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Introduction
The granzymes, a family of structurally related serine proteases 

expressed in cytotoxic lymphocytes, cooperatively bring about 

the death of transformed and virus-infected cells after their 

 cosecretion with perforin (Trapani and Smyth, 2002). Perforin 

is critical for permitting the access of granzymes and other 

granule-bound toxins to their substrates within the target cell 

(Froelich et al., 1996; Browne et al., 1999), and as a result, all 

granzyme-dependent cell death pathways are halted in its 

 absence, leading to marked immunodefi ciency in humans (Stepp 

et al., 1999; Voskoboinik et al., 2004) and mice (Kagi et al., 

1994). By comparison, defi ciency of an individual granzyme is 

better tolerated by gene-targeted mice. The absence of gran-

zyme B (GrB), which cleaves target cell proteins adjacent to 

 aspartate residues, results in delayed target cell DNA fragmenta-

tion during apoptosis of most, but not all, cell types (Heusel et al., 

1994; Simon et al., 1997; Pardo et al., 2002). GrA induces a 

caspase-independent form of cell death that involves the induc-

tion of single-stranded DNA nicks after cleavage and activation 

of constituents of the SET complex (Lieberman and Fan, 2003). 

Proapoptotic function has also more recently been described 

for GrC (Johnson et al., 2003) and GrM (Kelly et al., 2004; 

Lu et al., 2006).

All of the granzymes and the closely related myeloid ser-

ine proteases, such as cathepsin G (CatG), are members of the 

chymotrypsin superfamily and, like chymotrypsin, are synthe-

sized as preproenzymes (Salvesen and Enghild, 1990; Dikov 

et al., 1994). The signal peptide is cleaved by a signal peptidase 

in the endoplasmic reticulum, before transport to the granules 

(Caputo et al., 1993; Dikov et al., 1994). The proteases are then 

stored within the granules as active enzymes after further lim-

ited proteolysis that removes a two-amino-acid activation pep-

tide at their N terminus (Jenne et al., 1988a). This enables the 

protease to assume the correct conformation for access and 

 hydrolysis of substrate (Salvesen and Enghild, 1990). A similar 

process is used in the activation of the mast cell proteases, which 

are also stored as active enzymes in the lysosomal compartment 

(Salvesen and Enghild, 1990; Dikov et al., 1994). Inhibition of 

a specifi c dipeptidyl peptidase, CatC (dipeptidylpeptidase I) can 
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prevent this processing and activation (McGuire et al., 1993). 

Transfection of mammalian COS-7 (Caputo et al., 1993; Smyth 

et al., 1995) or yeast (Pham et al., 1998) cells with granzyme 

cDNA constructs that retained the activation dipeptide resulted 

in the expression of inactive protease. However, the activity 

could be rescued by exogenous treatment of cell lysates or puri-

fi ed granzyme protein with CatC (Kummer et al., 1996; Pham 

et al., 1998), by coexpression of progranzyme and active CatC 

in the same cells or by deleting the dipeptide sequence before 

transfection (Caputo et al., 1993; Smyth et al., 1995).

Further evidence for a critical role of CatC in the processing 

of granzymes and myeloid cell serine proteases came from 

gene-knockout studies, in that a CatC-defi cient mouse was gen-

erated by homologous recombination with an inactive CatC 

gene (Pham and Ley, 1999). Several studies have examined the 

effect of CatC deletion on the activity both of the granzymes 

and the structurally related mast cell and neutrophil proteases 

(Pham and Ley, 1999; Wolters et al., 2001; Adkison et al., 2002). 

Effector lymphocytes generated from these mice were reported 

to be as defi cient as perforin-null mice in their ability to induce 

apoptosis of target cells, although only DNA fragmentation was 

assayed in these studies (Pham and Ley, 1999; Podack, 1999). 

No tryptase and only minimal ASPase activity could be detected 

in the granules isolated from CatC-null lymphocytes (Pham and 

Ley, 1999; Podack, 1999). Thus, it appeared that CatC defi -

ciency effectively recapitulated the GrAB-null phenotype in 

 cytotoxic lymphocytes and would also result in minimal activity 

from the other granzymes.

Given the proposed generic role for CatC in granzyme 

 activation, we reasoned that cytotoxic T lymphocyte (CTL) from 

CatC−/− mice might allow us to study the physiological role of 

perforin in a setting where all of the killer cell granzymes were 

not expressed. Also, as perforin is present in CTLs of both 

GrAB−/− and CatC−/− mice, comparing these CTLs would also 

allow us to determine the physiological role of the remaining 

“orphan” granzymes expressed in the GrAB−/− mice. Surpris-

ingly, we found low but clearly measurable residual GrB ac-

tivity in the absence of CatC expression, and that effector 

lymphocytes from CatC-null mice could induce apoptosis of 

target cells by a mechanism that was indistinguishable from 

classic apoptosis. Unlike GrAB−/− mice, which are exquisitely 

sensitive to infection with ectromelia virus (ECTV; mouse pox), 

CatC-defi cient effector lymphocytes also mediated resistance to 

ECTV in vivo, so that infected mice were as resistant to the 

virus as wild-type C57BL/6 (B6) mice.

