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Introduction
Mature resting B lymphocytes capture antigen (Ag) via their 

specifi c B cell receptor (BCR), which corresponds to a surface 

Ig coupled to a signaling module formed by the Igα/Igβ dimer 

(Cambier et al., 1994; Reth and Wienands, 1997). In addition to 

Ag internalization, BCR stimulation triggers a complex cascade 

of signaling events that ultimately leads to the activation of 

B lymphocytes, which can then initiate the development of ger-

minal centers. To complete germinal center formation, activated 

lymphocytes must process and present internalized Ag onto 

 major histocompatibility complex (MHC) class II molecules to 

primed CD4 T cells, a process referred to as T-B cooperation 

(McHeyzer-Williams et al., 2000; Mitchison, 2004). It was re-

cently shown that upon immunization, Ag-specifi c B lympho-

cytes are among the fi rst lymphoid organ cells to acquire Ag and 

express the corresponding surface MHC–peptide complexes, 

highlighting the capacity of B cells to effi ciently process and 

present BCR-internalized Ag onto MHC class II molecules in 

vivo (Byersdorfer et al., 2004; Catron et al., 2004).

MHC class II molecules assemble shortly after synthesis 

in the ER with a type II transmembrane protein, the invariant 

chain (Ii), which prevents their premature association with 

endogenous peptides (Wolf and Ploegh, 1995). In addition, Ii 

contains in its cytoplasmic tail the targeting signals that deliver 

MHC class II molecules into endocytic compartments for them 

to be loaded with antigenic peptides (Nakagawa and Rudensky, 

1999; Villadangos et al., 1999; Watts, 2001). Such peptides 

 result from the degradation of internalized Ag by endocytic 

 proteases, which must also cleave Ii to free MHC II molec-

ules for loading, a reaction catalyzed by the chaperone H2-DM 

(Nakagawa and Rudensky, 1999; Villadangos et al., 1999; 

Watts, 2001).

Therefore, successful Ag presentation relies on its effi -

cient targeting into endocytic compartments competent for 

 processing (i.e., wherein it concentrates together with MHC 

class II, proteases, and H2-DM molecules). This corresponds to an 
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A
ntigen (Ag) capture and presentation onto ma-

jor histocompatibility complex (MHC) class II 

molecules by B lymphocytes is mediated by their 

surface Ag receptor (B cell receptor [BCR]). Therefore, 

the transport of vesicles that carry MHC class II and 

BCR–Ag complexes must be coordinated for them to 

converge for processing. In this study, we identify the 

 actin-associated motor protein myosin II as being es-

sential for this process. Myosin II is activated upon BCR 

 engagement and associates with MHC class II–invariant 

chain complexes. Myosin II inhibition or depletion com-

promises the convergence and concentration of MHC 

class II and BCR–Ag complexes into lysosomes devoted 

to Ag processing. Accordingly, the formation of MHC 

class II–peptides and subsequent CD4 T cell activation 

are impaired in cells lacking myosin II activity. Therefore, 

myosin II emerges as a key motor protein in BCR-driven 

Ag processing and presentation.
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essential function of the BCR: Ag captured through the BCR 

undergoes accelerated transport to endosomes and enhanced 

presentation effi ciency as compared with Ag taken up by fl uid-

phase endocytosis (Aluvihare et al., 1997; Cheng et al., 1999b). 

Translocation of BCR–Ag complexes to lipid rafts as well as an 

intact actin cytoskeleton have been proposed to be essential for 

accelerated transport to endosomes (Barois et al., 1998; Cheng 

et al., 1999a; Brown and Song, 2001). In addition, this process 

is accompanied by substantial modifi cations in the endocytic 

pathway of B cells, as highlighted by studies using various 

mouse lymphoma cell lines (Siemasko et al., 1998;  Zimmermann 

et al., 1999; Lankar et al., 2002). In particular, we and others 

have shown that intracellular MHC class II molecules and BCR-

internalized Ag converge into nonterminal LAMP-1–containing 

lysosomal compartments that display a multivesicular morphol-

ogy and wherein Ag processing occurs, a process that depends on 

MHC class II–associated Ii (Siemasko et al., 1998; Zimmermann 

et al., 1999; Lankar et al., 2002).

The molecular mechanisms involved in the biogenesis of 

multivesicular endosomes have been documented, in particular 

by highlighting the importance of ubiquitylation in targeting 

membrane proteins to multivesicular endosome luminal vesicles 

(Raiborg et al., 2003). The key role of Ag-triggered BCR ubiqui-

tylation in directing Ag traffi cking toward multivesicular lyso-

somes enriched for MHC class II was recently reported (Drake 

et al., 2006). In addition, differential ubiquitylation of MHC class II 

β chain was shown to regulate its surface expression in immature 

versus mature dendritic cells (DCs; Shin et al., 2006). However, 

little information is available on the nature of the motor proteins 

that connect the vesicles carrying MHC class II molecules to the 

cytoskeleton, thereby helping their sorting to lysosome-like multi-

vesicular compartments. This could involve microtubule- and/or 

actin-dependent forces, which are both known to control in 

 concert the intracellular location and traffi cking of organelles.

We aimed to understand how BCR engagement in pri-

mary lymphocytes coordinates the transport of Ag- and MHC 

Figure 1. BCR stimulation induces the convergence of BCR-internalized Ag and MHC II molecules in LAMP-1–containing vesicles that cluster toward the cell center. 
(A and C–E) Confocal images of spleen B cells from MHC II–GFP mice. (A) Z sectioning of resting (top) or 1-h BCR-activated (bottom) cells. Resting cells 
 display the peripheral distribution of MHC II–GFP molecules, whereas activated cells contain a central MHC II–GFP+ cluster. (B) Clustering kinetics of MHC II–
GFP-containing vesicles upon BCR engagement (n = 300 cells per time point; three independent experiments). Error bars represent SD. (C) MHC II–
GFP+ central clusters are LAMP-1+ compartments wherein BCR-internalized Ag accumulates. The insets highlight cells coming from the same fi eld but for 
which different z planes were used to build the fi nal images. (D) Orthogonal projections of resting and BCR-stimulated MHC II–GFP+ spleen B cells labeled 
with DAPI. Activated cells display a nuclear invagination where the central MHC II–GFP+ lysosomal cluster sits. (E) 3D reconstructions of the single cells 
described in C. Bars, 5 μm.
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class II–containing vesicles for them to converge and ensure 

effi  cient Ag processing. In this study, we identify the actin- 

based motor protein myosin II as playing an essential role in 

this  process. Myosin II is activated upon BCR engagement and 

becomes physically associated with MHC class II–Ii complexes. 

Myosin II inhibition or depletion impairs the concentration 

of MHC class II molecules together with BCR–Ag complexes 

into lysosomes devoted to Ag processing. Accordingly, cells 

lacking myosin II activity do not effi ciently form MHC class II–

peptide complexes from BCR-internalized Ag. Thus, myosin II 

regulates MHC class II traffi cking and Ag processing in 

B lymphocytes.

