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Introduction
The mammary gland is a highly dynamic organ that undergoes 

a series of changes from intrauterine life to senescence. In hu-

mans, growth in adulthood commences at puberty where the 

parenchymal cells branch from a few blunt ending primary and 

secondary ducts into an elaborate tree with multiple terminal 

ducts and lobules. With each menstrual cycle, breast prolifera-

tion fl uctuates, and, in the luteal phase, the growth fraction can 

become as high as 35% (Potten et al., 1988; Shetty et al., 2005). 

Accordingly, during pregnancy, there is both a 10-fold increase 

in the number of alveoli per lobule as well as de novo formation 

of lobules by lateral budding from existing terminal ductules, 

leaving behind a small amount of connective tissue space (for 

review see Russo and Russo, 2004). These cellular dynamics 

led Taylor-Papadimitriou et al. (1983) to postulate the existence 

of a population of precursor cells in the adult human breast that 

are capable of giving rise to new lobules.

From studies mainly in other species, it is known that 

adult stem cells are generally focal in distribution and not nec-

essarily colocalized with the bulk of transiently amplifying cells 

(for review see Fuchs et al., 2004). In mice, the location of im-

mature mammary gland stem cells was narrowed down to the 

peripheral cap cells of the terminal end buds (for review see 

Woodward et al., 2005). In humans, however, in which end buds 

are not prominent structures (Howard and Gusterson, 2000), the 

identifi cation of a candidate stem cell zone has had to rely on a 

detailed and microscopically directed sampling of well-defi ned 

segments of the organ followed by functional assays. By com-

bining microdissection with colony-forming ability, candidate 

stem cells in the human hair follicle were prospectively identi-

fi ed in the bulge region more than a decade before the bulge was 

unequivocally proven to be the epithelial stem cell niche in the 

skin (Yang et al., 1993; Moll, 1995; Tumbar et al., 2004). The 

proximal ducts of the prostate were also shown to harbor stem 

cells by this method (Tsujimura et al., 2002). Recently, a side 

population exhibiting Hoechst dye effl ux properties was isolated 

from the human mammary gland (for review see Smalley and 

Clarke, 2005), and self-renewing cells were enriched for by the 

use of nonadherent mammosphere cultures (Dontu et al., 2003). 
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ellular pathways that contribute to adult human 

mammary gland architecture and lineages have 

not been previously described. In this study, we 

identify a candidate stem cell niche in ducts and zones 

containing progenitor cells in lobules. Putative stem cells 

residing in ducts were essentially quiescent, whereas the 

progenitor cells in the lobules were more likely to be ac-

tively dividing. Cells from ducts and lobules collected 

 under the microscope were functionally characterized by 

colony formation on tissue culture plastic, mammosphere 

formation in suspension culture, and morphogenesis in 

laminin-rich extracellular matrix gels. Staining for the 

 lineage markers keratins K14 and K19 further revealed 

multipotent cells in the stem cell zone and three lineage-

restricted cell types outside this zone. Multiparameter cell 

sorting and functional characterization with reference to 

anatomical sites in situ confi rmed this pattern. The pro-

posal that the four cell types are indeed constituents of an 

as of yet undescribed stem cell hierarchy was assessed in 

long-term cultures in which senescence was bypassed. 

These fi ndings identify an adult human breast ductal stem 

cell activity and its earliest descendants.
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Whereas in mice, the ultimate evidence for the existence of 

mammary stem cells is the clonal repopulating ability and 

greater morphogenic capacity within the cleared fat pad (Stingl 

et al., 2006a; Shackleton et al., 2006), such experiments cannot 

be performed in humans. Fortunately, surrogate assays con-

ducted with mice and human cells demonstrate that putative 

mammary stem cells in 3D laminin-rich ECM (lrECM) gels 

function as they do in vivo in terms of several morphogenetic 

criteria across the species (Gudjonsson et al., 2002b; Dontu 

et al., 2003; Clarke et al., 2005; Stingl et al., 2006a). However, the 

existence of a hierarchy as well as a correspondence between 

stem cell markers and activity with specifi c regions of the gland 

has not been described.

In this study, we examine in situ whether the resting 

 human mammary gland exhibits stem cell markers, which could 

identify a stem cell zone, as has been done for other tissues 

(Blanpain et al., 2004; Trosko et al., 2004; Burger et al., 2005; 

Kim et al., 2005; Moore and Lemischka, 2006). We took advan-

tage of Ki-67 and laminin-2/4 as biomarkers for cellular turn-

over and differentiation (Simon-Assmann et al., 1994; Belair 

et al., 1997; Feuerhake et al., 2000; Fleischmajer et al., 2000; 

Maslov et al., 2004; Kingsbury et al., 2005; Shetty et al., 2005). 

Further dissection of regions of interest and microcollection al-

lowed us to interrogate functional stem cell properties in culture. 

These included high clonal proliferative capacity on tissue 

 culture plastic, self-renewal in suspension, and mammary mor-

phogenesis in 3D lrECM (Petersen et al., 1992; Hudson et al., 

2000; Gudjonsson et al., 2002b; Tsujimura et al., 2002; Dontu 

et al., 2003; Benitah et al., 2005; Kim et al., 2005; Ohyama et al., 

2006; Stingl et al., 2006a). 

Multipotency was determined based on fl uorescence im-

aging in situ and in clonal primary cultures using two line-

age markers, keratins K14 and K19, in which K14 marks the 

myoepithelium and K19 is hypothesized to be a neutral switch 

keratin that permits the changeover of one type of cytoskeleton 

to the other (Stasiak et al., 1989). Importantly, double-positive 

K14 and K19 transitional cells are known also to codistribute 

with the stem cell zone in the prostate (Hudson et al., 2001).

