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Introduction
The ER is a three-dimensional membranous network that 

 extends throughout the cell, and is organized into discrete 

 domains: the nuclear envelope, the smooth ER, and the rough 

ER. The ER participates in a variety of cellular functions, 

such as protein and lipid synthesis, the regulation of intra-

cellular calcium levels, degradation of glycogen, and detoxifi ca-

tion reactions (Baumann and Walz, 2001). The fi ne structure 

of the ER in any given cell may be organized depending on 

which of these functions predominates. For example, during 

myogenesis, the ER differentiates into the sarcoplasmic retic-

ulum, which is an ER specialized in Ca2+ regulation (Flucher, 

1992). Proteins and lipids synthesized in the ER are trans-

ported to their destinations by the secretory pathway, and dif-

ferent cells use the secretory pathway to varying degrees. In 

addition, the amount of exocytic vesicular traffi c may vary in 

a cell during development.

Drosophila melanogaster oogenesis is a good model sys-

tem to study how cells prepare for the varying requirements of 

vesicular transport activity. The D. melanogaster oocyte is 

 interconnected with 15 nurse cells by ring canals (Fig. 1 A; 

Robinson and Cooley, 1996), and cytoplasm transported from 

nurse cells to the oocyte constitutes a major contribution to 

 oocyte growth (Mahajan-Miklos and Cooley, 1994). Another 

source for oocyte growth is yolk taken up during vitellogenesis 

(stages 8–10), when the oocyte becomes highly endocytic. 

 During vitellogenesis, the rate of oocyte growth overtakes the 

rate of nurse cell growth such that, ultimately, the oocyte vol-

ume equals the total volume of the 15 nurse cells. In addition, a 

high density of microvilli forms on the oocyte surface during 

these stages (Mahowald, 1972). Therefore, a large amount of 

membrane must be added to the oocyte plasma membrane dur-

ing  vitellogenesis. However, mechanisms for increasing exo-

cytic membrane traffi cking is poorly understood.

In this study, we identifi ed a novel gene, jagunal, which is 

required for oocyte and bristle growth. The jagunal gene en-

codes a novel conserved ER membrane protein. We show that 

Jagunal is required for reorganizing the ER through ER cluster-

ing in the oocyte during vitellogenesis. The failure to reorganize 

the ER in jagn mutant oocytes results in reduced vesicular traf-

fi c and slowed cell growth. We propose that Jagunal is involved 

in reorganizing the ER in cells that must increase exocytic 

membrane traffi c during development.

Results
Germline clones of jagunal exhibit defects 
in oocyte integrity and growth during 
stages 10 and 11
After the completion of vitellogenesis, the D. melanogaster 

oocyte doubles its volume within 30 min to reach its maxi-

mum size (Fig. 1 A). The fi nal growth of the oocyte depends on 

rapid cytoplasm transport from nurse cells. Mutations that af-

fect the ability of nurse cells to transport cytoplasm result in the 
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production of small eggs (Mahajan-Miklos and Cooley, 1994); 

this phenotype has been referred to as “dumpless.” To identify 

essential genes involved in oocyte growth, we examined a col-

lection of lethal mutations on chromosome 3R that were made 

(Yohn et al., 2003) and preselected for a small egg phenotype in 

Ruth Lehmann’s laboratory at New York University (New York, 

NY). We found a mutation that severely affects oocyte growth 

and named it jagunal (jagn), which means small egg in Korean. 

Germline clones (GLCs) of jagunal (jagnQ21X) showed a fully 

penetrant dumpless phenotype with severe defects in oocyte in-

tegrity. Four additional jagn alleles were isolated from a non-

complementation screen, three of which were lethal and one 

(jagnD16N) that was semilethal (Fig. 1 H). Homozygous mutant 

jagnQ21X, jagnK38X, and jagnW153X animals died during the fi rst 

and second instar larval stages. GLCs of jagnK38X and jagnW153X 

showed a dumpless phenotype.

jagn mutant oocytes appeared normal until stage 9. Dur-

ing stage 10, the anterior region of the oocyte began to detach 

from nurse cells and follicle cells (Fig. 1 B, arrow). We exam-

ined the phenotype in live egg chambers using a protein trap 

line (G413) that produces a GFP fusion with Basigin (Bsg) and 

labels plasma membranes (Fig. 1 C; Morin et al., 2001). In time-

lapse images, Bsg-GFP allowed us to view both rapid oocyte 

growth caused by intercellular cytoplasm transport from nurse 

cells, and ooplasm streaming in the oocyte during stage 11 

(Video 1, available at http://www.jcb.org/cgi/content/full/jcb

.2007001048/DC1). As observed in fi xed egg chambers, live 

jagn mutant oocytes expressing Bsg-GFP detached from other 

cells at the anterior region (Fig. 1 D, arrow). In severely affected 

mutant egg chambers, the oocyte detached from nurse cells 

completely and the cytoplasm of nurse cells leaked into the 

space between nurse cells and the oocyte (Fig. 1 E, arrow; and 

Video 2). In more mildly affected egg chambers, the oocyte was 

connected to nurse cells, and intercellular cytoplasm transport 

proceeded to some extent during stage 11 (Video 3). However, 

the oocyte failed to grow to its maximum size. GLC phenotypes 

of jagunal were less severe in younger fl ies, likely because of 

the perdurance of wild-type gene products expressed before the 

formation of jagn mutant clones. Therefore, we focused on the 

phenotypes in egg chambers from females at least 7 d old.

Jagunal is required for bristle growth 
and ridge structure
To determine whether the growth defect caused by jagn muta-

tions is oocyte specifi c, we examined the growth of jagn mutant 

bristles by making somatic cell clones. jagn mutant bristles 

were thinner and shorter than wild-type bristles. This defect was 

observed in several bristle types: wing anterior margin bristles 

(Fig. 1 F), microchaetes (Fig. 1 G), and macrochaetes (not de-

picted). jagn mutant bristles also exhibited a defect in their sur-

face structure. During the development of bristles, the plasma 

membrane forms bulges between the 8–12 actin bundles associ-

ated with the plasma membrane, and the secretion of cuticle 

produces a ridged structure (Overton, 1967). Wild-type bristles 

contain several parallel ridges with deep valleys between them, 

whereas jagn mutant bristles have a weak ridge structure with 

shallow valleys (Fig. 1 G, inset).