Results
BCR engagement induces clustering 
of MHC class II– and Ag-containing 
vesicles near the cell center
BCR stimulation of mouse B lymphoma cell lines triggers the 

appearance of MHC class II–containing compartments wherein 

BCR-internalized Ag is processed (Siemasko et al., 1998; 

 Lankar et al., 2002). To explore the mechanisms underlying 

this process in primary B lymphocytes, we used MHC II–GFP 

knockin mice (Boes et al., 2002). B cells purifi ed from the 

spleen of MHC II–GFP mice were or were not BCR stimulated 

with a polyvalent BCR ligand (hereafter referred to as Ag) and 

analyzed by confocal microscopy. Resting B cells exhibited the 

peripheral distribution of MHC II–GFP molecules (Fig. 1 A), 

which was reminiscent of both surface and intracellular local-

ization (in both lysosomes and the ER; see the next paragraph; 

not depicted). In sharp contrast, BCR engagement induced the 

redistribution of MHC II–GFP-containing vesicles that clus-

tered near the cell center (Fig. 1 A). A substantial change in 

the nuclear shape of BCR-activated lymphocytes was also 

 observed: whereas the nucleus of resting cells was round and 

fi lled most of the intracellular space, the vast majority of stimu-

lated B cells displayed an important nuclear invagination where 

the MHC-GFP+ cluster sits (Fig. 1 D). Kinetics of MHC II–GFP 

clustering showed a peak at 60 min upon BCR triggering for 

�70% of the cells (Fig. 1 B). A similar observation was 

recently made using MHC class II–GFP knockin mice express-

ing a specifi c BCR and stimulated with a polyvalent Ag (Kim 

et al., 2006).

MHC class II+/Ag+ clusters displayed the features of 

lysosomal-like Ag processing compartments: they stained posi-

tive for BCR–Ag complexes, LAMP-1, and H2-DM (Fig. 1, 

C and E; and Fig. S1 A, available at http://www.jcb.org/cgi/ 

content/full/jcb.200611147/DC1) but contained reduced amounts 

of full-length Ii (Fig. S1 A). Accordingly, BCR stimulation in-

duced the rapid cleavage of MHC II–bound Iip31 as indicated 

by the appearance of the Ii proteolytic intermediary fragments 

Iip25 and Iip10 (Fig. S1 B). No substantial change in the steady 

state levels of surface MHC class II was observed at any 

time period between 5 and 60 min upon BCR engagement (Fig. 

S1 C). Although this result does not exclude the possibility 

that MHC class II molecules are transported to lysosomes by 

traffi cking through the cell surface, it indicates that the MHC 

class II+/Ag+ lysosomal cluster does not result from massive 

BCR-induced endocytosis of surface MHC class II molecules. 

Ultrastructural experiments showed that MHC class II+/Ag+ 

clusters corresponded to a network of vesicles and tubules, 

which included variable amounts of internal membranes en-

riched for MHC class II, LAMP-1, and H2-DM molecules (Fig. 2 

and not depicted). No such compartment was observed in 

resting B cells (unpublished data). Therefore, we conclude that 

similar to mouse B lymphoma cells (Siemasko et al., 1998; 

Lankar et al., 2002), BCR-stimulated primary lymphocytes rap-

idly reorganize their endocytic route, accumulating lysosomal 

compartments that cluster near the center of the cell and to 

which MHC class II molecules and BCR–Ag complexes con-

verge for processing.

Clustering of MHC II+/Ag+ lysosomes 
in BCR-stimulated cells is coupled 
to myosin II activation
We next used time-lapse video microscopy to analyze the 

 dynamics of BCR-induced clustering of MHC class II–GFP+ 

vesicles. Purifi ed spleen MHC II–GFP+ B cells were or were not 

Figure 2. Immunogold cryoelectron microscopy analysis 
of 1-h BCR-stimulated MHC II–GFP+ spleen B cells. The 
central cluster containing MHC II–GFP molecules cor-
responds to a tubular and vesicular network of LAMP-1+ 
lysosomes. Sections were labeled using 10-nm and 15-nm 
immunogold particles for MHC class II and LAMP-1 mole-
cules, respectively. The boxed area is magnifi ed in the 
right bottom panel.
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BCR stimulated and analyzed by 3D deconvolution time-lapse 

fl uorescence microscopy. MHC II–GFP+ vesicles showed ran-

dom movements in resting B cells and did not experience any 

substantial change in morphology during the duration of image 

acquisition (Video 2; available at http://www.jcb.org/cgi/ 

content/full/jcb.200611147/DC1). In contrast, Ag-activated 

B lymphocytes exhibited major morphological changes during 

time-lapse (see Video 1 for general fi eld and Video 3 for single 

cell). Strikingly, the plasma membrane of the vast majority 

of B cells underwent successive contraction events after BCR 

engagement (Fig. 3 A and Videos 1 and 3). We consistently 

 observed that cell contraction was coupled to MHC II–GFP 

clustering: MHC II–GFP clusters transiently associated with a 

contracted membrane portion and then moved toward the center 

of the cell (Fig. 3 A, arrowheads). Importantly, the centripetal 

movement of MHC II–GFP clusters occurred concomitantly 

to contraction arrest followed by cell spreading (Fig. 3 A 

and Video 3). We conclude that the dynamics of MHC class II–

containing vesicle clustering are coupled to BCR-induced 

cell contractility.

Cell contractility is controlled by the actomyosin network 

and relies, in part, on phosphorylation of the regulatory myosin II 

light chain (MLC). MLC phosphorylation allows the activation 

of myosin II, which then initiates contraction by moving on 

actin microfi laments (Bresnick, 1999). To investigate whether 

myosin II was activated upon Ag stimulation, we analyzed the 

levels of phosphorylated MLC in resting and activated spleen 

B lymphocytes. Immunoblot experiments performed with an 

antibody (Ab) that specifi cally recognizes phosphorylated MLC 

showed that BCR stimulation considerably increased MLC 

phosphorylation (Fig. 3 B). MLC phosphorylation showed 

kinetics that was consistent with its potential implication in the 

BCR-induced clustering of MHC class II+ vesicles, reaching 

maximal levels at 60 min upon BCR engagement (threefold as 

compared with nonactivated B cells).

Analysis of the subcellular distribution of MLC showed 

that although resting cells exhibited homogenous peripheral 

MLC distribution, a 30-min BCR stimulation induced the con-

centration of MLC in contracted cell portions, as contractile 

Figure 3. Clustering of MHC II–containing lysosomes in acti-
vated B cells is coupled to cell contraction and myosin II 
 activation. (A) 2-h time-lapse analysis of purifi ed MHC II–GFP+ 
spleen B cells whose BCR was engaged when starting image 
collection. Deconvolved inverted grayscale z-stack projec-
tions of sequential images (a–g) from a single BCR-stimulated 
cell, which shows multiple membrane contraction events, are 
displayed (Video 3, available at http://www.jcb.org/cgi/
content/full/jcb.200611147/DC1). Arrowheads indicate con-
tracted membrane portions. (B) Cell lysates from B cells 
 activated for different time periods with BCR polyvalent lig-
ands were analyzed by immunoblotting using antiphospho-
MLC (top) and anti-MLC Abs (bottom). Levels of phospho-MLC 
were quantifi ed with ImageJ software (National Institutes of 
Health) and normalized for the relative intensity of total MLC. 
(C) Confocal images of fi xed MHC II–GFP+ spleen B cells 
labeled with anti-MLC and anti-Ii (In-1) Abs. Although resting 
B cells show the homogeneous cytoplasmic distribution of 
MLC, 30 min–stimulated cells redistribute their MLC molecules 
to contracted cell poles, where they colocalize with MHC II–GFP 
and Ii. The boxes highlight cells coming from the same slide 
but from a different fi eld. Bars, 5 μm.