Results
CatC-defi cient CTLs induce target 
cell death through apoptosis
It has previously been reported that CatC−/− gene-targeted mice 

lack GrA and -B activities and therefore have severe defects 

of granule-mediated lymphocytotoxicity (Pham and Ley, 1999; 

Podack, 1999). To explore this issue further, we generated allo-

reactive CTLs in standard, one-way (H-2b anti–H-2k), mixed 

lymphocyte reactions and assessed the capacity of B6.CatC−/− 

effector cells to kill mouse MS9II (H-2k) target cells. We had 

previously used time-lapse microscopy at 37°C to characterize 

in real time the morphological and molecular events accom-

panying the death of MS9II target cells in response to allo-

 reactive CTLs raised in B6 or B6.GrAB−/− mice (Waterhouse 

et al., 2006). This methodology allowed us to examine changes 

in cell morphology and the appearance of classic markers of apop-

tosis in response to CTL attack. By adding soluble annexin V 

(AV) and propidium iodide (PI) to the medium, we were able 

to track phosphatidylserine exteriorization (a relatively early 

marker of apoptosis) and loss of plasma membrane integrity 

(a late marker), respectively, as a function of time. Both B6 and 

B6.GrAB−/− CTLs induced classic apoptotic changes, such as 

cell shrinkage, marked membrane blebbing, and nuclear col-

lapse with indistinguishable kinetics (Waterhouse et al., 2006). 

However, a major point of difference was that although B6 

CTLs induced early and marked target cell AV binding, cells 

killed by GrAB−/− CTLs did not stain with AV until very late, 

simultaneously with loss of plasma membrane integrity (Water-

house et al., 2006).

Given that, like GrAB−/− CTLs, CatC−/− CTLs had also 

been found to lack GrA or -B activity (Pham and Ley, 1999), we 

were surprised to fi nd that MS9II cells exposed to CatC−/− 

CTLs underwent morphological and molecular events of apop-

tosis that were indistinguishable from B6 CTLs, both in their 

amplitude and timing. B6 or B6.CatC−/− effector cells were 

added to equal numbers of the much larger and adherent MS9II 

target cells. The time course of death in a single representative 

target cell is shown (Fig. 1 A). In this cell, rounding occurred 

at �1 h 10 min, followed by AV binding at 1 h 45 min and 

PI uptake at 2 h 25 min. Fig. 1 B and Video 1, available at 

http://www.jcb.org/cgi/content/full/jcb.200609077/DC1, illustrate 

the sequence of events for the same cell, including conjugate 

formation with the CTL (t = 0.5 h), cell rounding and plasma 

membrane blebbing (t = 1.5 h), AV binding (t = 2.0 h), and PI 

uptake (t = 2.5 h). By making similar observations on a large 

number of dying target cells, it was possible to compare both 

the morphology and kinetics of death induced by CatC-defi cient 

and -suffi cient CTLs (Fig. 1 C) with those raised in GrAB−/− 

mice (Waterhouse et al., 2006). Taking the time of rounding 

as a common reference point (i.e., t = 0), no difference was 

 observed in the kinetics of cell death (morphological changes; 

AV or PI staining) over populations of cells killed by B6 CTLs 

(n = 20) or B6.CatC−/− CTLs (n = 25). The killing observed in 

these assays was mediated though the granule pathway in that 

CTLs raised simultaneously in perforin-defi cient mice were 

unable to kill the same target cells, as demonstrated both by 

time-lapse microscopy (not depicted) or 4-h 51Cr release assays, 

whereas target cells released 51Cr in response to both wild-type 

and CatC−/− CTLs (Fig. 1 D). Cell death by perforin-induced 

lysis was excluded, as the kinetics and morphology of this form 

of cell death are quite easily distinguished from apoptosis 

 (Waterhouse et al., 2006). We also demonstrated by Western blot 

that the CatC−/− mice had not up-regulated their level of perforin 

or GrB protein expression compared with B6 CTLs (Fig. 1, 

E and F). In total, these observations strongly suggested that the 

CatC-defi cient effector cells induce apoptotic death similar to 

wild-type B6 killer cells, but differing from cell death induced 
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by CTLs raised from mice with structural disruption of both 

their GrA and -B genes.