Figure 1. Jagunal is required for oocyte and bristle growth. (A) D. mela-
nogaster egg chambers. Egg chambers before (stage 10), during (stage 
11), and after (stage 12) nurse-cell dumping are shown with nuclear 
lacZ staining. Egg chambers are composed of germline cells (15 nurse 
cells and the oocyte) surrounded by somatic follicle cells. All egg chamber 
images are oriented with anterior to the left. (B) jagnQ21X GLCs were 
stained with rhodamine-conjugated phalloidin (red) to visualize F-actin 
and Hts-RC antibodies (green) to visualize ring canals. Mutant oocytes 
detach from nurse cells and follicle cells at the anterior region (arrow). 
(C–E) Live egg chambers were examined by Bsg-GFP fl uorescence, which 
reveals plasma membranes and vesicles throughout the ooplasm. Wild-
type egg chambers (C) and jagnQ21X GLCs (D and E) are shown. Mutant 
oocytes detach from nurse cells and follicle cells at the anterior region 
(D, arrow), and the defect becomes more severe as oogenesis proceeds 
(E, arrow). (F) jagnQ21X clones were marked by yellow (y−). Mutant wing an-
terior margin bristles are thinner and shorter than their wild-type counter-
parts. (G) A scanning electron microscope image of wild-type (arrowhead) 
and jagnQ21X (arrow) microchaetes. Mutant microchaetes are thinner and 
shorter than wild-type microchaetes, and have weak ridges (inset in G). 
(H) Domains of Jagunal and mutation sites in jagn alleles. Jagunal con-
tains four predicted transmembrane domains (TMs) and a putative ER 
 retention motif (dilysine motif) at the C-terminal end. Mutation sites in all 
jagn alleles were identifi ed in the open reading frame of the jagunal gene 
(CG10978). jagnQ21X is the original mutation isolated from the Lehmann 
collection, and the other four alleles were isolated from a noncomplemen-
tation lethal screen.
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The jagunal gene encodes a conserved 
protein with four predicted 
transmembrane domains
The jagn mutation mapped to the chromosome interval 83C1- 

83D4 as delineated by the proximal breakpoint of the non-

complementing deficiency Df(3)Tp110 and the proximal 

break point of the complementing defi ciency Df(3R)Tp13. We 

mapped the jagn mutation further by single-nucleotide poly-

morphism mapping to within a 70-kb region containing 20 

genes. By sequencing open reading frames of genes in the 70-kb 

interval, we identifi ed mutation sites in all jagn alleles within 

a predicted gene, CG10978 (Fig. 1 H). The viability and fer-

tility defects associated with all jagn alleles were rescued by 

ubiquitous expression of a CG10978 cDNA, confi rming that 

CG10978 is jagn.

CG10978 (jagn) encodes a protein of 197 amino acids 

with predicted homologues in the genomes of human, mouse, 

zebrafi sh, mosquito, and Caenorhabditis elegans (Fig. 2). 

D. melanogaster Jagunal shows 31% identity and 51% similar-

ity to the human homologue. The fi rst 40 amino acids of Jagunal 

are highly conserved, and a semilethal allele, jagnD16N, is a 

missense mutation at a conserved Asp residue in the N-terminal 

region (Fig. 2, asterisk), suggesting that the N-terminal region 

has an important function. The protein has four predicted 

transmembrane domains and a putative dilysine motif at the 

C-terminal end (Fig. 2, boxed area). The dilysine motif is known 

to be an ER-retention motif for ER membrane proteins 

(Jackson et al., 1993). Jagunal homologues in human and 

zebrafi sh match the consensus of the motif (KKXX), whereas 

arginine replaces lysine in D. melanogaster Jagunal (RKXX). 

However, the C-terminal sequence is likely to act as an ER 

 retention motif; some substitutions of lysine by arginine are 

p ermitted in the dilysine motif (Teasdale and Jackson, 1996), 

and interference with this sequence in Jagunal alters its local-

ization (see the following section).

Figure 3. Localization of Jagunal in egg chambers. (A) Western blot anal-
ysis of wild-type (lane 1) and Jagunal-overexpressing (lanes 2 and 3) ovary 
extracts. The actin-Gal4 driver (lane 2) and germline triple drivers (lane 3) 
were used to overexpress Jagunal in the ovary. In wild-type extract, two 
nonspecifi c bands were detected, but endogenous Jagunal was barely visi-
ble. However, overexpressed Jagunal was detected (arrow). (B and B′) 
 Jagunal-overexpressing follicle cells were marked with GFP (indicated by a 
bar). Jagunal expression was elevated in GFP-positive cells (red). The folli-
cle cells are shown with the basal membrane at the top. (C–E and G) Jagu-
nal was overexpressed using the actin-Gal4 driver. (C) Jagunal is enriched 
at the nuclear envelope during early stages. (D–D″) Egg chambers ex-
pressing EYFP-ER (green) were stained for Jagunal (red). Jagunal colocal-
izes with EYFP-ER and becomes enriched in the oocyte during early stages. 
(E and G) Jagunal becomes enriched at the oocyte subcortex during stages 
9 and 10 (arrows). (G–G″) Jagunal enriched at the oocyte subcortex 
(arrow) is near cortical actin, but does not colocalize with cortical actin. 
(F and J) Localization of Jagn-Venus in egg chambers. For the Jagn-Venus 
construct, Venus was inserted between the fi rst and second transmembrane 
domains (J, bottom). Jagn-Venus localizes at the ER. (H and I) Localization 
of Jagn-GFP in egg chambers. For the Jagn-GFP construct, GFP was fused 
to the C terminus (I, bottom). In addition to ER localization, Jagn-GFP local-
izes at the plasma membrane of follicle cells (I, arrow) and the oocyte 
(H, arrowhead), including ring canals (H, arrow). Localization of Jagn-GFP 
to follicle cell plasma membrane is specifi c to stage 10. Bars: (A–F and 
H–J) 20 μm; (G) 5 μm.

Figure 2. Alignment of Jagunal homologues. Jagunal homologues from 
D. melanogaster (NP_649585; D), C. elegans (NP_493559; C), zebrafi sh 
(NP_001005774; Z), and human (AAH32101; H) are shown. Four pre-
dicted transmembrane domains in D. melanogaster Jagunal are indicated 
by lines drawn over the sequence, and a putative dilysine motif at the 
C-terminal end is indicated by a boxed area. The mutation site in a semi-
lethal allele, jagnD16N, is indicated by an asterisk.
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Jagunal is an ER membrane protein 
and enriched in the oocyte subcortex 
during vitellogenesis
To examine the subcellular localization of Jagunal, we made an 

antibody against Jagunal. Unfortunately, the antibody did not 

detect endogenous Jagunal proteins in ovaries by Western blot-

ting or immunofl uorescence. However, overexpressed Jagunal 

was detected (Fig. 3, A and B), and because ectopic expression 

of Jagunal rescued the lethality of jagn mutations, the localiza-

tion of ectopically expressed Jagunal likely refl ects that of 

 endogenous Jagunal. In Western blot analysis, overexpressed 

Jagunal migrated slightly faster than the expected molecular 

weight of 23 kD on a denaturing gel (Fig. 3 A, arrow); several 

background bands were also detected. In immunofl uorescence, 

a strong signal was detected in cells overexpressing Jagunal 

(Fig. 3 B). Jagunal colocalized with an ER marker, EYFP-ER 

(EYFP fused to the KDEL ER retention sequence; Fig. 3 D; 

LaJeunesse et al., 2004). Moreover, the distribution of Jagunal 

showed a characteristic ER pattern during early stages, where it 

was enriched at the nuclear envelope (Fig. 3, C and D). Jagunal 

began to be enriched in the oocyte during stages 2–3, where it 

was uniformly distributed in the cytoplasm (Fig. 3 D). During 

stages 9 and 10, Jagunal became concentrated in the oocyte sub-

cortex adjacent to follicle cells (Fig. 3, E and G). Double label-

ing revealed that Jagunal was on the cytoplasmic side of cortical 

actin fi laments in the oocyte (Fig. 3 G, arrow).