Figure 4. Myosin II activation is required for the formation of lyso-
somal clusters where MHC class II and Ag converge but is not required 
for BCR capping and internalization. (A) Confocal images obtained from 
MHC II–GFP+ spleen B cells not pretreated or pretreated with 10 μM 
ML-7 plus 10 μM Y27632 or 70 μM blebbistatin and activated with 
multivalent BCR ligands for 1 h at 37°C. Fixed cells were labeled 
with the indicated Abs. ML-7/Y27632 or blebbistatin treatment pre-
vents the central clustering of MHC II–GFP+/LAMP-1+/Ag+ vesicles. 
Insets show cells coming from the same slide but from different fi elds. 
(B) 3D reconstructions of the single cells described in A. (C) Quantifi ca-
tion of the experiment described in A (n = 200; three independent 
experiments). Histogram bars represent the percentage of activated 
B cells that show central (black) or peripheral (white) MHC II–GFP+/Ag+ 
vesicles. (D) BCR internalization kinetics in spleen B cells not treated or 
treated with ML-7/Y27632 or blebbistatin and stimulated with BCR 
polyvalent ligands. The levels of plasma membrane IgM (mIgM) were 
assessed by cytofl uorometry on B220+ gated cells. Histogram bars rep-
resent mean fl uorescence intensity ratios between BCR-activated and 
resting B cells from three different experiments. Error bars represent SD. 
Bars, 5 μm.
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rings were often appreciated (Fig. 3 C). Both MHC II–GFP and 

Ii were enriched in such contraction sites together with MLC 

molecules (Fig. 3 C, bottom). This fi nding strengthens the time-

lapse results showing that before moving toward the center of 

the cell, clusters of MHC class II+ vesicles transiently associate 

with contractile membrane portions. Thus, BCR stimulation of 

resting mature lymphocytes triggers myosin II activation as indi-

cated by MLC phosphorylation and redistribution to contracted 

membrane portions, where it colocalizes with MHC class II+ 

vesicle clusters.

Myosin II activity is required for the 
clustering and maturation of lysosomes 
wherein MHC class II molecules and 
BCR–Ag complexes concentrate
To demonstrate that myosin II–driven contraction is indeed 

functionally required for BCR-induced clustering of MHC 

class II– and Ag-containing vesicles, we fi rst used pharmacol-

ogical inhibitors. The inhibitors Y27632 and ML-7 target RhoA 

effector kinase (Rho-associated kinase) and MLC kinase, 

 respectively (Kimura et al., 1996). Rho-associated kinase inhibits 

MLC-phosphatase and, thereby, indirectly promotes the levels 

of phosphorylated MLC, a task performed by MLC kinase 

(Kimura et al., 1996). Blebbistatin is a highly specifi c inhibitor 

of the ATPase activity of myosin II that has been used to dem-

onstrate its involvement in cell division and migration (Straight 

et al., 2003; Rosenblatt et al., 2004; Gomes et al., 2005; Gupton 

and Waterman-Storer, 2006). Time-lapse experiments showed 

that when spleen B cells were pretreated for 45 min with 

these inhibitors before Ag stimulation, they underwent neither 

contraction nor cell spreading (Videos 4 and 5, available at 

http://www.jcb.org/cgi/content/full/jcb.200611147/DC1).

Prevention of myosin II activation or inhibition of its ac-

tivity strongly impaired the clustering of MHC class II– and Ag-

containing lysosomes at the center of BCR-stimulated spleen 

B cells (Fig. 4, A and B). Only a few clusters were observed in 

drug-treated activated cells, and they seemed to contain reduced 

amounts of MHC class II, LAMP-1, and Ag molecules. In 

addition, these clusters remained dispersed at the cell periph-

ery rather than concentrated at the center of myosin II–inhibited 

cells (Fig. 4, A and B). Quantitative analysis showed that al-

though �75% of control Ag-stimulated cells displayed MHC II–

GFP+/LAMP-1+/Ag+ central clusters, only �15% did when 

myosin II activation was hampered (n = 200; Fig. 4 C). 

Impaired clustering did not result from a defect in Ag-induced 

BCR capping or internalization, which remained unaffected in 

the presence of myosin II inhibitors, excluding a general paralysis 

induced by drug treatment (Fig. 4 D and Fig. S2, available 

at http://www.jcb.org/cgi/content/full/jcb.200611147/DC1). 

No effect of myosin II inhibition on MHC class II surface lev-

els was observed by cytofl uorometry (unpublished data). Thus, 

MHC class II– and Ag-containing vesicles do not converge 

and cluster together at the cell center when myosin II activity 

is compromised.

Having shown that myosin II activity is required for 

the proper positioning of MHC II+/Ag+ compartments, we next 

Figure 5. Myosin II activation is required to 
concentrate Ag and MHC II molecules into clus-
tered lysosomes. (A–C) Cryoimmunoelectron 
microscopy analysis of 1 h–activated spleen 
B cells pretreated with DMSO (A and C) or 
ML-7 plus Y27632 (10 μM of each; B and C, 
inset) and labeled for MHC II (10 nm gold par-
ticles) and LAMP-1 molecules (A and B) or Ag 
(C). Activated cells display a network formed 
of LAMP-1+ tubular and vesicular lysosomes 
wherein the Ag and MHC class II molecules 
concentrate together (A and C). Myosin II–
inhibited cells show vacuolar compartments 
that label for Ag, MHC II, and LAMP-1 at their 
limiting membrane (B and C, inset). PM, plasma 
membrane. Bars, 200 nm. (D) Immunoblotting 
of the nonmagnetic (NMF) and magnetic frac-
tions (MF) obtained from spleen B cells not 
pretreated or pretreated with blebbistatin, 
stimulated with magnetic NP coupled to F(ab′)2 
anti-BCR Abs, and mechanically lysed. Semi-
purifi ed Ag-containing endosomes were ob-
tained after magnetic separation as described 
in Materials and methods. Enrichment for 
MHC class II and Ii in the magnetic fraction is 
decreased in blebbistatin-treated cells. The lev-
els of cathepsin D (proform and mature) and 
Rab5 in the magnetic fraction are not affected 
by blebbistatin treatment.
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addressed by immunogold cryoelectron microscopy whether it 

also affects the maturation of these vesicles. The network of tu-

bular and vesicular lysosomes wherein LAMP-1, H2-DM, Ag, 

and MHC class II molecules accumulate was barely observed in 

cells lacking myosin II activity (Fig. 5, A and C). Instead, drug-

treated BCR-stimulated lymphocytes showed vacuolar compart-

ments that labeled for LAMP-1, Ag, or MHC class II molecules 

at their limiting membrane (Fig. 5, B and C; inset). Consistent 

with immunofl uorescence experiments, these vacuolar compart-

ments were dispersed in the cytoplasm of drug-treated cells 

rather than clustered together, leading to the reduced concentration 

of MHC class II molecules and Ag in their lumen as compared 

with control BCR-stimulated lymphocytes (see Table I for 

quantifi cations). Thus, the lack of myosin II activity affects the 

maturation of lysosomes to which MHC class II molecules and 

BCR–Ag complexes are targeted.

The impact of myosin II inhibition on the maturation of 

MHC II+/Ag+ lysosomes was further investigated by biochemi-

cal means using magnetic nanoparticles (NPs) coupled to anti-

BCR Abs. As shown by Perrin-Cocon et al. (2004), these NPs 

undergo proper BCR-mediated uptake and targeting to MHC 

class II–containing lysosomes (Fig. S3, available at http://www

.jcb.org/cgi/content/full/jcb.200611147/DC1), allowing us to semi-

purify the endocytic compartments in which they accumulate 

(Fig. 5 D). We found that both the amounts of MHC class II 

and Ii were strongly decreased in endosomes purifi ed from 

BCR-stimulated cells whose myosin II activity was compro-

mised (Fig. 5 D). In contrast, levels of the early endosomal 

marker Rab5 and of lysosomal mature cathepsin D found in the 

magnetic fraction were not affected by the lack of myosin II 

 activity (Fig. 5 D). In conclusion, both our morphological and 

biochemical results indicate that myosin II is required for 

the proper traffi cking and maturation of MHC class II– and 

Ag-containing vesicles: it promotes their clustering in activated 

B lymphocytes and, thereby, allows them to concentrate together 

into a multivesicular and tubular lysosomal network.