To exclude the possibility that the aforementioned fi nd-

ings were peculiar to MS9II target cells or the specifi c strain 

combination used to raise allo-reactive CTLs, we exposed 51Cr-

labeled P815 mouse mastocytoma tumor cells (H-2d) to B6 

CTLs stimulated with irradiated BALB/c splenocytes. Unlike 

MS9II cells (which have a relatively long doubling time), the 

DNA of rapidly dividing P815 cells labels well with 125I-UdR, 

so that cells doubly labeled with 51Cr and 125I can be used to 

 simultaneously evaluate plasma membrane permeability and 

DNA fragmentation. Both day 7 primary (Fig. 2 A) and day 3 

secondary (Fig. 2 B) CTLs of B6 mice produced strong 51Cr and 
125I-DNA release that was only slightly diminished when CTLs 

from B6.CatC−/− mice were used. This killing was once again 

mediated through the granule pathway, as doubly stimulated 

perforin-defi cient CTLs induced neither 51Cr or 125I release, 

whereas the cell death induced by day 7 primary B6 CTLs was 

totally inhibited when free calcium in the reaction medium was 

complexed with EGTA (Fig. 2 and Fig. S1, available at http://

www.jcb.org/cgi/content/full/jcb.200609077/DC1).

Additional effector cell types were examined to determine 

whether the cytotoxic activity observed in allo-stimulated 

CatC-null CTLs was also seen in other effector lymphocytes. 

Unfractionated splenic natural killer (NK) cells or purifi ed 

DX5+CD3− cells activated with IL-2 each induced 51Cr release 

from Yac-1 target cells in a perforin-dependent manner, but this did 

not vary whether CatC was expressed or not (unpublished data).

Granule serine protease activity 
in CatC−/− lymphocytes
Although perforin and granzymes synergistically bring about 

target cell apoptosis, it is well recognized that purifi ed perforin 

is unable to induce DNA fragmentation, but only causes cell 

lysis (Duke et al., 1989). When delivered by a CTL or NK cell, 

GrA and -B activate separate signaling pathways, resulting in 

DNA nicking or oligonucleosomal fragmentation, respectively, 

in a perforin-dependent manner (Shi et al., 1992; Beresford 

Figure 1. CatC−/− CD8+ CTLs induce apoptosis in target cells. (A) Kinetics of apoptotic events in a representative MS9II target cell after exposure to BL/6.
CatC−/− effector lymphocytes (>90% CD8+) generated from day 3 secondary-stimulated mixed lymphocyte reaction (H-2b anti H-2k). Phosphatidylserine 
exposure was measured by the fl uorescence of AV binding, and loss of membrane integrity was measured by PI uptake, relative to maximum fl uorescence. 
In these experiments, t = 0 was taken as the time at which target cell rounding occurred. There was no difference in the cumulative number of target cells 
becoming rounded, either in the presence or absence of CatC expression. Images were recorded every 5 min. (B) The morphology of the cell in A is shown 
in the series of photographs. T = 0 h shows the untreated target cell, t = 0.5 h shows CTL–target cell conjugation (CTL is enclosed by a white line and 
marked with an asterisk), and t = 1.5 h shows the round/blebbing target cell. AV binding is clearly evident at t = 2.0 h, and PI uptake is evident by t = 
2.5 h. See Video 1 (available at http://www.jcb.org/cgi/content/full/jcb.200609077/DC1). (C) The duration from rounding to AV binding and AV 
binding to PI uptake was calculated for individual target cells incubated with either B6 or B6.CatC−/− CTL. Mean ± SEM (n = 20 for B6 treated cells, and 
n = 25 for B6.CatC−/− treated cells). (D) BL/6, BL/6.CatC−/−, and B6.pfp−/− effector lymphocytes (H-2b anti H-2k; >90% CD8+) were incubated with 
51Cr -labeled MS9II target cells in a 4-h assay at the effector/target ratios indicated. In each case, the data points show the mean of independent experi-
ments (each of which was performed in triplicate) ± SEM. The number of independent experiments performed for each effector type is indicated in the fi gure. 
(E) Western blot analysis showing the presence of perforin using the rat monoclonal antibody PI-8 in the lysates of activated T cells from the various mouse 
strains indicated. Two pools of two mice (shown in separate lanes) were used for each strain. Blot was reprobed with an anti-tubulin antibody. 
(F) Western blot analysis showing the presence of GrB in the lysates of activated T cells from the various mouse strains indicated. Blot was reprobed with 
an anti-actin antibody.
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et al., 1999). Rapid fragmentation of target cell DNA, a hallmark 

of apoptosis induced through the granule-exocytosis mecha-

nism, in most cell types is largely due to the action of active 

GrB (Heusel et al., 1994; Trapani et al., 1998a,b; Pardo et al., 

2002). Consistent with these previous fi ndings, we found that 

DNA fragmentation was abolished in P815 target cells exposed 

to GrAB−/− CTLs, whereas appreciable 51Cr release was still 

observed, as previously reported (Simon et al., 1997; Waterhouse 

et al., 2006; Fig. 2). In contrast, CatC-null CTLs were effi ciently 

able to induce DNA fragmentation of P815 cells (Fig. 2). 