Jagn-GFP and -Venus fusion proteins provided evidence 

for a functional ER retention motif. We made Jagn-GFP and 

-Venus transgenes by using a genomic DNA construct with GFP 

fused in-frame to the C-terminal end of Jagunal and with Venus 

fused in-frame between the fi rst and second transmembrane 

 domains, respectively (Fig. 3, I and J). Because the expression 

level of these proteins in ovaries was low, we used a GFP anti-

body to detect them. Jagn-Venus showed an ER distribution and 

was enriched in the oocyte subcortex (Fig. 3 F), whereas Jagn-

GFP localized at the plasma membrane, including ring canals 

and the oocyte plasma membrane (Fig. 3 H, arrow and arrow-

head), in addition to the apparent ER localization. The aberrant 

localization of Jagn-GFP at the plasma membrane was also 

found in follicle cells during stage 10, when vesicular traffi c oc-

curs actively (Fig. 3 I). In contrast, Jagn-Venus did not localize 

at the plasma membrane of follicle cells (Fig. 3 J). The aberrant 

localization of Jagn-GFP at the plasma membrane likely results 

from loss of ER retention activity because GFP blocks the dily-

sine motif that must occupy the extreme C-terminal position to 

be functional (Nilsson et al., 1989). In addition, the Jagn-Venus 

transgene, but not the Jagn-GFP transgene, rescued the lethality 

of jagn alleles, further supporting the role of the dilysine motif 

in controlling the localization of Jagunal.

Jagunal is required for establishing 
subcortical ER in the oocyte 
during vitellogenesis
The fact that Jagunal is an ER membrane protein suggested that 

defects caused by jagn mutations might be caused by a defect in 

the ER. Therefore, we examined the distribution of several ER 

proteins in wild-type and jagn mutant oocytes. In wild-type 

egg chambers, EYFP-ER, which is an ER luminal protein, was 

Figure 4. Jagunal is required for the enrichment of ER 
proteins in the oocyte subcortical region during vitello-
genesis. (A–F) The distribution of EYFP-ER in progressive 
stages of wild-type egg chambers (A–C) and jagnQ21X 
GLCs (D–F). Until stage 8, EYFP-ER distributes uniformly in 
wild-type oocytes (A). However, EYFP-ER becomes en-
riched in the oocyte subcortex during stages 9 and 10 
(B and C, arrows). (C′) A focal plane near the cortex of 
the oocyte shown in C shows that EYFP-ER is concentrated 
into clusters in the oocyte subcortex (arrow). (D–F) Until 
stage 8, EYFP-ER distributes normally in jagn mutant 
oocytes (D). However, EYFP-ER remains dispersed in jagn 
mutant oocytes, with very little subcortical enrichment dur-
ing stages 9 and 10 (E and F). (F′) A focal plane near the 
cortex of the oocyte shown in F shows that EYFP-ER distrib-
utes uniformly without forming clusters in the oocyte sub-
cortex. (G–N) The distribution of ER proteins Boca (G and H), 
PDI-GFP (I and J), Sec61-α-GFP (K and L), and Rtnl1-GFP 
(M and N) in wild-type egg chambers and jagnQ21X GLCs. 
Similar to EYFP-ER, these ER proteins become enriched in 
the subcortical region in wild-type oocytes (G, I, K, and 
M, arrows). The enrichment of these proteins in the sub-
cortex is reduced in jagn mutant oocytes (H, J, L, and N). 
Bars, 20 μm.
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evenly distributed in the oocyte during stage 8, which is the ear-

liest vitellogenic stage (Fig. 4 A). However, beginning at stage 9, 

EYFP-ER became concentrated in the oocyte subcortical region 

(Fig. 4 B, arrow), and the enrichment continued through stage 10 

(Fig. 4 C, arrow), which is similar to distribution of Jagunal (Fig. 

3, E and F). However, the enrichment of EYFP-ER in the 

 subcortex was greatly reduced or eliminated in jagn GLCs (Fig. 

4, E and F). We examined two other ER luminal proteins, pro-

tein disulfi de isomerase (PDI)–GFP (Bobinnec et al., 2003) and 

Boca. Boca is an ER chaperone and is required for correct fold-

ing of Yolkless (Culi and Mann, 2003). Similar to EYFP-ER, 

these proteins also became concentrated in the oocyte subcorti-

cal region during stages 9 and 10 in wild-type egg chambers 

(Fig. 4, G and I, arrows). The enrichment of Boca and PDI-GFP 

was greatly reduced in jagn mutant oocytes; instead, the pro-

teins were uniformly distributed in ooplasm (Fig. 4, H and J). 

We also examined two ER membrane proteins, Sec61-α-GFP 

and Rtnl1 (reticulon-like)-GFP. Sec61-α is a component of the 

translocon that translocates proteins across ER membranes 

(Johnson and van Waes, 1999), and reticulons are ubiquitous 

ER membrane proteins proposed to stabilize highly curved ER 

membrane tubules (Voeltz et al., 2006). Similar to ER luminal 

proteins, GFP fl uorescence showed that these ER membrane 

proteins became concentrated in the oocyte subcortical region 

in wild-type egg chambers (Fig. 4, K and M, arrows), and the 

enrichment was again greatly reduced in jagn mutant oocytes 

(Fig. 4 liter and N). The concentration of all examined ER 

 proteins in the oocyte subcortex suggests that the subcortical 

enrichment of ER proteins is not caused by uneven distribution 

of some ER proteins. Instead, the ER itself is likely to be con-

centrated in the subcortex. These results suggest that the ER is 

reorganized to produce a subcortical enrichment of the ER in 

the oocyte during vitellogenesis, and that Jagunal is required for 

this reorganization.