To compare mouse and human markers, we isolated mam-

mary stem cell activity on the basis of surface markers CD49f 

and EpCAM (Stingl et al., 2006b). The cells thus isolated were 

further characterized using additional putative stem and pro-

genitor markers. Finally, we took advantage of human papil-

loma virus (HPV) 16 E6/E7 to bypass cellular senescence (Band 

et al., 1990; Gudjonsson et al., 2002b) and to interrupt the nor-

mal differentiation of stem and progenitor cells to generate cell 

lines that maintain their phenotypes in culture. The absence of 

senescence allowed us to follow the developmental hierarchy of 

the progenitor cells in the breast and made it possible to isolate 

stable cell lines representing the different stem and progenitor 

stages, as done previously for other cell types (Reznikoff et al., 

1994; Roecklein and Torok-Storb, 1995; Okamoto et al., 2002; 

Osyczka et al., 2002; Akimov et al., 2005; Mori et al., 2005). 

Our results have defi ned a human breast epithelial stem cell 

zone in vivo and a progenitor hierarchy both inside and outside 

this zone. Additionally, we have developed several stem and 

progenitor cell lines that will aid our understanding of the pos-

sible role of these cells in breast cancer.

Results
A candidate stem cell zone resides in ducts
To test whether a stem cell zone could be defi ned in the human 

breast, we stained for several postulated surrogate stem cell 

markers, including stage-specifi c embryonal antigen-4 (SSEA-4), 

Figure 1. A candidate stem cell zone resides in ducts. Immunoperoxidase 
staining of ducts (left) and lobules (right) in cryostat sections of the human 
breast with SSEA-4 (a and b) and keratin K15 (c and d). Staining is stron-
gest in clusters of cells in ducts (brown). Nuclei are counterstained with 
 hematoxylin (blue). Bar, 50 μm.

Figure 2. A latent or actively dividing proliferative compartment is de-
lineated by laminin-2/4 in lobules. Immunoperoxidase staining of ducts (left) 
and lobules (right) in cryostat sections of the human breast with Ki-67 
(a and b) and laminin-2/4 (c and d). Staining with Ki-67 can approach 
50% of the nuclei in lobules as opposed to a mean of 2.8% in ducts. Staining 
with laminin-2/4 is confi ned to lobules (brown). Nuclei are counterstained 
with hematoxylin (blue). Bars, 50 μm.
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keratin K6a, keratin K15, keratin K5, Bcl-2, and chondroitin 

sulfate (Bocker et al., 2002; Legg et al., 2003; Luna-More et al., 

2004; Dravida et al., 2005; Schmelz et al., 2005; Ohyama et al., 

2006). Three of the markers examined, SSEA-4 (Fig. 1), K15 

(Fig. 1) and K6a (see Fig. 5 a), localized focally to discrete clusters 

of cells in ducts, including terminal ducts, and were essentially 

absent from lobules. Specifi cally, although 73–78% of ducts 

stained with K6a, SSEA-4, and K15, the frequency of lobules 

with stained cells ranged from 6 to 13% (n = 19). Keratin K5, 

Bcl-2, and chondroitin sulfate were more widely distributed 

but still were more prominent in ducts than lobules (Fig. S1 A, avail-

able at http://www.jcb.org/cgi/content/full/jcb.200611114/DC1). 

The frequency of SSEA-4–positive cells was further determined 

by FACS analysis of trypsinized uncultured organoids. Single 

cells identifi ed as epithelial and myoepithelial by dual staining 

with epithelial antigen EpCAM and β4-integrin in the SSEA-4hi 

gate comprised 0.5–0.7% of the total population, which also 

 included the stromal cells (Fig. S1 B). Importantly, SSEA-4hi 

cells were highly enriched for keratin K6a- and K15-positive 

cells (Fig. S1 B).

Because quiescence is a general property of stem cells in 

their niche, we stained ducts and lobules with Ki-67. The level 

of staining in lobules varied markedly between biopsies, as 6/12 

had moderate to strong staining (up to 50% of cells per lobule), 

and the other six were negative. However, ducts showed a low 

but constant level of staining: a mean of 2.8% (range of 1.3–4.7%) 

of cells stained in 10 biopsies (Fig. 2, a and b). The Ki-67 stain-

ing pattern was confi rmed by staining for minichromosome 

maintenance protein 2 (Gonzalez et al., 2003; unpublished 

data). Furthermore, lobules rather than ducts stained specifi -

cally for the α-2 chain of laminin-2/4, a basement membrane 

component surrounding proliferating epithelial cells (Fig. 2, 

c and d; Simon-Assmann et al., 1994; Chenard et al., 2000; 