Myosin II activity is required 
for BCR-driven Ag presentation
We next assessed whether myosin II activity is required for the 

presentation of BCR-internalized Ag using both B lymphoma 

cells and primary B lymphocytes. A20/DNP cells were pre-

treated with Y27632 and/or ML-7, further incubated with oval-

bumin (OVA)-DNP (DNP-OVA), fi xed, and cultured together 

with OVA-responding T cell hybridoma (Peterson and Miller, 

1990). Pretreatment of A20/DNP cells with drugs that prevented 

myosin II activation or activity inhibited OVA presentation 

to CD4+ T cells in a dose-dependent manner (Fig. 6, A, B, and D). 

Equivalent results were obtained when targeting OVA protein 

to the BCR of spleen B cells by chemically cross-linking it to 

anti-IgM F(ab′) fragments (Fig. 6 C). No presentation of non-

coupled OVA was detected under such experimental conditions, 

showing that the effect of the drugs indeed concerned the pre-

sentation of BCR-internalized Ag (Fig. 6 C). Importantly, the 

presentation of exogenously added OVA323–339 peptide was not 

affected by any drug treatment, demonstrating that the inhibi-

tion of Ag presentation resulted from impaired processing 

(Fig. 6, A, C, and D). Pulse-chase experiments performed on 

Ag-stimulated spleen B cells not treated or treated with the 

drugs showed that synthesis, maturation, and processing of 

MHC II molecules were not compromised upon myosin II 

 inhibition: equivalent amounts of SDS αβ–peptide complexes 

were immuno precipitated from control and drug-treated cells. 

This indicates that the basal interaction of neosynthesized 

MHC II molecules with endogenous peptides does not require 

Figure 6. Myosin II activity is required for BCR-driven Ag 
presentation. (A and B) A20 cells expressing an anti-DNP sur-
face IgM were pretreated with ML-7, Y27632, or DMSO for 
45 min, incubated with DNP-OVA (increasing amounts [A] 
or 10 μg/ml [B]) or 20 μg/ml OVA323–339 peptide for 4 h, 
washed, and fi xed. T cell activation was measured as de-
scribed in Materials and methods. T cell proliferation in re-
sponse to DNP-OVA presentation is inhibited by the inhibitor 
treatment in a dose-dependent manner. (C) Spleen B cells pre-
treated with Y27632 or DMSO for 45 min at 37°C were in-
cubated with anti-IgM F(ab′) chemically cross-linked to OVA, 
noncoupled OVA, anti-IgM F(ab′)2, or with OVA peptide for 
4 h and were washed and fi xed. (D) The experiment was per-
formed as in A but not pretreating or pretreating the cells 
with blebbistatin.

Table I. Inhibition of myosin II activity reduces the amount of Ag and 
MHC class II molecules that concentrate together in lysosomes

Ag MHC II Ratio of 
Ag/MHC II

DMSO-treated cells 200 663 0.302

ML-7/Y27632-
 treated cells

28 288 0.123

Quantifi cation of the immunogold cryoelectron microscopy experiments shown 
in Fig. 5. Gold particles from 30 compartments were counted in randomly 
selected B cell profi les. We could estimate that the compartments presenting 
vacuolar empty morphology in drug-treated cells represent �70% of the 
total compartments observed. No vacuolar compartment was observed in non-
treated cells.
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myosin II activity, whereas the processing of BCR-internalized 

Ag strictly relies on it (Fig. S4, available at http://www.jcb.org/

cgi/content/full/jcb.200611147/DC1). Thus, the activity of the 

actin-associated motor myosin II is strictly required for BCR-

driven Ag presentation.

Myosin II is required for the formation 
of MHC II–peptide complexes 
from BCR-uptaken Ag
Is myosin II necessary for the formation of MHC II–peptide 

complexes from BCR-uptaken Ag, or is it required to export 

these complexes to the cell surface for interaction with T cells? 

To address this question, we took advantage of the mAb 2C44 

that specifi cally recognizes the complexes formed between I-Ad 

molecules and the 156–173 peptide from Leishmania major Ag 

LACK but does not bind to any of the free components (Lazarski 

et al., 2006). Recombinant LACK protein was targeted to BCR 

uptake by coupling it to the aforementioned NP together with 

anti-BCR Abs. The appearance of I-Ad–LACK156–173 complexes 

was analyzed by immunofl uorescence using 2C44 at 2 and 4 h 

upon Ag internalization. At both time points, I-Ad–LACK156–173 

complexes were mainly detected in lysosome clusters that 

 labeled for LAMP-1 (Fig. 7 A). No complex formation was ob-

served when using NPs only coupled to LACK or to anti-BCR 

Abs (Fig. 7 B and not depicted).

This assay was used to assess the requirement of myosin II

activity on the formation of MHC II–peptide complexes. Bleb-

bistatin treatment strongly reduced the percentage of 2C44+ 

cells, indicating that myosin II activity is indeed necessary for 

the formation of I-Ad–LACK156–173 complexes (see Fig. 7, A and 

B for quantifi cations). Moreover, the few 2C44+ blebbistatin-

treated cells displayed staining in peripherally distributed lyso-

somes rather than in central clusters (Fig. 7 A). Impairment of 

I-Ad–LACK156–173 complex formation in myosin II–inhibited 

cells was further confi rmed biochemically by showing that they 

contained reduced 2C44-reactive material after immunoprecipi-

tation as compared with mock-treated lymphocytes (Fig. 7 C).