Figure 5. Jagunal is required for ER cluster-
ing in the oocyte during vitellogenesis. (A–D) 
EM images of progressive stages of wild-type 
egg chambers. During stage 8, the ER density 
is low and ER clusters are not found in the 
oocyte (A). ER clusters are formed in the 
oocyte, and the ER luminal space increases 
during stages 9 and 10 (B and C). ER clusters 
are not found in the oocyte during stage 12 
(D). (E and F) EM images of stage 9 and 10 
jagnQ21X GLCs. ER clusters are not found in 
jagn mutant oocytes, and the ER luminal space 
does not increase during stages 9 and 10 
(E and F). (G) EM image of stage 10 oocyte. 
The ER density in the subcortical region (G′) is 
higher than inside of the ooplasm (G″). (A–G) 
Oocyte–follicle cell boundaries and yolk gran-
ules are marked by dashed lines and y’s, re-
spectively. Arrows indicate the ER. Bars: (A–F, 
G′, and G″) 0.5 μm; (G) 2 μm.
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Jagunal is required for clustering the ER 
in the oocyte during vitellogenesis
During stages 9 and 10, ER proteins were concentrated into 

clusters in the subcortex (Fig. 4 C′, arrow) in wild-type egg 

chambers. However, ER clusters were not found in jagn mutant 

oocyte subcortex (Fig. 4 F′). To further characterize ER organi-

zation in the oocyte during vitellogenesis, we examined ER or-

ganization in the ultrastructural level. In wild-type oocytes, the 

ER membranes were dispersed in the cytoplasm during stage 8 

(Fig. 5 A, arrows). However, beginning at stage 9, many ER 

clusters were found in the subcortical region (Fig. 5 B, arrow), 

corresponding to ER clusters observed by confocal microscopy 

(Fig. 4 C′, arrow). Although some ER clusters were found far 

away from the oocyte cortex, the overall ER density was much 

lower deep inside the ooplasm (Fig. 5 G″) compared with the 

subcortical region (Fig. 5 G′), which is, again, consistent with 

the subcortical enrichment seen by confocal microscopy. The 

ER clusters continued to exist through stage 10 (Fig. 5 C, 

 arrow). However, ER clusters were not found in stage 12 oocytes 

(Fig. 5 D, arrows), suggesting that the clusters disassembled after 

completion of vitellogenesis. In addition to ER clustering, ER 

morphology changed during vitellogenesis. The ER luminal space 

increased during stages 9 and 10 (Fig. 5, B and C), compared with 

stages 8 and 12 (Fig. 5, A and D). The swollen ER morphology 

might indicate high ER activity during stages 9 and 10.

The formation of ER clusters was severely impaired in 

jagn mutant oocytes. ER clusters were found in only 17% (3/18) 

of stage 9 and 10 jagn mutant oocytes; instead, the ER remained 

dispersed in the cytoplasm in most mutant oocytes (Fig. 5, 

E and F, arrows). Furthermore, the diameter of the ER lumen 

did not expand in jagn mutant oocytes compared with stage 9 

and 10 wild-type oocytes (Fig. 5, E and F). These data show 

that  Jagunal is required for the formation of ER clusters and ER 

morphology in the oocyte during vitellogenesis.

The distributions of exocyst 
and Golgi complexes are not affected 
in jagn mutant oocytes
The dramatic reorganization of the oocyte ER during stages 9 

and 10 likely refl ects a major increase in oocyte ER function 

needed for vitellogenesis and membrane expansion. To deter-

mine whether jagn mutations affect the organization of compo-

nents downstream of ER in the exocytic membrane traffi c 

pathway, we examined exocyst and Golgi complex localization. 

The exocyst complex is involved in targeting secretory vesicles 

to the appropriate exocytic sites on the plasma membrane (Guo 

et al., 2000), and two components of the exocyst complex, Sec5 

and Sec8, localize at the oocyte plasma membrane (Fig. 6, 

A and A′; Murthy and Schwarz, 2004; Beronja et al., 2005). In 

contrast to Sec5, Sec8 does not localize at the interface of the 

oocyte and nurse cells (Beronja et al., 2005). Both Sec5 and 

Sec8 localized normally at the oocyte plasma membrane in jagn 

GLCs (Fig. 6, B and B′).
We used antibodies to Lava lamp, which is a golgin 

 protein, to examine the distribution of Golgi complexes (Sisson 

et al., 2000; Papoulas et al., 2005). In wild-type egg chambers, 

Golgi complexes were enriched in the oocyte and distributed 

evenly throughout the ooplasm during stage 8 (Fig. 6 C), as pre-

viously reported (Herpers and Rabouille, 2004). However, we 

found that many Golgi complexes began to accumulate in the 

subcortical region during stage 9 (Fig. 6 D, arrowhead). The 

 enrichment of Golgi complexes in the subcortical region  became 

more evident during stage 10, with more Golgi near lateral plasma 

membranes compared with the posterior region (Fig. 6 E, 

 arrowhead). Because enrichment of Golgi in the subcortical re-

gion was not previously reported (Herpers and Rabouille, 2004), 

we examined other Golgi markers, EYFP-Golgi ( LaJeunesse 

et al., 2004) and dCOG5-GFP, which is a subunit of the COG 

complex (Farkas et al., 2003). These two proteins were also 

Figure 6. Exocyst and Golgi complexes distribute nor-
mally in jagn mutant oocytes. (A and B) Two exocyst com-
ponents, Sec5 and Sec8, were examined in wild-type egg 
chambers (A) and jagnQ21X GLCs (B). In mutant oocytes, 
Sec5 and Sec8 localize normally at the cortex (B). Pro-
gressive stages of wild-type egg chambers (C–E) and 
 jagnQ21X GLCs (F–H) were stained with Lava lamp anti-
bodies to detect Golgi complexes. In wild-type stage 8 
egg chambers, Golgi complexes are enriched in the 
oocyte and distributed evenly in the oocyte cytoplasm (C). 
During stages 9 and 10, many Golgi complexes accumu-
late near the oocyte cortex (D and E, arrowheads). In mu-
tant oocytes, Golgi complex distribution is normal, with 
many Golgi complexes enriched in the subcortex (G and H, 
arrowhead). Bars, 20 μm.
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 enriched in the oocyte subcortex during stages 9 and 10 (unpub-

lished data). However, unlike ER enrichment, the distribution of 

Golgi was unaffected in jagn mutant oocytes (Fig. 6, F–H).

 The presence of exocyst complexes at the oocyte plasma 

membrane and Golgi enrichment in the oocyte subcortex during 

stages 9 and 10 support the idea that membrane traffi c to the oo-

cyte surface increases during these stages. However, our results in-

dicate that exocyst and Golgi complex distribution is independent 

of the ER reorganization and clustering that requires Jagunal.