Fleischmajer et al., 2000; Laine et al., 2004). RT-PCR for the dif-

ferent chains of laminin using purifi ed populations of myoepithelial 

cells and fi broblasts revealed that whereas myoepithelial cells 

Figure 3. Cells with a capacity for clonal growth, self-renewal, and differentiation are derived only from ducts. (A) Duct-derived clonal growth on tissue 
culture plastic. Phase-contrast micrograph of an uncultured breast organoid released after collagenase digestion. The anatomical composition into ducts 
and lobules is readily identifi able. (top) Low magnifi cation phase-contrast micrographs of organoids dissected and microcollected into ducts (a) and lobules 
(b) and plated in separate culture fl asks. Structure and morphology are still preserved. (a′ and b′) Low magnifi cation photos of cells in primary culture plated 
at clonal density and stained with hematoxylin. (a′′ and b′′) Low magnifi cation photos of cells in secondary culture plated at clonal density and stained 
with hematoxylin. Extended proliferative capacity is seen in cells from ducts. (B) Duct-derived clonal growth and morphogenesis in mammosphere culture 
and 3D lrECM gels. Phase-contrast micrographs of mammosphere cultures derived from ducts (a) and lobules (b). (a′ and b′) Two morphologies were re-
corded in each outgrowth from ducts and lobules: large spheres (>70 μm) and small irregular cell clusters (<70 μm). Large spheres are more frequent in 
duct-derived cultures. (a′′ and b′′) Multicolor imaging of smeared duct- and lobule-derived spheres stained with keratins K19 (red) and K14 (green). Yellow 
indicates double-stained cells. (a′′′ and b′′′) Morphogenic potential of duct- and lobule-derived spheres upon culture in 3D lrECM. Whereas large, solid 
spheres had the capacity to develop into budding (TDLU-like) structures, small cell clusters essentially maintained their morphology. Error bars represent SD. 
Bars: (a, b, a′′′, and b′′′) 100 μm; (a′′ and b′′) 50 μm.
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contributed α-1, α-3, and α-5 chains of laminin in addition to 

α-2 chains of laminin-2/4, fi broblasts expressed α-2 chains of 

laminin-2/4 only (Fig. S1 C). These data show that a candidate 

stem cell zone resides in ducts that are enriched in cells identi-

fi ed as being SSEA-4hi/K5+/ K6a+/K15+/Bcl-2+ cells, which 

are generally quiescent and are surrounded by chondroitin 

 sulfate. The more frequently proliferating progenitors are found 

outside this region and are often surrounded by laminin-2/4.

Cells with a capacity for clonal growth, 
self-renewal, and bipotency are derived 
only from ducts
We assessed the proliferative and morphogenic capacity of pri-

mary cells on tissue culture plastic, in mammosphere suspen-

sion cultures, and in a 3D lrECM assay. The growth of the cells 

derived from ducts or lobules were compared on tissue culture 

plastic. Only ductal-derived cells formed colonies that were 

considerably larger than 100 cells/colony (60 ± 2% of colonies 

had >100 cells; n = 3 × 50 colonies) compared with lobular-

derived cells (0% of colonies had >100 cells), indicating that 

as expected for stem cell activity in culture, the duct-derived 

cells have a higher proliferative potential than those derived 

from lobules (Fig. 3 A, a′–b′′). Similar patterns were obtained 

from two additional biopsies when placed in culture. To further 

test for self-renewal, ducts were compared with lobules using 

the mammosphere assay (Fig. 3 B). Whereas ducts gave rise to 

relatively large mammospheres (>70 μm), those derived from 

lobules were small and irregular (<70 μm; Fig. 3 B, a–b′). 
 Primary mammospheres were then trypsinized and replated to 

derive secondary mammospheres. In our hands, the frequency of 

primary and secondary mammosphere formation was �3/1,000 

cells, a fi gure comparable with that described originally by 

Dontu et al. (2003). We assessed the presence of prospective 

multipotent cells in mammospheres by multicolor imaging 

based on the combined staining for myoepithelial keratin K14 

and the luminal or switch keratin K19 (Stasiak et al., 1989). 

The K14+/19+ phenotype was most often observed in duct-

 derived mammospheres (26/48 colonies; 54%) as opposed to 

lineage-restricted lobule-derived mammospheres (5/48 colonies; 

10%; Fig. 3 B, a′′ and b′′). Similarly, mammospheres trypsin-

ized and plated at clonal density from ducts and lobules gave 

rise to K19/K14 double-stained cells in 56% of those derived 

from ducts (n = 92 colonies) and only 6% of those derived 

from lobules (n = 92).

Figure 4. Keratin profi les reveal that K19+/K14+ 
cells reside in ducts. (top) Drawing illustrating a seg-
ment of the breast, including the branching ductal-
 lobular system, to indicate the approximate location of 
the cryostat sections. (a–d) Multicolor confocal imag-
ing of cryostat sections of the stained human breast. 
The sections represent different parts of the ductal-
 alveolar system as indicated in the drawing. (a′–d′) 
Cloned primary breast epithelial cells stained for kera-
tin K19 (red), keratin K14 (green), and nuclei (blue). 
Four epithelial cell types could be identifi ed in the hu-
man breast based exclusively on the keratin staining 
pattern: a, +/+; b, +/−; c, −/−; and d, −/+. Cells 
double stained for keratins K19 and K14 (+/+) ap-
peared as scattered yellow single cells or small groups 
of cells in ducts (high magnifi cation inset in a). Yellow 
pseudocolor represents cells in which the two markers 
colocalized. These were essentially restricted to duct-
derived cultures. Four types of epithelial clones with 
phenotypes similar to those defi ned in situ were re-
corded in cloned primary culture. (e and f) This was 
substantiated further by quantifi cation of +/+, +/−, 
and −/+ cells in cultures from microcollected ducts 
(e) and microcollected lobules (f). Considerable num-
bers of yellow cells are present in cultures from ducts. 
Error bars represent SD. Bars, 50 μm.
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The morphogenic potential of mammospheres was as-

sessed in a 3D lrECM assay in which 2/49 duct-derived second 

passage mammospheres developed into terminal duct lobular 

unit (TDLU)–like structures. The formation of TDLUs was not 

observed from lobule-derived mammospheres (0/45); these 

only gave rise to spherical structures (Fig. 3 B, a′′′ and b′′′). 
A similar pattern was observed with or without a feeder layer of 

primary epithelial cells. Essentially, this behavior was recorded 

in mammospheres derived from three randomly collected bi-

opsies from reduction mammaplasty. Finally, immunostaining of 

plated mammospheres for SSEA-4 from a representative biopsy 

further revealed that 24% of duct-derived colonies contained 

positive cells compared with 10% of those derived from lobules. 