To introduce genetic evidence in the involvement of myo-

sin II in the formation of MHC II–peptide complexes, we per-

formed depletion experiments using siRNA. RT-PCR analysis 

had shown that MyH9 was a major myosin II form expressed in 

mouse B lymphoma cells (unpublished data). Three myosin IIA 

Figure 7. Myosin II is required for the formation of 
MHC II–peptide complexes. (A–C) Blebbistatin inhibits 
the formation of I-Ad–LACK156–173 complexes. (A) Con-
focal images of IIA1.6 cells not pretreated or pre-
treated with 70 μM blebbistatin and activated for 4 h 
at 37°C with NP coupled to recombinant LACK pro-
tein and F(ab′)2 anti-BCR Abs in a 1:1 molarity ratio. 
Cells were fi xed and labeled with the indicated Abs. 
Peptide LACK156–173 was used as a positive control for 
2C44 staining (bottom). Insets show cells coming from 
the same slide but from different fi elds. (B) Quantifi ca-
tion of the experiment described in A (n = 300; three 
independent experiments). Histogram bars represent 
the percentage of activated B cells that contain I-Ad–
LACK156–173 complexes. NPs were coupled to anti-BCR 
F(ab′)2 Abs alone (NP) or together with recombinant 
LACK protein. Error bars represent SD. (C) IIA1.6 cells 
not pretreated or pretreated with blebbistatin were ac-
tivated as described in A. Peptide LACK156–173 was 
added to the cells for 4 h at 37°C as a positive control. 
Cells were lysed, immunoprecipitated with 2C44, and 
analyzed by immunoblotting for the presence of I-Aβ. 
In parallel, equal amounts of cell extracts were ana-
lyzed by immunoblotting for α-tubulin expression. Ver-
tical lines indicate gel image cuts. (D–F) Myosin II 
depletion by siRNA impairs lysosome clustering and 
formation of I-Ad–LACK156–173 complexes. (D) IIA1.6 
cells were transfected with different siRNAs specifi c 
for myosin IIA (MyH9 gene; pool of three single siRNAs) 
or with a control siRNA and incubated at 37°C for 
96 h. Cells were lysed, and equal amounts of cell 
lysates were analyzed by immunoblotting for the 
presence of myosin II heavy chain. α-Tubulin was used 
as a loading control. (E) Confocal images of IIA1.6 
cells transfected for 96 h with control or the pool of 
MyH9 siRNAs, activated for 4 h, fi xed, and stained as 
described in A. Arrowheads indicate peripheral lyso-
some patches in MyH9-depleted cells. The boxed ar-
eas are magnifi ed in F. (F) Magnifi ed images of the 
single cells shown in E. (G) Quantifi cation of the ex-
periments described in E (n = 300; two independent 
experiments). Histogram bars represent the percent-
age of activated B cells that contain I-Ad–LACK156–173 
complexes. Error bars represent SD. Bars, 5 μm.
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(MyH9)–specifi c siRNAs were electroporated into B lympho-

cytes either individually or as a pool. MyH9 depletion was ob-

tained with the three individual siRNAs and even more effi ciently 

when using the siRNA pool (Fig. 7 D). The percentage of 2C44+ 

cells was considerably reduced by MyH9 depletion (see Fig. 

7, E–G for quantifi cations), demonstrating that the absence 

of  myosin II severely compromised the formation of I-Ad–

LACK156–173 complexes from BCR-internalized LACK. As 

expected, MyH9 depletion reduced the frequency of central 

lysosome clusters (Fig. 7, E and F). In addition, certain MyH9-

depleted cells exhibited peripheral LAMP-1+ patches similar to 

the ones observed in stimulated primary B cells whose myosin 

II activity was compromised (Fig. 7 E, arrowheads). Therefore, 

we conclude that myosin II is essential for the effi cient forma-

tion of MHC II–peptide complexes from BCR-internalized Ag.

MHC II–Ii complexes and 
myosin II dynamically associate 
upon BCR engagement
Having established that myosin II activity regulates the traffi cking 

of MHC class II molecules upon BCR engagement, we next in-

vestigated whether these proteins physically associate. The traf-

fi cking of MHC class II molecules mainly relies on the cytosolic 

portion of its chaperone-associated molecule, Ii, which is es-

sential for the processing and presentation of BCR-internalized 

Ag (Zimmermann et al., 1999). Thus, we raised the hypothesis 

that Ii may physically link MHC class II–containing vesicles to 

myosin II through its cytosolic tail. In support of this hypoth-

esis, B cells stimulated for short time periods showed a strong Ii 

staining in the contracted membrane portions and the contrac-

tile rings to which MLC and MHC class II molecules were 

 recruited (Fig. 3 C) as well as Ii/MLC colabeling in membranes 

from ER, Golgi, and endocytic vesicles when analyzed by 

immunogold cryoelectron microscopy (Fig. S5, available at 

http://www.jcb.org/cgi/content/full/jcb.200611147/DC1).

Moreover, MLC was pulled down in the aforementioned 

B lymphoma cell line by using anti-Ii Abs in coimmunoprecipi-

tation experiments (Fig. 8 A). MHC class II molecules were 

also found in anti-Ii immunoprecipitates. Strikingly, MLC–Ii 

complexes were retrieved from BCR-stimulated cells only. The 

interaction was found to be transient, and its kinetics was com-

patible with the one observed for MHC II+ vesicle clustering, 

reaching maximal levels at 60 min and then decaying. In agree-

ment with this observation, the amounts of Ii-associated actin 

increased with similar kinetics as well (Fig. 8 A). MLC was also 

retrieved when using anti-MHC II Abs for the immunoprecipi-

tation (Fig. 8 B). Importantly, the inhibition of myosin II activity 

with blebbistatin reduced its ability to associate with MHC class 

II–Ii complexes (Fig. 8 B). These results show that MHC II–Ii 

complexes and myosin II dynamically associate upon BCR 

engagement and further indicate that BCR-triggered myosin II 

activity is necessary for this association.

Association of MHC class II 
to myosin II requires Ii
Are both Ii and MHC class II required for the association to 

myosin II? Because insuffi cient protein amounts are generated 

from mouse spleen B cells, we used DCs purifi ed from either 

Ii- or MHC II (I-Aβ)–defi cient mice to address this question. 

Indeed, a 30-min lipopolysaccharide (LPS) stimulation of DCs 

induces the dynamic association between MHC class II–Ii and 

myosin II, as observed in BCR-activated cells (unpublished data). 

We found that the interaction between MHC class II and MLC 

was completely abolished in Ii-defi cient cells (Fig. 9 A). This 

equally applies to myosin II heavy chain (MyH9) as observed 

when immunoprecipitating Ii and analyzing the coimmuno-

precipitated material by immunoblotting or by an unbiased detec-

tion method (Coomassie staining followed by mass spectrometry 

analysis). Indeed, MyH9 is the major protein retrieved in this ex-

periment, and its levels are comparable with those of immuno-

precipitated Ii (Fig. 9 C). Strikingly, Ii retained the capacity to 

associate to MLC in I-Aβ knockout cells, although less effi ciently 

(Fig. 9 A). No difference in the expression levels of MLC or myo-

sin II heavy chain was observed in total extracts from I-Aβ– or 

Ii-defi cient cells (Fig. 9 B). Together, these results show that Ii is 

essential for MHC II–Ii–myosin II interaction and further sug-

gests that this association links MHC class II–containing vesicles 

to the actin network. In support of this conclusion, we found that 

Ii-defi cient BCR-stimulated lymphocytes exhibited the peripheral 

distribution of MHC II–, LAMP-1–, and Ag-containing vesicles 

instead of central clusters, which is similar to cells whose myosin 

II activity was compromised (Fig. 9 E).

Figure 8. MHC class II–Ii complexes and myosin II transiently associate 
upon BCR engagement. (A and B) Coimmunoprecipitation experiments 
showing dynamic MHC class II–Ii–MLC association upon BCR engagement. 
IIA1.6 cells were activated with multivalent BCR ligands and lysed in a 
0.5% NP-40–containing buffer, and immunoprecipitations were performed 
using anti-Ii (In-1; A) or anti–MHC II Abs (M5114; B). Immunoprecipitates 
were analyzed by immunoblotting for the presence of MLC, actin, Ii, or 
MHC II (I-Aβ). Myosin II inhibition by 70 μM blebbistatin reduces MHC 
II–Ii–myosin II association (B). Quantifi cations were performed with ImageJ 
software, and values were normalized to the immunoprecipitated protein 
levels and expressed relative to the signal intensity obtained from non-
stimulated cells.
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Two nonexclusive hypotheses can be raised to explain the 

lack of MHC II–myosin II association in Ii-defi cient cells: it 

could result from (1) MHC II mislocalization, which accumu-

lates in the ER when Ii is missing (Koonce and Bikoff, 2004; 

unpublished data), or (2) the requirement for Ii cytosolic tail to 

form a complex with myosin II. The fact that Ii retains its abi-

lity to associate to myosin II in the absence of MHC class II 

molecules argues in favor of the second hypothesis. To further 

analyze the involvement of Ii cytosolic tail in the association 

with myosin II, we took advantage of the specifi c inhibitor of 

cathepsin S, LHVS, which prevents the removal of Ii cytosolic 

tail from MHC II–Ii complexes that have reached LAMP-1+ 

compartments (Brachet et al., 1997; Driessen et al., 1999). 