Transport of Yolkless to the oocyte 
surface is reduced in jagn mutant oocytes
Although Jagunal is conserved in metazoans, yeast do not have 

a Jagunal homologue, indicating that Jagunal is not an essential 

component of secretory pathway. Indeed, GLCs of jagn did not 

show any evident defect in previtellogenic stages, as do GLCs 

of sec5 and sec6 (Murthy and Schwarz, 2004; Beronja et al., 

2005), suggesting that membrane traffi cking is not blocked in 

mutant cells. Instead, Jagunal might be involved in increasing 

vesicular traffi c to the oocyte surface during vitellogenesis by 

reorganizing the ER. To determine whether membrane traffi c to 

the oocyte surface is reduced in jagn mutant oocytes during 

 vitellogenesis, we examined the localization of Yolkless in jagn 

mutant oocytes. Yolkless is the yolk receptor, and its presence at 

the cell cortex coincides with vitellogenesis. Yolkless is distrib-

uted uniformly in the oocyte during previtellogenic stages and 

begins to be transported to the oocyte surface with the onset of 

vitellogenesis during stage 8 (Fig. 7 A; Schonbaum et al., 2000). 

Yolkless is transported to the oocyte plasma membrane by exo-

cytosis, and it accumulates in the cortex as a result of endocytic 

recycling (Schonbaum et al., 2000). As oogenesis proceeds, the 

intensity of Yolkless at the cortex increases (Fig. 7 B); by stage 10, 

Yolkless is almost exclusively in the cortex (Fig. 7 C).

In jagn GLCs, the level of Yolkless in the oocyte lateral 

cortex was reduced (Fig. 7, D–F). The amount of Yolkless stain-

ing at the oocyte lateral cortex varied from near normal (Fig. 

7 E) to absent (Fig. 7, D and F). Posterior enrichment of Yolkless 

in jagn mutant oocytes was most evident during stage 9 (Fig. 

7 D, arrow), when 72% (39/54) of mutant oocytes showed a non-

uniform cortical Yolkless distribution. Although we occasion-

ally saw wild-type oocytes with a very weak posterior enrichment 

of Yolkless, the posterior enrichment of Yolkless was much 

stronger in jagn mutant oocytes. The behavior of Yolkless sug-

gests that jagn mutations affect exocytic vesicular traffi c to the 

oocyte lateral membrane. In addition, posterior enrichment of 

Yolkless in jagn mutant oocytes suggests the existence of a 

 Jagunal-independent transport pathway polarized to the poste-

rior pole. For example, the posterior enrichment of Yolkless 

may be caused, in part, by posterior-polarized endocytic re-

cycling requiring Rab11 (Dollar et al., 2002).

To determine whether endocytosis of yolk is affected in 

jagn mutant oocytes, we examined yolk granules in electron 

 micrographs of stage 10 wild-type and jagn mutant oocytes. 

Yolk granules were reduced in size and abundance in jagn mutant 

oocytes (Fig. 7, G and H). We measured the area of yolk gran-

ules in several egg chambers, and found that the overall area oc-

cupied by them was reduced by �70% in jagn mutant oocytes 

(from 29 to 9.3%; Fig. 7 I). The amount of yolk in jagn oocytes 

varied widely, from 0 to 20% of oocyte area, but did not overlap 

wild-type amounts of yolk. To further examine endocytosis in 

jagn mutant oocytes, we quantitated the number of coated pits 

and vesicles in the plasma membrane and cortex of stage 10 oo-

cytes. Compared with wild-type egg chambers (Fig. 8, B and C), 

the number of coated pits and vesicles was reduced by �60% 

in jagn mutant oocytes (from 6.3 to 2.4 vesicles/�m; Fig. 8, 

D–F and G). Again, the amount of reduction varied, but num-

bers of coated pits and vesicles in jagn oocytes did not overlap 

wild type. These data show that yolk endocytosis and overall 

endocytic activity at the oocyte surface are reduced to similar 

extents in jagn mutant oocytes.

Figure 7. Transport of Yolkless to the oocyte lateral mem-
brane is reduced in jagn GLCs. (A–F) Wild-type egg chambers 
(A–C) and jagnQ21X GLCs (D–F) were stained with Yolkless 
 antibodies. Yolkless begins to be transported to the oocyte 
surface during stage 8 (A). During stages 9 and 10, Yolkless 
is localized at the oocyte cortex adjacent to follicle cells 
(B and C). In mutant oocytes (D–F), the intensity of Yolkless 
staining at the oocyte cortex is reduced. In most egg cham-
bers the distribution of Yolkless is uneven, with the highest 
level at the posterior region (D and F, arrows). Yolkless enrich-
ment at the posterior region is most evident during stage 9 
(D). (G and H) EM images of a wild-type egg chamber (G) 
and a jagnQ21X GLC (H). Asterisks and y’s mark oocyte–follicle 
cell boundary and yolk granules, respectively. (I) Quantitation 
of the percentage of yolk area in wild-type egg chambers and 
jagnQ21X GLCs. Percentage of yolk area was defi ned as the 
percentage of area occupied by yolk granules in the ooplasm. 
N indicates the number of examined oocytes. Bars: (A–F) 20 μm; 
(G and H) 2 μm.
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Cell surface area is reduced in jagn 
mutant oocytes
Considering that Jagunal is an ER membrane protein and jagn 

mutations affect ER organization during vitellogenesis, the de-

creased endocytosis in jagn mutant oocytes is likely to be 

caused by reduced transport of factors required for endocytosis 

(including Yolkless and membrane) to the oocyte surface. 

 Indeed, the surface area of jagn stage 10 oocytes (Fig. 8, D–F) 

was reduced compared with wild type (Fig. 8, B and C). Mutant 

oocytes ranged from a slight reduction in the number of micro-

villi (Fig. 8 D) to nearly absent microvilli (Fig. 8 F). Interest-

ingly, we observed that microvilli were nearly absent on the 

surface of an oocyte that was detached from neighboring folli-

cle cells (Fig. 8 H, arrowheads). The lack of suffi cient mem-

brane reserves in the form of microvilli could explain why the 

mutant oocytes fail to expand during stage 11.

Discussion
A large number of essential components of vesicular traffi c 

have been identifi ed through genetic and biochemical ap-

proaches, particularly in yeast, where defects in secretion cause 

striking phenotypes. However, proteins that play essential roles 

in regulating or organizing vesicular traffi c, particularly in 

higher eukaryotes, still remain to be elucidated. Information is 

particularly limited in the context of development, where pat-

terns of vesicle traffi c are modifi ed according to developmental 

programs. The D. melanogaster oocyte undergoes a dramatic 

transition in vesicular traffi c during vitellogenesis, which, in ad-

dition to its large size, makes it an ideal model system to study 

how cells reorganize vesicular traffi c. GLC analysis makes it 

possible to examine lethal mutations for effects on oocyte de-

velopment, and allowed us to identify an essential gene,  jagunal, 

which is required for ER organization. The amino acid 

 sequence of Jagunal, as well as its localization, indicates that 

J agunal is an ER membrane protein. The defects caused by jagn 

mutations can be explained by a failure to reorganize the ER at 

key developmental steps, resulting in reduced vesicular traffi ck-

ing. In the oocyte, this reduced membrane traffi c ultimately re-

sults in the dramatic failure in cell expansion that was observed 

initially. Our study suggests a functional role of ER reorganiza-

tion in regulating exocytic vesicular traffic, and offers the 

 opportunity to elucidate molecular mechanisms of organizing 

ER clusters.