Thus, ducts are enriched for a subpopulation of epithelial cells 

that, in culture, exhibit a highly proliferative, self-renewing, and 

morphogenic capacity indicative of stem cell activity.

Keratin profi les reveal that K19+/K14+ 
cells reside in ducts
When tissue sections were double stained for keratins K19 and 

K14, four different populations could be distinguished: K19+/

K14+ (+/+), K19+/K14− (+/−), K19−/K14− (−/−), and 

K19−/K14+ (−/+). The +/+ cells were found as scattered sin-

gle cells or small groups of cells in ducts (Fig. 4, a and inset). 

The +/− cells were present both in ducts (not depicted) and in 

lobules (Fig. 4 b). The −/− cells were rare, but, when present, 

they appeared generally throughout an entire TDLU (Fig. 4 c), 

indicating their clonal origin. The −/+ cells were observed 

in the myoepithelial cell layer as expected (Fig. 4 d). These 

 profi les refl ect the unique subsets of breast epithelial cells 

that reside in the mammary gland, as was subsequently revealed 

in cloned primary cultures from crude collagenase digests 

(Fig. 4, a′–d′). Furthermore, this pattern was confi rmed in micro-

collected ducts and lobules. Thus, whereas lobules gave rise 

 almost exclusively to colonies of +/−, −/+, and a few −/− 

cells, only ducts also gave rise to colonies of +/+ cells (Fig. 4, 

e and f). The predominance of +/+ cells in cultures of ducts 

was observed in three experiments from two independent 

 biopsies. Similar data were obtained after recloning. Thus, 

whereas cells from lobules either did not clone out or formed 

small abortive +/− clones, the ducts formed large +/+ clones 

(9/10 clones in an experiment from one biopsy; Fig. S2, avail-

able at http://www.jcb.org/cgi/content/full/jcb.200611114/DC1). 

We conclude that ducts house a subpopulation of epithelial 

cells that exhibit four important attributes of epithelial stem 

cells: they express stem cell markers in situ; they are slow cycling 

in vivo; they exhibit a high proliferative, self-renewal, and mor-

phogenic capacity in culture; and they are bipotent.

Enrichment of K19+/K14+ cells 
in a Lin−CD49f+EpCAMhi population 
of ductal origin
To fi nd the in situ equivalent of ductal/lobular cells isolated by 

FACS analysis, we defi ned a set of anatomical markers. Specifi -

cally, within the luminal lineage, we used keratin K6a for ductal 

cells and BCA-225 for lobular cells; within the myoepithelial 

lineage, we used keratin K17 for ductal cells and WT1 against 

lobular cells (Fig. 5). Before FACS analysis, we fi rst removed 

the substantial stromal component of the human breast by de-

pleting endothelial, fi broblastic, lymphocytic, and monocytic 

lineages using a CD31/1B10/CD34/CD45 immunomagnetic 

column, allowing a fl ow through of lineage-negative (Lin−) 

epithelial cells (Shackleton et al., 2006). Primary cells were 

then sorted based on their expression of CD49f (α6-integrin) 

and EpCAM (Stingl et al., 2006b). Four subpopulations, which 

were identifi ed by gates I–IV, were sorted and then analyzed 

by immunofl uorescence for the expression of anatomical se-

lective markers (Fig. 6 and Fig. S3 C; see also Materials and 

methods). Similar FACS profi les were revealed in cells from six 

independent biopsies. Subpopulations isolated in gates I and II 

represented the luminal epithelial lineage, and gates III and IV 

contained the myoepithelial lineage (Fig. 6, a and b). A further 

subdivision into lobular cells (gates I and III) and ductal cells 

(gates II and IV) could be established by the anatomical markers 

(Fig. 6, b and c). As expected, the K19+/K14+ cells cosorted 

with ductal Lin−CD49f+EpCAMhi cells within the luminal epi-

thelial lineage (gate II; Fig. 6, a and b). In addition, triple color 

staining showed that SSEA-4hi expression was observed in the 

+/+, Lin−CD49f+EpCAMhi population (Fig. S3, available at 

http://www.jcb.org/cgi/content/full/jcb.200611114/DC1).

Functional assays for stem cell activity demonstrated 

that colony-forming ability was signifi cantly restricted to 

the Lin−CD49f+EpCAMhi population (gate II; Fig. 6 d), also 

 suggesting the isolation of multipotent progenitor activity. 

Figure 5. Markers of distinct anatomical locations within the human breast 
in situ. Immunoperoxidase staining of ducts (left) and lobules (right) in 
cryostat sections of the human breast with keratin 6a (a and b), BCA-225 
(c and d), keratin K17 (e and f), and WT1 (g and h). Each marker  exhibits 
a  restricted, albeit for BCA-225 and WT1 somewhat biopsy- dependent, loca-
tion (brown) in either the luminal or myoepithelial cells of the ducts or lobules, 
respectively. Nuclei are counterstained with hematoxylin (blue). Bar, 50 μm.
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Furthermore, single-cell sorting into 96-well dishes based on 

SSEA-4 staining within a CD49f/EpCAM context revealed 

that the SSEA-4hi subpopulation had a cloning effi ciency of 

three col onies per 96-well dish as opposed to zero from the 

SSEA-4neg gate, which suggests that the SSEA-4hi subpopu-

lation represents the majority of colony-forming activity. 