LHVS-treated cells displayed modifi ed kinetics of MHC II–

myosin II association: although 60 min upon BCR activation, 

the retrieval of myosin II with anti–MHC II Abs was diminished 

as compared with untreated cells, the association was still main-

tained 120 min upon BCR engagement (Fig. 9 D). This result 

shows that the presence of the cytosolic tail of Ii on MHC II–Ii 

complexes in lysosomes regulates their ability to associate with 

myosin II. We conclude that the lack of association of MHC II 

to MLC in Ii- defi cient cells likely refl ects the direct involve-

ment of Ii in the formation of this protein complex rather than 

from the mislocalization of MHC class II molecules. Our data 

further indicate that MHC II–Ii–myosin II association can be 

modifi ed by inhibiting myosin II activity with blebbistatin as 

well as by altering the processing of MHC II–Ii complexes with 

LHVS, providing strong evidence in favor of a direct role for 

myosin II in regulating MHC class II traffi cking.

Discussion
In this study, we show that BCR engagement deeply modifi es 

the endocytic pathway of B cells by inducing the formation of 

lysosome clusters wherein MHC class II molecules and BCR–

Ag complexes converge. This process relies on the motor pro-

tein myosin II. We propose that BCR engagement triggers 

myosin II activation and association with MHC class II–Ii com-

plexes, allowing them to be transported toward incoming BCR-

associated Ag. This event of polarized traffi cking would allow 

MHC class II and BCR–Ag complexes to concentrate together 

in lysosomal compartments devoted to Ag processing that clus-

ter near the cell center. The association between MHC class II–Ii 

complexes and myosin II is likely to be mediated by Ii cytosolic 

tail and, thus, is likely to be favored by the previously reported 

BCR-triggered down-regulation of cathepsin S activity, which 

 allows the transient accumulation of MHC II–Ii complexes that 

retain Ii cytosolic tail (Lankar et al., 2002). Once in lysosome 

clusters, the proteolysis of Ii, which, as shown in Fig. S1, is trig-

gered upon BCR engagement, would help myosin II to dissoci-

ate from MHC class II–containing vesicles. Accordingly, 

inhibition of myosin II activity prevents the concentration of MHC 

class II and Ag–BCR complexes in clustered lysosomes as well 

as the subsequent formation of MHC class II–peptide complexes 

and presentation to T cells. Therefore, myosin II emerges as the 

fi rst motor protein to be involved in Ag-regulated traffi cking of 

MHC class II molecules.

Is myosin II–driven cell contraction required 
for BCR-driven Ag processing?
Myosin II is known to mediate cellular contractility. Our video 

microscopy experiments show that BCR-stimulated lympho-

cytes display major contractile activity, which is suppressed 

when inhibiting myosin II activation. Does cell contraction me-

diate the clustering of MHC II–containing lysosomes? Although 

we cannot directly address this question, we do favor this hypo-

thesis based on the following observations: (1) the clusters of 

Figure 9. Ii is required for MHC II–myosin II association. (A–D) Coimmuno-
precipitation experiments highlighting the key role of Ii in MHC II–MLC 
association. (A) Bone marrow–derived DCs from wild-type (WT), Ii-, or 
I-Aβ–defi cient mice were treated with LPS for 30 min and lysed in a 0.5% 
NP-40–containing buffer, and immunoprecipitations were performed as 
described in Fig. 7. (B) Immunoblotting analysis of extracts from bone 
marrow–derived DCs from wild-type, Ii-, or I-Aβ–defi cient mice. Cell were 
treated with LPS for 30 min and lysed in a 0.5% NP-40–containing buffer. 
10 μg of protein was loaded per lane. I-Aβ glycosilation is impaired in 
Ii-defi cient cells, and total levels of Ii are increased in extracts from DCs 
lacking I-Aβ. (C) Coomassie blue–stained gel (top) and immunoblotting 
experiment (bottom) showing the association of Ii with myosin II heavy 
chain. Bone marrow–derived DCs from wild-type or Ii-defi cient mice were 
treated as described in A, and anti-Ii immunoprecipitations were performed 
using the In-1 Ab. Dotted line indicates a gel image cut. (D) Modifi cation 
of the presence of MHC II–associated Ii cytosolic tail by LHVS treatment 
alters the kinetics of MHC II–myosin II interaction. IIA1.6 cells were not 
pretreated or pretreated with 5 nM LHVS or latrunculin B, activated 
with multivalent BCR ligands, and lysed in a 0.5% NP-40–containing 
buffer, and immunoprecipitations were performed using anti–MHC II Abs 
(M5114). The top band shown with an asterisk in latrunculin-treated sam-
ples corresponds to the light chain of the membrane Ig, which is further sol-
ubilized during lysis when the actin cytoskeleton is disrupted. (E) Confocal 
images obtained from spleen purifi ed B cells of Ii+/+ and Ii−/− mice acti-
vated with multivalent BCR ligands for 1 h that were fi xed and stained with 
the indicated Abs. The lack of Ii molecules prevents the clustering of MHC 
II+/Ag+ lysosomes toward the cell center similarly to myosin II inhibition. 
Bars, 5 μm.
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MHC class II–GFP+ vesicles were consistently found in associ-

ation with contracted membrane portions during live imaging; 

(2) the regulatory subunit of myosin II was relocalized together 

with MHC II–Ii complexes to these contracted areas in ex-

periments on fi xed cells; and (3) the kinetics of MHC II–Ii–

myosin II interaction was compatible with the one followed by 

cell contraction.

An attractive hypothesis would be to propose that acto-

myosin contractility would create the forces required for B cells 

to extract Ag from target cell membranes (Batista et al., 2001). 

Indeed, it is thought that in vivo, B lymphocytes mainly acquire 

Ag in a membrane-bound form from cells in charge of trans-

porting them from the periphery to the lymph nodes (Qi et al., 

2006). The acquisition of membrane-bound Ag by B cells is 

 dependent on the interaction of the ICAM-1/LFA-1 adhesion 

molecules (Carrasco et al., 2004), which were shown to trigger 

actomyosin contraction in other cell types (Smith et al., 2003). 

Interestingly, we often observed contacts between Ag-stimulated 

B cells undergoing contractions during our time-lapse experi-

ments (Video 1). Therefore, ICAM-1/LFA-1 might potentiate 

the activation of myosin II at the contact site between B and Ag 

carrier cells and, thereby, couple BCR-triggered activation to 

Ag extraction (Carrasco et al., 2004). Accordingly, it was re-

cently demonstrated that extraction of membrane-bound Ag by 

B lymphocytes occurs through a two-phase membrane spreading 

and contraction response (Fleire et al., 2006), which is likely to 

depend on the actomyosin network.

MHC II–Ii–myosin II interaction links MHC II 
traffi cking to the actomyosin network
The molecular link between MHC class II–containing compart-

ments and the actomyosin network is provided by the dynamic 

interaction between MHC class II–Ii complexes and myosin II, 

which become part of a protein complex that specifi cally assem-

bles upon BCR engagement and requires myosin II activation 

as well as proper processing and traffi cking of MHC II–Ii 

complexes. The specifi city of this protein interaction was con-

fi rmed by showing that it relies on the strength of BCR signaling 

given that it is substantially impaired in Syk-defi cient cells (unpub-

lished data). In addition, myosin IIA heavy and light chains 

were recently identifi ed in a unbiased proteomic approach as 

coimmunoprecipitating with MHC class II molecules in human 

DCs, further strengthening the relevance of the MHC II–myosin II 

association reported in this study by showing that it is conserved 

in human DCs (Benaroch, P., personal communication).