Jagunal is required for clustering the ER
Many examples illustrating the importance of ER reorganiza-

tion during cell differentiation exist; however, little is known 

about the molecular mechanisms used by cells to carry them out 

(Baumann and Walz, 2001). One well-documented example of 

ER reorganization occurs during oocyte maturation in diverse 

organisms (Kline, 2000). In mouse, 1–2-μm-wide ER clusters 

become localized in the oocyte cortex during oocyte maturation 

(Mehlmann et al., 1995). The cortical ER clusters are presumed 

to be involved in calcium signaling. Similar ER clusters that 

might be involved with calcium signaling were reported in 

D. melanogaster preblastoderm embryos (Frescas et al., 2006). 

ER clustering could be a general mechanism to establish a 

highly dense ER domain; therefore, determining the mecha-

nisms cells use for this change in ER organization is of central 

interest. We found evidence that the ER becomes concentrated 

in the D. melanogaster oocyte subcortex during vitellogenesis, 

and accumulates into prominent clusters. The establishment of 

this highly dense ER domain requires Jagunal. Conservation 

of the jagunal gene in metazoans suggests a conserved role 

of  Jagunal in ER clustering.

Figure 8. Endocytosis and cell surface area is 
reduced in jagn mutant oocytes. EM images of 
progressive stages of wild-type egg chambers 
(A–C) and stage 10 jagnQ21X GLCs (D–F). Ar-
rows indicate coated pits and vesicles. y’s and 
asterisks mark yolk granules and vitelline bod-
ies, respectively. In wild-type egg chambers, 
the oocyte surface has a high density of micro-
villi, and many coated pits and vesicles are 
found in the plasma membrane and cortex, es-
pecially during stage 10 (A–C). In jagn mutant 
oocytes, the density of microvilli is reduced to 
varying degrees, resulting in a decrease of the 
overall cell surface area (D–F). The number of 
coated pits and vesicles are also reduced in 
jagn mutant oocytes (D–F). (G) Quantitation 
of the number of coated pits and vesicles/ 
micrometer. The number of coated pits and vesi-
cles was counted and divided by the linear 
length of the examined oocyte surface. N indi-
cates the number of examined oocytes. (H) An 
EM image of the anterior region of jagnQ21X 
 mutant oocyte. The plasma membrane of the 
mutant oocyte (arrowheads) is detached from 
neighboring cells. The number of microvilli (indi-
cated by an arrow) is reduced. Bars, 0.5 μm.
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A possible function of Jagunal might be inferred from 

other proteins with four transmembrane domains. Diverse pro-

tein families have this organization, including tetraspanins, tet-

raspan vesicle membrane proteins, and junctional proteins of 

either the gap junction (connexins) or tight junction (claudins 

and occludins; Maecker et al., 1997; Tsukita and Furuse, 1999; 

Falk, 2000; Hubner et al., 2002). One of the most remarkable 

similarities of these diverse proteins is their tendency to occur 

as homomultimers in specialized membrane domains, where 

they are enriched in dense molecular aggregates (Hubner et al., 

2002). It is therefore attractive to postulate that Jagunal exists as 

a homomultimeric complex and/or binds to other membrane 

proteins to form a protein complex on ER membrane. Jagunal 

contains several charged or polar amino acids in its transmem-

brane domains, many of which are conserved among Jagunal 

homologues; these amino acids might be involved in binding to 

other membrane proteins.

An intriguing feature of the amino acid sequence of Jagunal 

is the high conservation of the N-terminal 40 amino acids. The 

predicted topology of Jagunal places the amino terminus on 

the cytoplasmic side of the ER membrane. This domain could 

contribute to ER organization by binding cytoplasmic compo-

nents such as cytoskeletal proteins, or by interacting with pro-

teins within the ER that promote clustering. Identifi cation of 

binding partners of the Jagunal N-terminal domain will provide 

clues to the role of Jagunal in ER reorganization.

Oocyte ER reorganization mirrors 
a change in the location of exocytosis 
during vitellogenesis
The phenotype of jagn germline clones reveals a modulation of 

ER function rather than a global block in membrane traffi c. Mu-

tations in exocyst components such as Sec5 and Sec6, which do 

block membrane traffi c, cause a much more severe phenotype, 

in which egg chambers degenerate at an early stage (Murthy 

and Schwarz, 2004; Beronja et al., 2005). In contrast, previtel-

logenic egg chambers mutant for jagn are normal. More subtle 

effects on ER exit sites caused by trailer hitch mutations re-

sult in abnormal aggregates of Gurken and Yolkless in the cyto-

plasm of oocytes (Wilhelm et al., 2005), which we did not 

observe in jagn mutant oocytes. The transport of Yolkless to the 

oocyte  lateral membrane is reduced in jagn mutant oocytes, 

but not blocked (Fig. 7), and Gurken transport is not affected 

(not depicted).

Our results suggest that membrane addition to the oocyte 

surface is reduced in jagn mutant oocytes. Decreased membrane 

addition might be caused by a defect in ER-derived exocytic 

membrane traffi c or a defect in endocytic recycling. However, a 

defect in endocytic recycling in jagn mutant oocytes is unlikely 

because we did not see an accumulation of Yolkless in the cyto-

plasm, as was seen in Rab11 and sec5 mutants (Dollar et al., 

2002; Sommer et al., 2005). Instead, Yolkless protein in jagn 

mutant oocytes remained cortical.

The oocyte plasma membrane is highly polarized in terms 

of membrane function during vitellogenesis. The anterior mem-

brane is tightly attached to the four adjacent nurse cells and 

does not appear to be a site of active endocytosis. In contrast, 

the oocyte plasma membrane adjacent to follicle cells is highly 

endocytic with numerous pits or depressions of the plasma 

membrane between extensive microvilli (Giorgi and Jacob, 

1977). The posterior of the oocyte is a special subdomain with 

elevated endocytic activity (Cummings and King, 1970; Dollar 

et al., 2002). In addition, there is evidence pointing to the exis-

tence of a special exocytic pathway in the oocyte posterior. 

When human transferrin receptor is expressed in the D. melano-
gaster oocyte, its traffi cking to the cell surface is restricted to 

the posterior cortex of the oocyte during stage 8. The posterior 

enrichment of transferrin receptor at this stage is not dependent 

on its mRNA localization (Bretscher, 1996). Given that vitello-

genesis begins during stage 8, this result suggests that vesicular 

traffi c is initially polarized to the posterior pole until vitellogen-

esis starts. The posterior exocytic pathway might be used to 

transport Gurken at the posterior pole before stage 8 (Gonzalez-

Reyes et al., 1995).