However, our  experimental design so far does not allow us 

to account for the considerable variation in cloning effi ciency 

between donor samples, so we cannot conclude defi nitively 

that the SSEA-4hi subpopulation is signifi cantly different 

from the total Lin−CD49f+EpCAMhi population. Neverthe-

less, multicolor imaging revealed that all three clones were 

+/+ (Fig. S3). Most importantly, when cells from gates 

I–IV were cultured in 3D lrECM at clonal density, only the 

Lin−CD49f+EpCAMhi population (gate II) formed budding 

(TDLU-like) structures (gate II; Fig. 6, e and f). Thus, whereas 

the cells isolated from other gates morphologically consisted 

mainly of small spheres (acinus-like) or large, solid spheres 

as previously described (Fig. 6, e and f; Petersen et al., 1992) 

and were lineage restricted, those isolated from gate II were 

TDLU-like budding structures and formed +/+, +/−, and 

−/+ as revealed by staining the whole mounts of gels (Fig. 6 g). 

Collectively, analysis of primary breast tissue reveals that all 

detectable stem cell–like or stemlike activities are restricted to 

duct-derived cells.

Immortalization stabilizes the differentiation 
repertoire in accordance with a breast 
stem cell hierarchy
We reasoned that if the mammary epithelial cell types identifi ed 

above by K14 and K19 expression were connected in a hierar-

chy, only one cell type should give rise to the other lineage-

 restricted progenitors. To examine this we used HPV16 E6/E7 

(Band et al., 1990) to bypass senescence so cells could be fol-

lowed for long periods of time. After transducing cells only 

once with retroviruses harboring E6/E7, we successfully recov-

ered several sublines and clones of the four cell types that could 

be distinguished by K19/K14 expression as described in Fig. 4. 

We designated these cell lines +/+E6/E7, +/−E6/E7, −/−E6/E7, 

and −/+E6/E7 (Fig. 7). HPV16 E6/E7 conferred extended life 

span or immortality to all four subtypes, although the −/+ 

myoepithelial cells senesced after passage 30. +/+E6/E7 cells’ 

unique ability to give rise to the other three subtypes (Fig. 7 a) 

and their ability to form TDLU-like structures in 3D lrECM 

cultures (Fig. 7 a′) confi rmed that +/+E6/E7 cells exhibited 

stemlike activity. Quantifi cation of morphogenesis using the 3D 

Figure 6. Enrichment of K19+/K14+ cells in a Lin−CD49f+EpCAMhi population of ductal origin. Molecular and functional characterization of subsets of hu-
man breast cells. (a) FACS dot plot showing the distribution of Lin− epithelial cells according to their expres sion of CD49f and EpCAM and the gat ing strat-
egy used to select four subpopu lations (designated I–IV); the Lin−CD49f+EpCAMhi stem cells reside in population II. The blue shading indicates two 
other gates in which the keratin staining profi les were nearly identical and were, therefore, combined into the larger gate (shown) to maximize cell yield. 
(b and c) Each population was analyzed in parallel using cell type–specifi c protein expression analysis. Sorted uncultured cells were allowed to attach 
directly to glass slides or to a plate in culture to recover from trypsination (for BCA-225) and were then fi xed and stained by immuno fluorescence (left) to 
determine the incidence of K14 and K19 expression in the same cell or by immunocytochemistry (right) to determine the proportion of cells within each 
sorted population that express K6, BCA-225, K17, and WT1. The colors of the bars used in the left bar graph match the pseudocolors assigned to K19 
(red) and K14 (green) used throughout this study. Therefore, K19+/K14+ cells are denoted by yellow bars, and −/− cells are denoted by blue bars. Cells 
were characterized functionally by colony-forming ability on 2D collagen-coated culture dishes (d), clonal density morphogenesis inside 3D lrECM, as ex-
pressed in absolute numbers per 10,000 cells seeded (e and f), and  bipotency as revealed by staining for K19/K14 (g). This experimental method was re-
peated on three individually collected reduction mammoplasty specimens. Only cells from population II demonstrated a high incidence of K19+/K14+ 
(20%) cells. Importantly, this population exhibited substantial colony-forming ability (19/700) and the ability to generate TDLU-like budding structures in 
3D lrECM. Error bars represent SD. Bars, 100 μm. 