Although an earlier study failed to fi nd evidence of GrA or -B 

activity in the lymphocytes of CatC-null mice (Pham and Ley, 

1999), the similar kinetics of the apoptotic events detailed in 

CatC-suffi cient and -defi cient CTLs (Fig. 1) suggested that some 

serine protease (i.e., granzyme) activities might be generated in 

allo-stimulated, CatC-defi cient CTLs. In addition to activating 

granzymes, CatC has been reported to be critical for activation 

of serine proteases in monocytes/neutrophils (Adkison et al., 

2002) and mast cells (Wolters et al., 2001). To show that inacti-

vation of the CatC gene abolished the activity of certain specifi c 

serine proteases in myeloid cells and to reconfi rm the myeloid 

cell phenotype of the CatC−/− mice, CatG and neutrophil elas-

tase (NE) were assayed in bone marrow neutrophils purifi ed 

from mice administered granulocyte colony-stimulating factor, 

as described previously (Adkison et al., 2002). The hydrolysis 

of NE- and CatG-specifi c substrates was measured in a chromo-

genic assay using lysates of bone marrow cells from wild-type 

B6 and B6.CatC−/− mice. As expected (Adkison et al., 2002), 

the activity of both enzymes was virtually abolished (reduced 

by >98%) in the absence of CatC expression (Fig. S2, available 

at http://www.jcb.org/cgi/content/full/jcb.200609077/DC1).

To test the possibility that the CTLs of CatC−/− mice were 

still capable of some residual granzyme activation, lysates pre-

pared from allo-stimulated primary and secondary CD8+ CTLs 

(>90% pure) were assayed for their capacity to hydrolyze the 

GrB-specifi c substrate Ala-Ala-Asp-S-benzyl (cleavage after 

asp or ASPase activity), Na-CBZ-L-lysine thiobenzyl ester 

(BLT; to measure trypsin-like GrA [tryptase] activity) and Phe-

Leu-Phe-S-Benzyl (chymotrypsin-like or chymase activity; 

Fig. 3). It became clear that although GrB activity was mark-

edly reduced, it was not abolished in the CatC−/− cells. In 

 kinetic assays, ASPase activity was reduced but still clearly 

 detectable in the lysate of day 7 primary (Fig. 3 A) or day 3 sec-

ondary (Fig. 3 D) allo-stimulated CatC-null CTLs, albeit with 

some delay compared with CatC-suffi cient cells. Not surpris-

ingly, there was greater ASPase activity in twice-stimulated 

CD8+ cells; however, maximum substrate hydrolysis was 

reached by 10 min in both cases. The ASPase substrate, Ala-

Ala-Asp-SBzl is cleaved only by GrB: it is not cleaved by cas-

pases, proapoptotic cysteine proteases that also cleave after 

specifi c aspartate residues. We also performed an additional 

 important control to examine the reliance of substrate turnover on 

the presence of bona fi de granzyme activity: we demonstrated 

that no ASPase activity whatsoever was present in the CTLs of 

GrAB-null cells, in which the GrB gene is structurally disrupted 

(Fig. 3, A, D, and E). This observation ruled out any incidental 

cleavage by proteases other than GrB as a cause of substrate 

hydrolysis in the CatC-null cells. The presence of ASPase 

 activity in the CatC-null lysate was again confi rmed when lysates 

containing equal amounts of protein from one of the experi-

ments shown in Fig. 3 D were progressively diluted and the 

 assay was performed for 15 min. At each lysate dilution, the 

level of ASPase activity was about one third of that seen in B6 

lysates (Fig. 3 E). As expected, normal activity was noted in the 

B6.pfp−/− lysates. As the substrate used in these assays is spe-

cifi c for GrB, these results indicate that a proportion of the GrB 

precursor expressed in the CatC-null effectors had been acti-

vated. In contrast to ASPase activity, no measurable tryptase 

(GrA) activity was detected in either the CatC-null or GrAB−/− 

lysates, indicating that GrA (and the second tryptase, GrK) 

were not activated in the CatC−/− CTLs (Fig. 3, B and F). As 

expected, the turnover of the chymase substrate in the same lysates 

was not reduced in any of the lysates tested (Fig. 3, C and G). 

This indicated that CatC is not essential for the processing of at 

least some of the granzymes with chymase activity, presumably 

GrC–F (Trapani, 1998).