The role of Jagunal may be to facilitate the transition from 

posterior-polarized secretion during previtellogenic stages to a 

uniform level of membrane traffi cking in the lateral and poste-

rior endocytic oocyte membrane during vitellogenesis. More 

specifi cally, membrane traffi c to the lateral endocytic mem-

branes is particularly dependent on Jagunal function. Many 

jagn oocytes accumulate Yolkless at the posterior, but fail to 

provide suffi cient Yolkless to lateral endocytic membrane. The 

formation of the lateral endocytic subdomain coincides with the 

establishment of a subcortical ER domain and the enrichment of 

Golgi complexes near the endocytic membrane. The coinci-

dence suggests that the ER and Golgi complexes in the sub-

cortical region are involved in massive vesicular traffi c to the 

plasma membrane adjacent to follicle cells. Jagunal may be in-

volved in establishing a subcortical ER domain by clustering 

the ER in the subcortical region to increase ER density and 

 vesicular  traffi c. The disappearance of ER clusters before stage 

12 of oogenesis further suggests a specifi c role of ER clusters 

during vitellogenesis.

Interestingly, the enrichment of Golgi complexes in the 

subcortical region does not require jagn, suggesting that sub-

cortical Golgi enrichment is not dependent on the subcortical 

ER. Golgi complexes might move to the oocyte subcortex along 

microtubules, as they do in D. melanogaster embryos (Papoulas 

et al., 2005).

Jagunal is required for oocyte 
and bristle growth
This study revealed that Jagunal is involved with ER reorgani-

zation; however, the fi nal outcome for mutant oocytes and bris-

tle cells is a failure to grow during development. Therefore, we 

need to understand how a defect in ER reorganization ulti-

mately results in a growth defect. Previously characterized mu-

tations that affect oocyte growth impede the fl ow of cytoplasm 

from nurse cells into the oocyte by affecting functions of nurse 

cells (Hudson and Cooley, 2002), emphasizing that nurse cell 

cytoplasm is essential for oocyte growth. However, the surface 

of the oocyte itself also has to expand to accommodate oocyte 

growth. This is especially critical during the fi nal, rapid phase 

of nurse cell cytoplasm transport (dumping) that occurs during 
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the 30-min stage 11. The oocyte surface also must more than 

double in size during this short time.

There are at least two plausible mechanisms for providing 

enough membrane to the oocyte surface during dumping, either 

of which could require Jagunal. The fi rst model is that mem-

brane is added to the plasma membrane rapidly, perhaps by 

massive vesicle fusion. Given that ooplasm streams vigorously 

in the oocyte during this time (Serbus et al., 2005), membrane 

reservoirs must exist near the cortex, where streaming does not 

occur. The second model is that a surplus of membrane is stored 

in advance as microvilli. In this model, the oocyte can expand 

rapidly by using the membrane of some microvilli during stage 

11. If the ability to add membrane before or during dumping is 

reduced in jagn mutant oocytes, the rapid infl ux of nurse cell 

cytoplasm might result in excessive tension on the plasma mem-

brane, fi nally causing detachment from adjacent cells and 

growth arrest.

Similar models for membrane addition have been consid-

ered for D. melanogaster cellularization, when the membrane 

surface area increases 25-fold in about 1 h (Fullilove and 

J acobson, 1971; Turner and Mahowald, 1976; Loncar and 

Singer, 1995). Several lines of evidence support a dominant role 

of membrane traffi cking for this process. For example, pulse-

 labeling experiments in living embryos showed polarized inser-

tion of new membrane from a cytoplasmic reservoir during 

cellularization (Lecuit and Wieschaus, 2000). In addition, injec-

tion of brefeldin A, which inhibits ER–Golgi transport, reduces 

the speed of membrane invagination (Sisson et al., 2000). An 

open question is whether the organization of ER is important for 

membrane traffi c during cellularization. Interestingly, before 

cellularization occurs, the ER becomes segregated into discrete 

units associated with each nucleus, ensuring that cells receive 

equal amounts of ER (Bobinnec et al., 2003; Frescas et al., 

2006). It will be interesting to determine whether this organiza-

tion is crucial to membrane addition during cellularization, and 

if Jagunal is involved in creating the ER units.

Bristle growth is also affected by jagn mutations, suggest-

ing that Jagunal participates more generally in rapid cell growth. 

Both the small bristle phenotype and the defect in bristle ridge 

structure can be explained by reduced membrane traffi cking. 

During pupal development, tiny bristles sprout and elongate for 

�16 h to reach their maximum length (65 μm for microchaetes 

or 400 μm for macrochaetes; Tilney et al., 1996). Thus, bristles 

elongate at an average rate of 4 μm/h (microchaetes) or 25 μm/h 

(macrochaetes) during the elongation period. Accordingly, a 

large amount of membrane must be added to the plasma mem-

brane to accommodate this growth, and our results suggest a re-

quirement for Jagunal during this process. Future work will be 

important to determine whether ER reorganization and elevated 

membrane traffi c underlie bristle growth.

Materials and methods
Genetics/fl y strains
All crosses and culturing of D. melanogaster were performed using stan-
dard procedures (Ashburner, 1989). Canton-S and w1118 fl ies were used 
as wild-type controls. The fi rst jagunal allele (jagnQ21X) described in this study 
was from a subset of lethal mutations on chromosome 3R (Yohn et al., 2003) 

selected by R. Lehmann (New York University, New York, NY) because 
germline clones produced small eggs. We made four more alleles of jagn 
with an ethylmethane sulphonate noncomplementation-lethal screen. EYFP-
ER and -Golgi fl ies (LaJeunesse et al., 2004) were obtained from the 
Bloomington Stock Center (Indiana University, Bloomington, IN). The 
dCOG5-GFP (GFP-Fws) fl y stock was obtained from M. Fuller (Stanford 
University, Palo Alto, CA; Farkas et al., 2003). Bsg-GFP (G00413), PDI-
GFP (ZCL1503), Rtnl1-GFP (ZCL1569), and Sec61α-GFP (ZCL0488) 
fl ies were generated by protein trap screening (Morin et al., 2001). The 
actin-Gal4 driver (Ito et al., 1997) or germline triple driver (a combination 
of pCOG-Gal4:VP16 [Rorth, 1998], NGT40 [Tracey et al., 2000], and 
nos-Gal4-VP16 [Van Doren et al., 1998]) were used to induce ubiquitous 
or germline-specifi c expression, respectively, of pUASp-Jagunal in the 
ovary. Flies used for clonal analysis were obtained from the Bloomington 
Stock Center.