Figure 7. Immortalization stabilizes the differentia-
tion repertoire in accordance with a breast stem cell 
hierarchy. (a–d) HPV16 E6/E7 transduced cell lines 
on tissue culture plastic were stained for keratin K19 
(red), keratin K14 (green), and nuclei (blue). Whereas 
the +/−E6/E7, −/−E6/E7, and −/+E6/E7 cell lines are 
homogenous with respect to keratin staining, the 
+/+E6/E7 cell line contains cells representative of each 
of the other cell lines as well as doubly stained cells 
(green, blue, red, and yellow). (a′–d′) +/+E6/E7, 
+/−E6/E7, −/−E6/E7, and −/+E6/E7 cells embedded 
within 3D lrECM. Whereas TDLU-like structures in 
cultures from +/+E6/E7 cells were characterized by 
 organoid-like branching morphogenesis, cultures from 
+/−E6/E7, −/−E6/E7, and −/+E6/E7 cells exclusively 
formed rounded or irregular cellular clusters. (a′′–d′′) 
K19 (red) and WT1 (green) expression in structures in 
3D lrECM. Bars: (a–d and a′′–d′′) 50 μm; (a′–d’) 
100 μm.
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Figure 8. HPV16 E6/E7 transduction reveals that lineage-restricted cells are progenitors. (A) Lineage-restricted cells exhibit a distinct subset of the markers 
in +/+ cells. RT-PCR of three luminal epithelial-specifi c markers (EpCAM, estrogen receptor [ER], and keratin K19) and two myoepithelial-specifi c markers 
(laminin-α1 and tenascin). All cell lines were further stained for MUC1 and Thy1. Whereas stemlike cells (+/+E6/E7) express low levels of all markers re-
corded by RT-PCR and no staining for MUC1 and Thy1, lineage-restricted cells exhibit strong expression of the markers for their respective lineages: 
+/−E6/E7 and −/−E6/E7 are positive for MUC1, and −/+E6/E7cells are positive for Thy1. (B) Robustness of lineages irrespective of retroviral integration 
site. (before E6/E7, crude) Primary human breast epithelial cells sorted into luminal epithelial MUC1+/Thy1− (red) and myoepithelial MUC1−/Thy1+ 
(green) fractions and plated in second-passage cultures. (before E6/E7, sorted) Cells from second-passage cultures grown for 14 d and reanalyzed by the 
same MUC1/Thy1 staining protocol as in the crude panel. There is little or no drifting in the MUC1/Thy1 profi les. (after E6/E7, pooled clones) Cells from 
fl ow-sorted second-passage culture reanalyzed by the same MUC1/Thy1 staining protocol as in the before E6/E7 panel but after transduction with HPV16 
E6/E7 and selection in the presence of G418 to generate >70 transduced clones per culture. Phenotypic drifting across the lineages was still very limited. 
(after E6/E7, clonal analysis) RS-PCR of three clones (1–3) of MUC1−/Thy1+ or MUC1+/Thy1− lineage-restricted cells. Different sets of primers were de-
signed based on known genomic RSs (e.g., XmaI). Note the unique RS-PCR profi le for each clone (asterisks). (C) Lineage-restricted cells are progenitor cells. 
Multicolor imaging of cell lines (a–c) and cryostat sections (a′–c′) stained with two luminal epithelial markers of +/−E6/E7 cells, E29 (red) and BCA-225 
(green; a and a′); two luminal epithelial markers of −/−E6/E7 cells, CDw75 (red) and keratin K8 (green; b and b′); and two myoepithelial markers of 
−/+E6/E7 cells, keratin K17 (red) and WT1 (green; c and c′), as well as nuclei (blue). The differentiation program is clearly bimodal, generating both red 
and green cells. In situ, this bimodality translates into the differentiation of distinct cell types within the luminal epithelial and myoepithelial compartments. 
Bars, 50 μm.
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lrECM assay revealed 54 ± 2.5% (n = 3) of TDLU-like struc-

tures in cultures of +/+E6/E7 cells, whereas +/−E6/E7, −/−E6/E7, 

and −/+E6/E7 gave rise to cells of their own subtypes only 

(Fig. 7, b–d) and did not form TDLU in lrECM (Fig. 7, b′–d′). 
Relative to the other E6/E7 cell types, the multipotent +/+E6/E7 

cells were unique in their combined expression of SSEA-4, 

 keratin K15, Oct-4 (Tai et al., 2005), and Musashi-1 (Clarke et al., 

2005) as well as by their capacity to differentiate into more re-

stricted luminal-like and myoepithelial-like cells in the pres-

ence of serum. The latter were characterized by a comprehensive 

panel of lineage markers (Fig. S4, A–C; and Table S1, available 

at http://www.jcb.org/cgi/content/full/jcb.200611114/DC1). 

These data provide evidence that a stem cell zone in ducts 

marked by K19+/K14+ can give rise to K19+/K14−, K19−/K14−, 

and K19−/K14+ lineage-restricted progenitors.

HPV16 E6/E7 transduction reveals that 
lineage-restricted cells are progenitors
We asked two questions: whether the integration site of the viral 

genes affected the stability or the expression of the cells and 

whether lineage-restricted cells represented the end of their dif-

ferentiation repertoire or whether they could specialize further. 

We performed a mass transduction of lineage-restricted fl ow-

sorted mammary epithelial cells based on their expression of 

surface markers. As in other hierarchical tissues, specialization 

of the lineages in the human breast is defi ned by the acquisition 

of certain differentiation markers that are characteristic of lumi-

nal epithelial and myoepithelial cells. RT-PCR of fi ve lineage-

specifi c markers revealed that this general pattern carried 

through to all of the isolated cell lines (Fig. 8 A). Thus, whereas 

the stemlike cells (+/+E6/E7) had a low expression of three 

luminal and two myoepithelial markers, lineage-restricted 

progenitors (+/−E6/E7, −/−E6/E7, and −/+E6/E7) displayed a strong 

expression of these markers in a mutually exclusive manner 

(Fig. 8 A). Furthermore, staining of the lineage-restricted pro-

genitors for surface markers revealed that they stained with 

 either the luminal marker (MUC1) or the myoepithelial marker 

(Thy1). As such, we could use these markers in a large-scale 

cell sorting to examine the robustness of lineage maintenance 

after E6/E7 immortalization (acquired self-renewal). Primary 

cultures were sorted into luminal epithelial (+/− and −/−) and 

myoepithelial (−/+) lineages based on staining with MUC1 

and Thy1 (Fig. 8 B; before E6/E7, crude). The profi le of pri-

mary cultures was identical to that of uncultured cells (unpub-

lished data). Further plating and cultivation in a second passage 

of sorted cells did not shift this phenotype appreciably (Fig. 

8 B; before E6/E7 transduction, sorted). Sorted cells were trans-

duced with HPV16 E6/E7 and selected in the presence of G418. 

More than 70 different clones emerged during selection, and 

these were pooled and reanalyzed by the same criteria. The gen-

eral patterns of MUC1+/Thy1− and MUC1−/Thy1+ were sus-

tained,  albeit with a slight drifting in the population as a whole 

in spite of the different proviral insertion sites and the large 

number of pooled clones (Fig. 8 B; after E6/E7, pooled clones). 