CatC-null mice are relatively resistant 
to ECTV
It was previously demonstrated that normally resistant B6 mice 

lacking both GrA and -B or perforin are incapable of controlling 

Figure 2. CatC−/− CTLs induce both plasma membrane damage and DNA 
fragmentation in target cells. 51Cr release and 125I-DNA release from target 
cells were used as measures of membrane damage and DNA fragmenta-
tion, respectively. 51Cr- and 125I-UdR–labeled P815 mastocytoma cells were 
coincubated for 4 h with day 7 primary stimulated (A) or day 3 secondarily 
stimulated (B) effector cells (H-2b anti-H-2d) from BL/6 and BL/6.CatC−/− 
mice. BL/6.GrAB−/− and BL/6.pfp−/− effectors were also examined in B. 
The data points show the mean of independent experiments (each of which 
was performed in triplicate) ± SEM. The number of independent experi-
ments performed for each effector type is indicated in the fi gure. E:T, effector/
target ratio.



GRB ACTIVATION AND CTL ACTIVITY IN CATC−/− MICE • SUTTON ET AL. 429

primary infection by the natural mouse pathogen ECTV, an 

 orthopoxvirus (Mullbacher et al., 1999a,b). These mice are 

 unable to control ECTV replication, and viral load in their 

spleen is several orders of magnitude higher than B6 mice 

(Mullbacher, 2003). We therefore estimated viral titers in the 

spleens and livers of CatC-null and -suffi cient B6 mice after 

ECTV  infection into the footpad (Fig. 4). Viral titers in spleen 

and liver were estimated at 2, 4, 6, and 8 d after infection and 

showed no measurable difference at any time point. In contrast, 

defi ciency of both GrA and -B has been shown to increase viral 

titer in the liver and spleen �10,000-fold by days 6 and 8, 

 compared with granzyme-expressing mice (Mullbacher et al., 

1999b). In addition, we found that the CatC-null mice had only 

a slightly higher mortality than wild-type mice, but far lower 

than that seen in perforin or GrAB-defi cient mice (unpublished 

data). Overall, our data indicated that the phenotype of CatC-

null mice with respect to ECTV infection in vivo is distinct 

from that of perforin or GrAB-defi cient mice on the same ge-

netic background; namely, perforin- and GrAB gene-disrupted 

mice are far more susceptible.

Discussion
The lymphocyte and myeloid cell serine proteases are unusual 

amongst proteolytic enzymes in that they are stored in secretory 

lysosomes as active enzymes (Salvesen and Enghild, 1990). 

 Activation is a two-step process and involves removal of the 

leader sequence followed by cleavage of two fi nal residues at 

the N terminus at the time of granule packaging (Masson and 

Tschopp, 1987; Bleackley et al., 1988; Caputo et al., 1993). 

Studies using protease inhibitors or in which purifi ed CatC 

Figure 3. Serine protease activities in CatC-null and -expressing day 7 
primary and day 3 secondary allo-stimulated CD8+ lymphocytes. Approxi-
mately 20 μg of whole cell lysate protein prepared from purifi ed CD8+ 
T cells from day 7 primary (A–C) or day 3 secondary (D–G) CTLs were as-
sayed for various granzyme activities as a function of time. In A, D, and E, 
ASPase activity was measured by hydrolysis of the peptide thioester sub-
strate Boc-Ala-Ala-Asp-S-Bzl, which is specifi cally cleaved by Gr B. In E, 
single lysates from one of the experiments shown in D were progressively 
diluted and tested in triplicate for 15 min. (B and F) Tryptase activity was 
measured by cleavage of BLT; (C and G) chymotrypsin-like (chymase) activity 
was measured by cleavage of Suc-Phe-Leu-Phe-SBzl. The data points show 
the mean of independent experiments (each of which was performed in 
triplicate) ± SEM. The number of independent experiments performed for 
each effector type is indicated in the fi gure.

Figure 4. ECTV titers in the spleens and livers of CatC-expressing and -null 
mice. Mice were infected in the hind footpads with ECTV as described in 
Materials and methods. Groups of three mice were killed on days 2, 4, 6, 
and 8 after infection, and their organs were assayed for virus titers by 
plaque assay on BSC-1 cell monolayers. In each panel, the horizontal line 
indicates the detection limit of the assay.
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was added to recombinant granzymes (Caputo et al., 1993; 

 McGuire et al., 1993; Smyth et al., 1995; Kummer et al., 

1996; Pham et al., 1998) or, fi nally, with CatC-knockout mice 

(Pham and Ley, 1999) indicated that CatC is the principal protease 

that removes the activation dipeptide. Our current study clearly 

confi rms that CatC is responsible for virtually all of the GrA 

and most of the GrB activity in CTLs. However, our results also 

clearly indicate that not all of the GrB activity is eliminated in 

CatC−/− mice and that the extent of the immune defect of CatC-

null mice may have been overestimated in the past.