Construction of transgenes and generation of transgenic lines
A cDNA clone of jagunal (1.1 kb) was obtained by RT-PCR and subcloned 
into pUASp, creating P{UASp-Jagunal}. To make the Jagn-GFP and -Venus 
constructs, a genomic DNA (6 kb) was used. GFP was inserted at the C ter-
minus, and Venus was inserted between the fi rst and second transmem-
brane domains. The Jagn-GFP and -Venus constructs were subcloned into 
CaSpeR, creating P{CaSpeR-Jagn-GFP} and P{CaSpeR-Jagn-Venus}.

Clonal analysis
All jagn alleles were induced on a P{FRT}3R-82B chromosome (Xu and Rubin, 
1993). For clones marked by loss of ovoD (Chou et al., 1993), second–
third instar larvae of the genotype P{hsFLP}/+; jagn, P{FRT}3R-82B/P{ovoD1-18}
3R, P{FRT}3R-82B were heat shocked for 1–2 h in a 38°C water bath on two 
consecutive days. Ovaries were dissected from female fl ies that were 
fed yeast paste for �7 d to dilute out wild-type gene products. To mark 
bristle clones, fl ies carrying mutations were crossed to y P{hsFLP}; 
P{y+},P{FRT}3R-82B fl ies, and their progeny were heat shocked as fi rst– second 
instar larvae for 1–2 h in a 38°C water bath. To overexpress Jagunal in a 
mosaic manner, UAS-GFPnls, UASp-Jagn fl ies were crossed to P{hsFLP}; 
P{actin>y+>Gal4} fl ies (Ito et al., 1997), and their progeny were heat 
shocked as second–third instar larvae for 1–2 h in a 38°C water bath.

Antibody production for Jagunal
Anti-Jagunal antibody was raised against the C-terminal 17 amino  acids. 
Purifi ed peptide antigen, C Y N L V K A W K A R T A T R K F Q , was obtained from 
the Keck Biotechnology Resource Laboratory (Yale University, New 
 Haven, CT). The antigen was injected into a rabbit and boosted four 
times according to a standard protocol (Cocalico Biologicals, Inc.). 
Antibodies were purifi ed with a Sulfolink kit (Pierce Chemical Co.) 
u sing the original peptide.

Immunocytochemistry and confocal microscopy
Ovaries were dissected in IMADS (Singleton and Woodruff, 1994) and 
fi xed in 6% formaldehyde saturated with heptane as previously described 
(Verheyen and Cooley, 1994). To visualize F-actin, egg chambers were in-
cubated with 1 U of rhodamine-conjugated phalloidin in PBT. The following 
antibodies were used: rabbit anti-Jagunal at 1:200 (this study), mouse 
monoclonal anti–Hts-RC at 1:10 (Robinson et al., 1994), rabbit anti–Lava 
lamp at 1:200 (from John Sisson, University of Texas, Austin, TX; Sisson 
et al., 2000), rat anti-Yolkless at 1:200 (from Christopher Schonbaum, Uni-
versity of Chicago, Chicago, IL; Schonbaum et al., 2000), mouse monoclo-
nal anti-Sec5 at 1:200 (from Thomas Schwarz, Harvard University, Boston, 
MA; Murthy and Schwarz, 2004), guinea pig anti-Sec8 at 1:1,000 (from 
Ulrich Tepass, University of Toronto, Toronto, Ontario, Canada; Beronja 
et al., 2005), guinea pig anti-Boca at 1:500 (from Richard Mann, Colum-
bia University, New York, NY; Culi and Mann, 2003), and rabbit anti-GFP 
at 1:500 (Torrey Pines Biolabs, Inc.). Anti-GFP antibodies were used to 
stain EYFP-ER, Jagn-GFP, and Jagn-Venus. Fluorescence micrographs were 
obtained at room temperature using an inverted microscope (Axiovert 
100M; Carl Zeiss MicroImaging, Inc.) equipped with a laser scanning 
confocal imaging system (LSM510; Carl Zeiss MicroImaging, Inc.) and a 
40×/1.2 NA water-immersion objective lens (C-Apochromat; Carl Zeiss 
MicroImaging, Inc.; Center for Cell and Molecular Imaging, Yale Univer-
sity School of Medicine, New Haven, CT). Images were processed using 
Photoshop (Adobe) and assembled in Illustrator (Adobe).

Western blot analysis
Dissected ovaries were homogenized in SDS loading buffer and boiled for 
5 min. Equal amounts of ovary extract were loaded and separated on a 
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12% polyacrylamide gel. Proteins were transferred to nitrocellulose, 
blocked with 5% milk, and probed with primary antibodies overnight at 
4°C. Rabbit anti-Jagunal antibody was used at 1:2,000.

Scanning EM
Flies were put through an EtOH dehydration series (25, 50, 75, and 
100%), followed by treatment with hexamethyldisilazane. The treated fl ies 
were dried in a low vacuum overnight. Flies were mounted on stubs, rotary 
shadowed, and viewed on an ISI SS-40 scanning electron microscope (De-
partment of Molecular, Cellular and Developmental Biology EM Facility, 
Yale University). Images were recorded onto Polaroid 53 fi lm and scanned 
at 300 dpi.

Transmission EM
Ovaries were dissected in IMADS (Singleton and Woodruff, 1994), fi xed 
in 2% glutaraldehyde in 0.1 M sodium cacodylate buffer, pH 7.4, for 1 h. 
After washing with 0.1 M sodium cacodylate buffer overnight, samples 
were postfi xed in 1% osmium tetroxide in 0.1 M sodium cacodylate buffer 
for 1 h. After making sections, they were stained with 2% uranyl acetate 
for 5 min and 1% lead citrate for 2.5 min and examined in a Tecnai 12 
Biotwin electron microscope (Center for Cell and Molecular Imaging, Yale 
University School of Medicine, New Haven, CT). Digital images were col-
lected with a Morada charge-coupled device camera using iTEM software 
(Olympus). To quantitate the percentage of yolk area in electron micro-
graphs of oocytes, regions of ooplasm were selected and the areas of yolk 
granules within the selected regions was measured using ImageJ v. 1.36b 
(National Institutes of Health). Coated pits and vesicles were counted in se-
lected cortical region of oocytes. The linear length of the selected oocyte 
surface (excluding microvillar surface) was measured using ImageJ.

Online supplemental material
Ovaries expressing Bsg-GFP were dissected in mineral oil and ovarioles 
were spread well on the coverslip. Immediately after dissection, GFP fl uo-
rescence was visualized on a LSM 510 confocal microscope with a 20× 
objective. Images were collected every 20 s for 30–60 min. The images 
were converted to a movie using Graphic Converter (Lemkesoft). Movies 
are 240 times faster than real time. Wild-type egg chambers (Video 1) and 
jagnQ21X GLCs (Videos 2 and 3) are presented. The online version of this arti-
cle is available at http://www.jcb.org/cgi/content/full/jcb.200701048.
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