This was confi rmed directly by restriction site (RS) PCR and 

sequence analysis of chromosomal DNA in the unpooled 

+/−E6/E7 (MUC1+/Thy1−) and −/+E6/E7 (MUC1−/Thy1+) 

clones to identify individual integrated proviruses (Fig. 8 B, 

clonal analysis). These data demonstrate that lineage phenotype 

is essentially sustained irrespective of the retroviral integration 

site in these lineage-restricted pooled clones.

The fact that retroviral transduction also immortalizes the 

lineage-restricted cells suggested the possibility that these cells 

may be derived from the lineage-restricted progenitor cells. To 

show that this is the case, we searched for lineage-restricted 

markers in cells on the ductal-lobular junction. The search 

yielded new intralineage combinations of markers, demonstrating 

clearly that the three lineage-restricted cell lines were able to 

differentiate into additional cellular phenotypes within their 

respective lineages. Accordingly, +/− luminal progenitors can 

give rise to all combinations of the descendant cells expressing 

the luminal markers E29 and BCA-225 (Fig. 8 C, a). Similarly, 

−/− and −/+ cells give rise to descendants expressing combi-

nations of either luminal markers K8 and CDw75 or myoepithe-

lial markers WT1 and K17, respectively (Fig. 8 C, b and c). In 

all three cases, the cellular phenotypes were similar to their 

counterparts in situ (Fig. 8 C, a′–c′). These fi ndings support the 

hypothesis that the lineage-restricted cells are progenitors rather 

than the ultimate end of their respective differentiation lineages. 

The data presented in this study provide the fi rst evidence for 

the existence of a stem cell zone in mammary ducts marked by 

K19+/K14+, which can give rise to K19+/K14−, K19−/K14−, 

and K19−/K14+ lineage-restricted progenitors.

Discussion
The existence of stem and progenitor cells in the human mam-

mary gland has been widely postulated; however, until now, 

neither the location nor the candidate cellular entities have been 

defi nitively identifi ed and functionally characterized. Previ-

ously, we had described two cell lines that were derived from 

the human breast using magnetic sorting and HPV16 E6/E7 

 immortalization (Gudjonsson et al., 2002b). One of the immortal-

ized clones, MUC1−/ESA+(E6/E7), was able to generate itself as 

well as luminal epithelial and myoepithelial cells; it further 

 expressed keratin K19 and formed TDLU-like structures inside 

a 3D lrECM. The other, MUC1+/ESA+(E6/E7), was lineage re-

stricted, keratin K19 negative, and formed acinus-like spheres 

within the 3D lrECM. Although this was an important advance, 

several essential questions remained: did these virally trans-

duced cells have identical counterparts in vivo, or were these a 

result of immortalization? If counterparts existed, where were 

they located in situ? Were there additional progenitor cells we 

had not been able to immortalize? Could we develop a proce-

dure whereby one could isolate the untransduced counterparts 

reproducibly? Were there differences between ducts and lob-

ules, and, intriguingly, was there a hierarchy?

In this study, we have answered all of the aforementioned 

questions: we have demonstrated the existence of four distinct 

human mammary epithelial cell types in situ, two of which most 

certainly are precursors to the two immortalized cell lines we 

had isolated previously using E6/E7. The cells are distributed 

in a stem cell zone in ducts and outside this zone in lobules. 

The size of the stem cell zone varies somewhat with the marker 
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used, the most restricted and presumably most specifi c being 

the presence of keratin K15 and SSEA-4. Ducts and lobules 

were dissected, collected under the microscope, cloned, and 

characterized. We believe it is critical to meticulously dissect 

lobules distal to the intralobular terminal duct. Failure to do so 

could explain previously published data on the reported absence 

of a difference in growth patterns between ducts and lobules 

(O’Hare et al., 1991). Permanent cell lines were established, 

cloned, and characterized further with respect to the profi les de-

fi ned in situ and in primary cultures. The procedures we have 

developed, while painstaking and time consuming by necessity 

because they are for normal human tissues, are nevertheless 

 robust. We show that these four cell types are hierarchically 

connected such that only one cell type can give rise to all others, 

which themselves are lineage-restricted progenitors.

An important implication of these fi ndings is that for the 

fi rst time, a stem cell zone containing one or more mammary 

stem cells was identifi ed in the human breast. Mouse mammary 

stem cells have recently been isolated prospectively based on 

various FACS strategies (Shackleton et al., 2006; Stingl et al., 

2006a). However, so far, FACS profi les have not translated into 

the cell of origin or location in situ. In this study, by the use 

of anatomical markers, we demonstrate that the previously de-

scribed gates for bipotent progenitors, colony-forming cells, 

and mammary repopulating units in mice (Shackleton et al., 

2006; Stingl et al., 2006a) enrich specifi cally for cells of ductal 

origin in the human breast. Older studies had suggested that 

the mammary ducts of rodents may harbor such a stem cell 

niche. For instance, in the mammary gland from virgin mouse, 

candidate stem cells (stained with antibodies JB6 and JsE3) 

were found in ducts rather than in alveoli, and it was postu-

lated that these served to regenerate ductal epithelium as well 

as forming new alveolar buds (Sonnenberg et al., 1986). This 

postulate was born out recently in an experiment with rudimen-

tary ducts from postgestational mice transplanted to cleared fat 

pads of TGF-β1 transgenic mice, which retained the capacity to 

reactivate lobular structures at late pregnancy (Boulanger et al., 

2005). Apparently, the mouse mammary gland ductal niche 

 responds specifi cally to the MMTV–c-myc transgene by am-

plifi cation of the stem cell compartment (Chepko et al., 2005). 