Although we have much evidence suggesting that the 

physical association between MHC class II molecules and myo-

sin II involves the cytosolic tail of Ii, we do not know whether 

this is a direct protein interaction. Interestingly, a comparative 

analysis of the lipid raft proteomics identifi ed both myosin IIA 

heavy and light chains as becoming associated with lipid rafts 

upon BCR engagement (Gupta et al., 2006). Association to 

membrane microdomains such as lipid rafts has been high-

lighted for both BCR–Ag and MHC class II–Ii complexes 

(Pierce, 2002; Poloso et al., 2004). In addition, a positive cor-

relation between membrane microdomain association, productive 

traffi cking toward the center of the cell, and Ag presentation by 

MHC class II molecules was recently shown for oligomeric 

BCR ligands (as opposed to monomeric ones; Kim et al., 2006). 

Thus, MHC II–Ii and myosin II might be part of a complex of 

proteins that dynamically forms and associates with membrane 

microdomains upon BCR activation. Because actin dynamics 

were shown to control the BCR-induced reorganization of lipid 

rafts (Hao and August, 2005), it is tempting to propose that 

 myosin II could play a direct role in recruiting proteins such as 

MHC class II–Ii complexes to these microdomains. As demon-

strated here for myosin II activity, association to lipid rafts was 

indeed suggested to be required for the formation of MHC class II–

peptide complexes (Pierce, 2002; Poloso et al., 2004).

How does myosin II direct the traffi cking 
of MHC class II–carrying vesicles?
Myosin II could directly transport MHC class II–Ii-containing 

vesicles along actin microfi laments, thereby directing their 

movement toward the incoming vesicles that carry BCR–Ag 

complexes. Indeed, although myosin II was described as a non-

processive motor protein (i.e., it spends only a small part of its 

ATP hydrolysis cycle bound to actin cables and is therefore 

thought to be unable to transport cargoes on long distances; 

Frank et al., 2004), oligomerized myosin II molecules might be 

able to mediate cargo transport. Alternatively, myosin II could 

act indirectly, possibly by helping to connect the transport of 

MHC II–containing vesicles, which were shown to use micro-

tubules to travel into cells (Wubbolts et al., 1999), to the traffi ck-

ing of Ag-carrying vesicles, which are most likely associated 

with the actin cortex (Barois et al., 1998; Brown and Song, 

2001). Accordingly, myosin II was shown to coordinate the in-

teractions between actin fi laments and microtubules and might 

thereby affect the transport of associated organelles (Frank et al., 

2004; Seabra and Coudrier, 2004). In particular, changes in the 

polarization of the microtubule network during cell division 

and in migrating cells were attributed to myosin II activity 

(Rosenblatt et al., 2004; Gomes et al., 2005). Determining 

whether the role of myosin II in MHC class II traffi cking in 

B lymphocytes is associated with the acquisition of a polarized 

phenotype as in their T counterpart (Jacobelli et al., 2004) 

requires further investigation.

In conclusion, we show here that B cells coordinately 

reorganize their actin cytoskeleton and endocytic pathway in 

 response to an antigenic stimulus, an event that depends on the 

actin-based motor protein myosin II and is absolutely required 

for the processing of BCR-internalized Ag and presentation to 

CD4 T cells. This study provides the fi rst evidence for the direct 

involvement of a motor protein in the regulation of MHC class 

II traffi cking in Ag-presenting cells and further suggests the po-

tential implication of myosin II in the traffi cking of proteins that 

follow similar routes to MHC class II–Ii complexes.

Materials and methods
Mice and cells
I-Abβ–GFP knockin (referred to as MHC II–GFP), I-Abβ knockout, and Ii 
knockout mice were previously described (Cosgrove et al., 1991; Bikoff et al., 
1993; Boes et al., 2002). The mouse lymphoma cells A20/DNP express-
ing surface IgM anti-DNP (Watanabe et al., 1988), IIA1.6 (FcγR-defective 
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variant of A20), and the DO54.8 T cell hybridoma were cultured as re-
ported previously (Lankar et al., 2002). DCs were differentiated from 
mouse bone marrows cultured during 12 d in a granulocyte/macrophage 
colony-stimulating factor–containing medium as described previously (Savina 
et al., 2006).

Antibodies and drugs
The following Abs and inhibitors were used: rat anti–mouse LAMP-1 (BD 
Biosciences), rabbit anti-Igα (Lankar et al., 2002), rabbit anti-DM (pro-
vided by L. Karlsson, Johnson & Johnson Pharmaceutical Research and 
Development, San Diego, CA), rabbit anti–full-length Ii (JV11; Driessen et al., 
1999), rat anti-Ii N terminal (In-1; BD Biosciences), rat anti–I-Ab/d (M5114; 
Bhattacharya et al., 1981), rabbit anti–I-Aβ (Lankar et al., 2002), rabbit 
anti-Rab5 (provided by J.P. Gorvel, Universite de la Mediterranee Parc 
Scientifi que de Luminy, Marseille, France), goat anti–cathepsin D (Santa 
Cruz Biotechnology, Inc.), mouse anti-RhoA (provided by P. Chavrier, 
Centre National de la Recherche Scientifi que/Institut Curie, Paris, France), 
rat anti–α-tubulin (Serotec), rabbit anti-MLC and rabbit antiphospho-MLC 
(Thr18/Ser19; both were obtained from Cell Signaling Technology), rabbit 
anti–myosin IIA (Abcam), mouse antiactin (MP Biomedicals), Cychrome-
conjugated anti-B220 (BD Biosciences), phycoerythrin-conjugated anti-IgM 
(BD Biosciences) and phycoerythrin-conjugated anti–I-Ab (BD Biosciences), 
ML-7 and Y27632 (Calbiochem), blebbistatin (Tocris), and LHVS (provided 
by H. Ploegh, Whitehead Institute, Cambridge, MA).

Preparation and stimulation of B cells
A single-cell suspension was generated by the mechanical disruption of 
spleens from 8–12-wk-old mice, and resting mature IgM+/IgD+ B cells 
were purifi ed by negative selection (Miltenyi Biotec). Cell purity was 
80–90% as assessed by fl ow cytometry using anti-IgM, IgD, and B220 
Abs. For activation, B cells (107 cells/ml for biochemical assay and 
5 × 105 B cells for immunofl uorescence) were stimulated using multivalent 
BCR ligands: 10 μg/ml F(ab′)2 goat anti–mouse IgM (Cappel) for primary 
spleen B cells or 10 μg/ml F(ab′)2 goat anti–mouse IgG (MP Biomedicals) 
for IIA1.6 mouse lymphoma cells plus 20 μg/ml F(ab′)2 donkey anti–goat 
(Jackson ImmunoResearch Laboratories). For BCR activation with NP (8-nm 
diameter; Fe2O3; provided by J. Roger, Université Paris 6, Centre National 
de la Recherche Scientifi que, Paris, France), 10 μg/ml F(ab′)2 goat anti–
mouse IgG or IgM was mixed with 10 μg/ml of recombinant LACK protein 
and a 3.2 vol of NP.