Surprisingly, we have found that although CatC seems to 

be critical for activating GrA, it is not essential for GrB activity. 

As a result, CatC-defi cient mice retain substantial CTL cyto-

toxicity, inducing apoptosis in vivo and in vitro. The reduced 

GrB activity of CatC−/− CTLs was still suffi cient to induce 

DNA fragmentation in target cells that was comparable to that 

induced by wild-type effector cells. This indicated that the 

quantity of GrB released by wild-type CTLs is well in excess of 

the amount required to trigger DNA fragmentation in P815 

cells. Much of the DNA fragmentation induced by GrB is nor-

mally reliant on caspase activation (Sarin et al., 1998; Trapani 

et al., 1998a), so the suffi ciency of CatC−/− CTLs in inducing 

DNA fragmentation indicates that the quantity of GrB deliv-

ered by these cells is adequate to effectively initiate caspase 

processing. Similarly, live-cell imaging demonstrated that target 

cells exposed to CatC−/− CTLs died by classic apoptosis: both 

the morphology and the acquisition of apoptotic markers (phosphat-

idylserine exposure, PI uptake) as a function of time were in-

distinguishable between cells incubated with CatC-defi cient 

or -suffi cient killer cells. In vivo, CatC-null mice were far less 

susceptible to both GrAB−/− and pfp−/− mice to ECTV, and viral 

titers generated in their livers and spleens were comparable to 

those in wild-type B6 mice. Indeed, the kinetics of virus repli-

cation in CatC−/− mice matched that seen with GrA−/− mice 

(Mullbacher et al., 1996,b), which is consistent with our fi nd-

ings that the CatC−/− lacked GrA expression but retained mea-

surable GrB activity. Overall, the current study makes it clear 

that CatC-null mice are considerably less immunologically com-

promised than either GrA/B-cluster or perforin-defi cient mice 

and that alternative mechanisms exist for GrB activation in the 

absence of CatC.

A lack of neutrophil serine protease activity has been 

 observed in CatC−/− mice (Adkison et al., 2002), as was confi rmed 

in our study. A role for these proteases in defense against bacte-

rial and fungal pathogens has been suggested (Belaaouaj et al., 

1998; Tkalcevic et al., 2000), but the only study that addressed 

this issue, surprisingly, showed that the absence of CatC con-

tributed to increased survival from sepsis (Mallen-St Clair et al., 

2004). A defi ciency of cell-mediated immunity is not a promi-

nent feature of CatC defi ciency in humans. Most CatC-defi cient 

patients present with Papillon-Lefevre syndrome (PLS), a rare 

autosomal recessive disorder (Gorlin et al., 1964; Hart et al., 

1999) marked by severe, early onset periodontal disease, with 

subsequent premature loss of both primary and secondary denti-

tion, and palmoplantar hyperkeratosis (Nuckolls and Slavkin, 

1999; Toomes et al., 1999). Although the critical CatC sub-

strates responsible for PLS have not been defi ned, it has been 

suggested that CatC may play a role in maintaining the structure 

and integrity of the epidermis surrounding the teeth (Nuckolls 

and Slavkin, 1999; Lundgren et al., 2005). An increased suscep-

tibility to bacterial infections both in the mouth and within 

 organs such as the liver has been reported and may refl ect defects 

in neutrophil activity, manifested as an absence of CatG, NE, 

and protease 3 activity (de Haar et al., 2004; Pham et al., 2004; 

Lundgren et al., 2005). Recent reports have produced somewhat 

confl icting results with regard to lymphocyte function in PLS 

patients. Three of the seven patients described in the aforemen-

tioned studies also had a slight reduction in GrA protein levels, 

but considerable GrA and -B activities were detected (Pham 

et al., 2004), and IL-2–activated T cells generated from these 

patients were able to effi ciently kill K562 target cells. However, 

naive NK cells isolated from a further 20 PLS patients (repre-

senting seven families) displayed an �50% reduction in activity 

against K562, compared with a pool of normal healthy controls 

(Lundgren et al., 2005). The profi le of effector molecules 

 expressed by these two cell types is distinct, perhaps accounting 

for the apparently discordant results (Sedelies et al., 2004). In 

particular, resting NK cells have very low levels of GrB but a 

very high constitutive level of GrH, whereas GrB expression in-

creases markedly with IL-2 stimulation (Sedelies et al., 2004). 

In another study, it was shown that the NK cells of a PLS patient 

exhibited GrB activity after stimulation with IL-2 (Meade et al., 

2006). We have found similar results in CatC-null NK cells 

 (unpublished data).

