2, lys2-801, trp1-901, ura3-52, cdc25-2 Gal Stratagene (Aronheim, 1997)

BY4741 MATa, his3∆, leu2∆, met15∆, ura3∆ Open Biosystems

LGY001 MATa, his3∆, leu2∆, met15∆, ura3∆, PUF3:GFP-HIS3MX6 This study

LGY002 MATa, his3∆, leu2∆, met15∆, ura3∆, PUF3:GFP-HIS3MX6, MDM12:13Myc-KANMX6 This study

LGY003 MATa, his3∆, leu2∆, met15∆, ura3∆, PUF3:GFP-HIS3MX6, MDM10:13Myc-KANMX6 This study

LGY004 MATa, his3∆, leu2∆, met15∆, ura3∆, PUF3:GFP-HIS3MX6, MMM1:13Myc-KANX6 This study

LGY005 MATa, his3∆, leu2∆, met15∆, ura3∆, PUF3:GFP-HIS3MX6 [pRS426ADH+PreF0ATPase-DsRed] This study

LGY006 MATa, his3∆, leu2∆, met15∆, ura3∆ [pCS1-GFP] This study

LGY007 MATa, his3∆, leu2∆, met15∆, ura3∆, puf3∆::KANMX6, [pCS1-GFP] This study

LGY008 MATa, his3∆, leu2∆, met15∆, ura3∆ [pRS423] This study

LGY009 MATa, his3∆, leu2∆, met15∆, ura3∆ [pRS423-PUF3] This study

LGY010 MATa, his3∆, leu2∆, met15∆, ura3∆, puf3∆::KANMX6, [pRS426ADH+PreF0ATPase-DsRed] This study

LGY011 MATa, his3∆, leu2∆, met15∆, ura3∆, mdm12∆::KANMX6, PUF3:GFP-HIS3 This study

LGY012 MATa, his3∆, leu2∆, met15∆, ura3∆, puf3∆::KANMX6, MDM12:13Myc-KANMX6 This study

LGY013 MATa/α, his3∆, leu2∆, met15∆, ura3∆ [pCS1-GFP] This study

LGY014 MATa/α, his3∆, leu2∆, met15∆, ura3∆ puf3∆::KANMX4/puf3∆::KANMX4 [pCS1-GFP] This study

LGY015 MATa, his3∆, leu2∆, met15∆, ura3∆ [pRS423-PUF3(trunc)-GFP] This study

LGY016 MATa/α, his3∆, leu2∆, met15∆, ura3∆ tom7∆::KANMX4/tom7∆::KANMX4 [pCS1-GFP] This study

LGY017 MATa/α, his3∆, leu2∆, met15∆, ura3∆ mas37∆::KANMX4/mas37∆::KANMX4[pCS1-GFP] This study

OB1501 MATa, his3∆, leu2∆, met15∆, ura3∆, puf3∆::KANMX6 Open Biosystems
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Construction of yeast strains
The carboxy terminus of Puf3p was tagged GFP using PCR-based insertion 
into the chromosomal copy of the PUF3 locus (Longtine et al., 1998; 
Nowakowski et al., 2001). The carboxy terminus of Mdm12p was tagged 
with 13 tandem copies of the Myc epitope (13Myc) using the same tech-
nique. Table III lists primers used to tag these genes. Yeast cells were fi rst 
transformed with the PCR products using the lithium acetate method (Gietz 
et al., 1995). PCR was used to confi rm the proper integration of tags into 
the target locus. Expression and localization of GFP- and 13Myc-tagged 
proteins were analyzed via Western blot. GFP and 13Myc localization 
were visualized in cells directly (GFP) or by immunofl uorescence staining 
using a monoclonal anti-Myc antibody (13Myc).

Two-hybrid screen
The two-hybrid screen was performed essentially as described previously 
(Aronheim et al., 1994; Aronheim, 1997). After cotransformation of a 
cdc25H strain with the bait (pSos-MMM1, -MDM10, or -MDM12) and 
the Cytotrap XR S. cerevisiae yeast cDNA library (Stratagene), single 
colonies were allowed to grow on solid media consisting of synthetic 
complete, glucose-based medium -Leu and -Ura (SC glucose–Leu–Ura) for 
3–4 d at 23°C. Colonies that grew at 23°C were replica-plated onto syn-
thetic complete, galactose-based medium -Leu and -Ura (SC galactose–
Leu–Ura). Cotransformants that grew on SC galactose–Leu–Ura plates 
at 37°C were retained for further characterization. Library plasmids 
were isolated from clones that showed consistent galactose-dependent 
growth at 37°C. Isolated plasmids were transformed into cdc25H cells in 
combination with the bait (pSos-MMM1, -MDM10, or -MDM10) or the 
pSos vector. Plasmids that supported growth of the cdc25H strain only 
in the presence of bait containing MMM1, MDM10, or MDM12 
were sequenced.