Immunofl uorescence
B cells plated on poly-L-lysine–coated glass coverslips were fi xed in 4% PFA 
for 20 min at RT, and PFA was quenched in PBS plus 1 mM glycine for 
10 min. Fixed cells were incubated with Abs in PBS plus 0.2% BSA and 
0.05% saponin. For detection of I-Ad–LACK156–173 complexes, biotinylated 
2C44 and streptavidin-546 (Tyramide Signal Amplifi cation kit; Invitrogen) 
were used. Immunofluorescence images were acquired on a confocal 
microscope (LSM Axiovert 720; Carl Zeiss MicroImaging, Inc.) with a 
63× 1.4 NA oil immersion objective (Carl Zeiss MicroImaging, Inc.).

Time-lapse analysis
For video microscopy, B cells attached on poly-L-lysine–coated slides were 
incubated in a Ludin chamber at 37°C in the absence or presence of BCR 
multivalent ligands. Fluorescence 3D + time images were acquired every 
2–5 min during �3 h on an inverted fast 4D deconvolution microscope 
(DMIRB2; Leica) using a PL APO HC 1.4 NA oil immersion objective 
(Leica). It was equipped with a cooled interline CCD detector (CoolSNAP 
HQ; Roper) with a pixel size of 6.45 × 6.45 μm, 12 bits of dynamics, 
and a read-out speed of 20 MHz. Z positioning was accomplished by 
a piezoelectric driver (10-nm precision and 40-nm repetitiveness; LVDT; 
Physik Instrument) mounted beneath the objective lens. Illumination was 
provided by a fast wavelength switcher (DG-4; Sutter Instrument Co.). 
We used a 2 × 2 binning and a z distance between planes of 0.3 μm, 
giving a voxel size of 129 × 129 × 300 nm3, which is compatible 
with the deconvolution process. Images were deconvolved with the 
MetaMorph (Universal Imaging Corp.) point-spread function–based itera-
tive constrained modifi ed gold algorithm. Films were reconstructed using 
MetaMorph 6.2 software.

Immunoelectron microscopy
1–3 × 107 of purifi ed spleen B cells not pretreated or pretreated with 
 myosin II inhibitors were stimulated with multivalent BCR ligands (see Prep-
aration and stimulation of B cells section) and processed for immunoelectron 
microscopy as previously described (Lankar et al., 2002).

Ag presentation assays
OVA was coupled to DNP (Lankar et al., 2002). Monovalent F(ab) anti–
mouse IgM was prepared by reducing 4 mg F(ab′)2 goat anti–mouse IgM 
with 1 mg Mesna (Pierce Chemical Co.) and was incubated with 8 mg 
 maleimide-activated OVA (Pierce Chemical Co.). Fractions were purifi ed 
on a Sephadex 75 column (GE Healthcare) and purity tested by immuno-
blotting. Spleen B cells from MHC II–GFP mice (I-Ab haplotype) or A20 
anti-DNP cells (I-Ad haplotype) not pretreated or pretreated with myosin II 
inhibitors were used for stimulation of the B097.10 (I-Ab) or DO54.8 T cell 
hybridomas (I-Ad) as previously described (Lankar et al., 2002).

Immunoprecipitation and pulse-chase analyses
For immunoprecipitations, IIA1.6 cells were not pretreated or pretreated 
with inhibitors for 1 h at 37°C followed by activation with multivalent BCR 
ligands. Alternatively, day 12 bone marrow–derived DCs treated with LPS 
during 30 min were used. Cells were lysed (100 mM Tris, 300 mM NaCl, 
0.5% NP-40, and 5% glycerol plus protease cocktail inhibitors), and 900 μg 
of cell lysates was precleared with rabbit and mouse nonimmune sera 
and/or protein G–coated Sepharose beads. Ii and MHC class II molecules 
were immunoprecipitated using the In-1 rat mAb or M5114 rat mAb, 
respectively. Samples were washed, resuspended in reducing laemmli buffer, 
boiled, and loaded onto a 12% SDS-PAGE gel. Proteins were transferred to 
polyvinylidene difl uoride membranes (Immobilon-P; Millipore), and mem-
branes were incubated with the appropriate Abs and revealed with ECL (GE 
Healthcare). Alternatively, gels were directly stained with colloidal Coo-
massie blue (Bio-Rad Laboratories). Pulse-chase experiments were performed 
as previously described (Driessen et al., 1999). In brief, spleen B cells 
(20 × 106 cells for each time point) were starved in methionine/cysteine-
free RPMI medium for 45 min at 37°C, pulsed with 0.5 mCi [35S]methionine 
for 30 min at 37°C, further chased for different time points, and lysed, and 
cell extracts were immunoprecipitated using anti–MHC II Ab.

Endosome purifi cation
50 × 106 primary B cells were activated with magnetic NP coupled to 
anti-BCR Abs for 1 h at 37°C, washed with PBS, and resuspended in cold 
homogenization buffer (3 mM imidazol, 8% sucrose, 1 mM DTT, 1 mM 
EDTA, and protease inhibitors). Cells were broken using a cell cracker 
(Lankar et al., 2002), nuclei and intact cells were removed by centrifuga-
tion at 750 g for 10 min, and postnuclear supernatants were collected. 
NP+ intracellular compartments were semipurifi ed by incubating post-
nuclear supernatants on a magnet O/N at 4°C. Nonmagnetic and magnetic 
fractions were recovered. Equal protein quantities of the magnetic fraction 
were analyzed by SDS-PAGE.

siRNA transfection
4 × 105 IIA1.6 cells were electroporated using nucleofactor R T16 (Amaxa) 
in the presence of 20 nM siRNAs, SMARTpool siRNA, or siGENOME ON-
TARGETplus (#1, 5′-G G G C U U A U C U A C A C C U A U U U U -3′; #2, 5′-A Y A A G A-
A C C U G C C C A U C U A U U -3′; #3, 5′-G C A G A C A A G U A C C U C U A U G U U -3′) 
specifi c for the MYH9 gene or negative control duplex siRNA (5′-U U C U-
C C G A A C G U G U C A C G U T T -3′; QIAGEN). Cells were cultured for 96 h at 
37°C and analyzed by immunoblotting or immunofl uorescence.

Online supplemental material
Videos 1 and 3 show that B cells undergo cell contraction and MHC II–GFP 
clustering upon BCR stimulation. Video 2 shows the behavior of nonstimu-
lated purifi ed B lymphocytes from MHC II–GFP mice. Videos 4 and 5 show 
that treatment of BCR-stimulated cells with inhibitors of MLC phosphoryla-
tion prevents cell contraction and MHC II–GFP clustering. Fig. S1 A shows 
that full-length Ii is weakly detected in central lysosome clusters, whereas 
H2-DM is enriched in these compartments. Fig. S1 B shows that the pro-
teolysis of Ii is induced upon BCR stimulation. Fig. 1 C shows that there is 
no variation in the steady state levels of MHC class II surface expression at 
various times after BCR stimulation. Fig. S2 shows that BCR capping is not 
modifi ed in B cells whose myosin II activity is inhibited. Fig. S3 shows a 
characterization of the method used to semipurify the endosomes to which 
BCR–Ag complexes are targeted. Fig. S4 shows that the formation of 
MHC II–peptide complexes from endogenous proteins is not affected by the 
inhibitors of myosin II activity. Fig. S5 shows that Ii and MLC colocalize on ER, 
Golgi, and endosomal membranes. Online supplemental material is avail-
able at http://www.jcb.org/cgi/content/full/jcb.200611147/DC1.
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