CatC, an amino-dipeptidase, belongs to a family of lyso-

somal papain-like cysteine proteases (Rao et al., 1997). Unlike 

related proteases, which function as monomeric endopepti-

dases, CatC is an oligomeric exopeptidase with a general pre-

ference for acidic N-terminal sequences (see below) until it 

encounters a “stop sequence,” usually a charged residue, such as 

arginine, lysine, or proline (Tran et al., 2002). However, CatC is 

also well recognized for its ability to cleave the dipeptide at 

the N terminus of serine proteases found in lymphocytes and 

neutrophils. Exposure of the invariant N-terminal isoleucine in 

all granzymes allows it to form an ion pair with the aspartate 

within the catalytic pocket, which leads to the formation of a 

functional catalytic center (Salvesen and Enghild, 1990). It is 

unclear whether further trimming is prevented, as the isoleucine 

is seen as a stop sequence, or whether the ion pair formation is 

instantaneous, which makes the N terminus unavailable for fur-

ther processing. In the absence of CatC, other less specifi c 

 lysosomal enzymes could potentially remove the activation 

 dipeptide. However, this degree of redundancy is limited, as we 

showed that GrB activity remains markedly compromised, 

whereas GrA activity remains almost completely absent. Inter-

estingly, an analogous study by Wolters et al. (2001) showed 

that tryptases but not chymases are still activated in CatC−/− 

mast cells. Although Pham and Ley (1999) were unable to fi nd 

evidence for dipeptide-deleted GrA and -B, they did, surpris-

ingly, fi nd that 50% of the GrC they were able to purify from 

CatC-defi cient CTLs had had its activation dipeptide removed, 

and they suggested that an alternative protease, DPPIV, might 

be responsible. This seems unlikely to us, as substrate analysis 

has suggested that DPPIV has a strict preference for proline in 
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the P1 position, although alanine was tolerated in two identifi ed 

substrates (Leiting et al., 2003). Comparison of the dipeptide 

sequence in serine proteases found that all of the granzymes, 

with the exception of GrA, have an acidic residue (Glu) in the 

P1 position (Lobe et al., 1986; Jenne et al., 1988a,b; Jenne et al., 

1989), as do the mast cell chymases (McGuire et al., 1993; 

Dikov et al., 1994), carboxypeptidase A (Reynolds et al., 1989), 

and NE (Sturrock et al., 1998). In contrast, GrA has arginine 

(Hershberger et al., 1992), CatG has lysine (Heusel et al., 1993), 

and the mast cell tryptases have glycine (Dikov et al., 1994). 

Therefore, in terms of the specifi city of an alternative dipepti-

dase acting in the absence of CatC, there is not a consistent 

preference for a specifi c residue in the P1 position. We are cur-

rently attempting to identify the proteases responsible for par-

tially compensating for CatC’s absence, using biochemical and 

genetic approaches.

Materials and methods
Mice
Inbred B6 (H-2b), BALB/c (H-2d), and C3H/J (H-2k) mice were purchased 
from the Walter and Eliza Hall Institute of Medical Research. GrA and GrB 
cluster–defi cient (GrAB−/−) mice (Simon et al., 1997) were obtained from 
M. Simon (Max-Planck-Institut für Immunbiologie, Freiburg, Germany) and 
were maintained at the Peter MacCallum Cancer Centre. Mice were geno-
typed using the PCR screening protocols previously described (Simon 
et al., 1997). Originally, the GrA−/− mice (Ebnet et al., 1995) were derived 
on the B6 background and the GrB cluster–defi cient mice (Heusel et al., 
1994) on the129 background. After appropriate matings and selection of 
GrAB−/− progeny, the mice were backcrossed for eight generations to B6. 
The CatC (dipeptidyl peptidase 1) knockout (B6.CatC−/−) mice (Pham and 
Ley, 1999) were provided by C. Pham (Washington University School of 
Medicine, St. Louis, MO) and maintained at the Peter MacCallum Cancer 
Centre. The B6.CatC−/− mice had previously been backcrossed to B6 for 
11 generations. We used a PCR screening protocol provided by C. Pham 
to confi rm disruption of the CatC gene and acquisition of the Lac Z cassette 
in knockout animals (Pham and Ley, 1999). We also recapitulated the 
 myeloid phenotype of the mice by confi rming the absence of active CatG 
and NE from neutrophils (Fig. S2; see the following paragraph). Mice 
5–10 wk of age were used in all experiments, and the studies conformed 
to Peter MacCallum Cancer Centre and the John Curtin School of Medical 
Research animal experimental ethics committee guidelines.