Live-cell imaging of mitochondria
Mitochondria were visualized using two different fusion proteins. For 
analysis of mitochondrial morphology and motility, a centromeric plasmid 
containing the open reading frame of the citrate synthase 1 fused to GFP 
(pCS1-GFP; Okamoto et al., 2001) was used. For Puf3p-GFP and mitochon-
dria colocalization studies, mitochondria were visualized using a fusion 
protein expressed from the plasmid pTDT104GAL1+PreF0ATPase- (subunit9)-
DsRed (Boldogh et al., 2003). Both hybrid proteins were expressed from 
plasmids using their own promoters. Cells were grown to midlog phase 
(OD600 0.3–0.9) in SC-Ura media and placed on an SC-Ura–containing 
agarose pad on a microscope slide. A coverslip was applied to the slide, 
and the slide was sealed with Valap (1:1:1 Vaseline/lanolin/paraffi n). 
Images were collected with a microscope (E600; Nikon) using a Plan-
Apochromat 100×, 1.4 NA objective lens and a cooled charge-coupled 
device camera (Orca-ER; Hamamatsu). Illumination with a 100-W mercury 
arc lamp was controlled with a MAC5000 shutter controller and Ludl fi lter 

wheel (Ludl Electronic Products Ltd.). Ludl fi lter wheels or a Dual View im-
age splitter (Optical Insights) were used for two-color imaging. Hardware 
control and image enhancement were performed using Openlab software 
(Improvision, Inc.).

For 3D imaging, 25 z sections were obtained at 0.2-μm intervals 
through the entire cell using a piezo-electric focus motor mounted onto the 
objective lens of the microscope (Polytech PI). Out-of-focus light was re-
moved by deconvolution of each image section, and each series of decon-
volved images was projected and rendered using Volocity software 
(Improvision, Inc.).

Quantifi cation of mitochondrial morphology and movement in vivo
Mitochondrial morphology was analyzed using deconvolved, rendered im-
ages viewed from multiple angles. During cell division in wild-type cells, 
mitochondria accumulate at the bud tip and the mother cell tip. Mitochon-
dria can also accumulate at the mother-bud neck in wild-type cells, presum-
ably because the mother-bud neck is a bottleneck for transport. Therefore, 
to evaluate abnormal mitochondrial aggregation or fragmentation, analy-
sis was restricted to the mother cell at regions other than the mother-bud 
neck or the mother cell tip.

Mitochondria were defi ned as motile if they displayed linear move-
ment for three consecutive still frames taken at 1-s intervals. In all cases, the 
only portion of the organelle that was evaluated for movement was the tip 
of the organelle in the mother cell in a single focal plane. Polarized move-
ment was defi ned as that which achieved a net displacement toward or 
away from the bud and is expressed as the percentage of all observable 
mitochondrial tips over the time-lapse course (60 s).

Other methods
The bicinchoninic acid assay (Pierce Chemical Co.) was used for protein 
concentration determinations. Gel electrophoresis and Western blot analy-
sis were performed as described previously (Boldogh et al., 1998). Yeast 
mitochondria were isolated as described previously (Lazzarino et al., 
1994). Immunofl uorescence and visualization of DNA using DAPI was per-
formed as described previously (Fehrenbacher et al., 2005). Immuno-
precipitation, carbonate extraction, and protease-sensitivity studies were 
performed as described previously (Fehrenbacher et al., 2005).
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Table II. Primers used for preparation of Sos fusion genes

Plasmid Primer direction Primer

pSos-MDM12 Forward 5′-TGCAG G A T C C C T T T T G A T A T T A A T T G G A G T A C A T T G G -3′
pSos-MDM12 Reverse 5′-T G C A A C G C G T T A C T C A T C A C C A T G T T G A A A T C C -3′
pSos-MMM1 Forward 5′-T G C A G G A T C C C T G A T A G T G A G A A T G A A T C C -3′
pSos-MMM1 Reverse 5′-T G C A A C G C G T T A T A A C T C T G T A G G C T T T T C T T C T T C T C T C G -3′
pSos-MDM10 Forward 5′-T G C A G G A T C C T A C C C T A T A T G G A C C A A G T A C T A A G G G C -3′
pSos-MDM10 Reverse 5′-T G C A A C G C G T C A T G T G G A G T A C T G G A A T T G T A T G C C -3′

The sequences underlined in the primers correspond to BamHI and MluI restriction sites in forward and reverse primers, respectively.

Table III. Primers used to tag various genes at their chromosomal loci

Gene Primer direction Primer

PUF3 Forward 5′-T G T T G A G A A A C T T G C A G C A T T G G T T G A A A A T G C G G A G G T G C G G A T C C C C G G G T T A A T T A A -3′
PUF3 Reverse 5′-A T A G T A A A A A G T G A A A G G A G A A C G A T G A T A A C A C T A A T C A G A A T T C G A G C T C G T T T A A A C -3′
MDM12 Forward 5′-G C A T G G C C A A G T T G G A T T A A T C T G G A T T T C A A C G A T G C T G A T G A G C G G A T C C C C G G G T T A A T T A A -3′
MDM12 Reverse 5′-T T T A T G T A G A C A C T A T T T T C A A A C T A T C T T T G T T A A A T T A G A A T T C G A G C T C G T T T A A A C -3′

The sequences underlined in the primers correspond to the tagging plasmid sequence.
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