Enzyme activity assays
Whole cell lysates of CTLs generated in mixed lymphocyte cultures were 
normalized for protein content and analyzed for granule serine protease 
activity by the hydrolysis of synthetic peptide thiobenzylester substrates: for 
ASPase activity, Boc-Ala-Ala-Asp-S-Bzl (a gift from J. Powers, Georgia Insti-
tute of Technology, Atlanta, GA); for tryptase activity, BLT (Sigma-Aldrich); 
and for chymotrypsin-like (chymase) activity, Suc-Phe-Leu-Phe-SBzl (Enzyme 
Systems Products), as described previously (Edwards et al., 1999; Davis 
et al., 2003). The failure of CatC−/− mice to activate the bone marrow–
 derived serine proteases NE and CatG was confi rmed by the lack of cleav-
age of specifi c peptide paranitroanilide substrates in chromogenic assays 
as previously described (MacIvor et al., 1999; Adkison et al., 2002). 
 Absorbance readings (at 405 nM) were taken at 15 min. The data points 
shown represent the means ± SEM.

Cell culture and reagents
P815 (mouse mastocytoma; H-2d) and MS9II (mouse fi broblast; H-2k) cells 
were maintained in DME (JRH Bioscience) supplemented with 10% (vol/
vol) FCS (JRH Bioscience), 2 mM glutamine (JRH Bioscience), 100 U/ml 
penicillin, 100 μg/ml streptomycin (Invitrogen), and 1 mM sodium pyru-
vate (Invitrogen). Primary mouse CTLs were maintained in supplemented 
RPMI (Invitrogen) also containing 100 μM nonessential amino acids and 
0.1 mM 2-mercapto-ethanol. Western blot analysis (Sutton et al., 2000) 
was used to confi rm perforin expression using the rat PI-8 antibody 
(Kamiya Biomedical; Kawasaki et al., 1990) and GrB expression using the 
rat anti-GrB antibody (eBioscience).

Generation of cytotoxic lymphocytes
Allogenic CTLs capable of recognizing H-2d expressed on P815 cells or 
H-2k on MS9II cells were generated in one way in vitro mixed lymphocyte 
reactions. Splenocytes isolated from B6 and the gene-targeted mouse strains 
listed above were cultured for 7 d in RPMI medium with lethally irradiated 
BALB/c (H-2d) or C3H/J (H-2k) splenocytes. The stimulator/responder cell 
ratio was 1:1, and responder cells were seeded at 2 e6 cells per milliliter 
of culture medium in 24-well plates. In some experiments, the cells were re-
stimulated in a similar fashion for a further 3 d. Cell death induced by CTL 
populations was assessed by 51Cr and 125I-DNA release, as described pre-
viously (Sutton et al., 1997).

Time-lapse confocal microscopy
Time-lapse confocal microscopy was performed essentially as previously 
described (Waterhouse et al., 2006). In brief, MS9II cells were plated and 
allowed to adhere to 96-well culture plates and incubated overnight 
at 37°C in a humidifi ed CO2 incubator. The plates were transferred to a 
temperature-controlled stage (Prior Proscan) maintained at 37°C on a micro-
scope (IX-81; Olympus). PI (Sigma-Aldrich) was added to the cultures, in 
tissue culture medium (DME) at 50 ng/ml and AV-FLUOS (Roche) at 2 μg/ml. 
Cells were exposed to an equal number of activated CD8+ CTLs and 
viewed for the times indicated. Images were captured at specifi ed intervals 
using a charge-coupled device camera (ORCA-ER; Hamamatsu) controlled 
by MetaMorph software (Universal Imaging Corp.). The images were 
viewed with an LCPlanFl objective lens at 20× (NA 0.4). As the fl uores-
cence intensities of AV-FLUOS and PI varied, we plotted the fl uorescence 
reading for each frame relative to the maximum for that fl uorochrome over 
the entire time course (using MetaMorph and Excel [Microsoft]), after sub-
traction of background fl uorescence at each time point. For each fl uoro-
phore, the maximum fl uorescence plotted was therefore defi ned as 1.0, 
and baseline fl uorescence was 0.

Infection with ECTV in vivo
The kinetics of ECTV replication were estimated as previously described 
(Mullbacher et al., 1996). Mice were infected with 103 pfu ECTV (Moscow 
strain) into the footpad. Three mice were killed on days 2, 4, 6, and 8 after 
infection, and liver, spleen, and blood were harvested. The viral titers 
in spleen and liver were determined as described previously (Mullbacher 
et al., 1996).

Online supplemental material
Fig. S1 demonstrates a chromium release assay showing that apoptosis 
 induced by CD8+ CTLs is granule mediated. Fig. S2 demonstrates a chromo-
genic substrate cleavage assay showing CatG and NE activities in CatC-null 
and -expressing neutrophils. Video 1 is a time-lapse video of CatC-null CTL-
induced death of an MS9II target cell. Online supplemental material is avail-
able at http://www.jcb.org/cgi/content/full/jcb.200609077/DC1.
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