This implied strongly that in mice, an entire TDLU at any time 

represents the progeny from a single early ductal progenitor. 

Indeed, seminal studies of X chromosome inactivation in the 

human breast had demonstrated the presence of contiguous 

patches of normal mammary epithelium suggestive of being 

derived from single stem cells (Tsai et al., 1996). These patches 

were explained to be the result of some developmentally im-

portant long-term primitive stem cells, which were presumed 

to be estrogen receptor negative, as opposed to shorter term 

estrogen receptor–positive stem cells important for adult tissue 

homeostasis (Clarke, 2005). The hierarchy we describe here is 

essentially compatible with the aforementioned fi ndings. How-

ever, it is important to recognize that the present identifi cation 

of a stem cell zone in ducts does not necessarily exclude the 

existence of stem cells at other locations, although despite an 

extensive search, we have not observed such additional candi-

dates as of yet.

The possibility of one stemlike cell population in an or-

gan, which precedes all of the other stemlike cells during de-

velopment, appears to be a general phenomenon because such 

multiple cell-type niches were also previously described for 

the hair follicle (Blanpain et al., 2004). The division of labor 

into that of the maintenance of tissue homeostasis and the more 

elaborate development or regenerative remodelling between 

stem cell compartments may also be a general phenomenon 

because in the skin, homeostasis is maintained exclusively by 

the epidermal proliferative unit, but wound repair depends on 

bulge cells from hair follicles (Ito et al., 2005). In analogy to 

hair follicles, we would propose that mammary tissue homeo-

stasis is maintained by proliferative units in the TDLUs, 

whereas more elaborate structures, including the formation of 

new TDLUs from ductal alveolar buds, depend on the recruit-

ment of cells from ducts.

Until recently, very few markers were assigned directly to 

a candidate mammary stem cell pool in humans or, indeed, even 

in rodents, but scattered single cells within the ducts of adult 

mice were shown to be positive for keratin K6a (Buono et al., 

2006), a marker originally found in putative stem cells in the 

terminal end bud (Smith et al., 1990). In the present study, we 

found that the ductal stem cell zone was characterized by the 

accumulation of K19+/K14+ cells. If these traits were even in-

directly related to stem cell activity, we would expect them to 

fl uctuate with the size of the stem cell compartment. One of the 

most important pathways responsible for mammary stem cell 

activity is canonical Wnt signaling (Lindvall et al., 2006). Inter-

estingly, Wnt1- or β-catenin–induced mammary hyperplasia 

and tumorigenesis in mice correlate with the accumulation 

of K6-positive cells even though K6 in itself does not appear 

to be essential for mammary gland development, at least in em-

bryonic knockouts (Grimm et al., 2006). It has been shown 

that  caveolin-1 deficiency in mice, which conveys mammary 

 hyperplasia and tumorigenesis along with an increased stem 

cell activity, is characterized by the accumulation of keratin K6-

positive cells (Sotgia et al., 2005). However, the mammary 

glands of mice that are unable to signal through the Notch 

 pathway most closely mimic the profi le of the human mam-

mary stem cell zone (Buono et al., 2006; Wang et al., 2006). 

Under these conditions, there is a remarkable ductal accumulation 

of cells expressing luminal keratins coordinately with keratins 

K14 and K6 (Buono et al., 2006). A similar stem cell–related 

profi le has been recorded in the prostate (Hudson et al., 2001; 

Wang et al., 2006). The appearance of +/+ cells in the supra-

basal position has been interpreted as an accumulation of inter-

mediate immature luminal cells (Buono et al., 2006). Thus, it 

cannot be excluded that the stem cell zone described here con-

tains bona fi de ductal basal cells, which, under the current avail-

able culture conditions, are not colony forming.

In mass cultures derived from reduction mammoplasty, we 

and others had shown previously that a subpopulation of the pri-

mary breast luminal epithelial compartment was capable of giv-

ing rise to both luminal epithelial and myoepithelial cells (Kao 

et al., 1995; Kang et al., 1997; Péchoux et al., 1999; Clarke 

et al., 2005). Furthermore, in culture and occasionally in supra-

basal cells in the epithelial layer in situ, single cells could exhibit 
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dual staining for these two cell types (Péchoux et al., 1999). 

Cells in this position were shown later to be K19 positive and 

could be immortalized occasionally in mass culture with HPV 

E6/E7 (Gudjonsson et al., 2002b). The discovery in the present 

study of a ductal stem cell zone in the human breast opens the 

possibility of the existence of a hierarchy among differentiated 

progeny at other locations. In the mammary gland, the ultimate 

level of differentiation is reached during lactation. Although we 

have not addressed the consequence of lactation on ductal dif-

ferentiation, a previous study strongly suggested that ducts are 

indeed protected from hormone-induced differentiation (Bocker 

et al., 2002). This is in agreement with the presumed function of 

candidate stem cells in mature ducts of humans and rodents as 

a source of lateral branching during the formation of milk-

 producing lobules (Taylor-Papadimitriou et al., 1983; Cardiff 

and Wellings, 1999). Functionally, one of the hallmarks of stem 

cells is the ability to self-renew (for reviews see Watt, 1998; 

Mackenzie, 2006). A culture assay for self-renewal in human 

breast epithelial cells was successfully adopted from the fi eld of 

neurobiology combined with the use of 3D laminin-rich gels 

(Petersen et al., 1992). Thus, cells prevented from attachment 

grew in suspension to form the so-called mammospheres (Dontu 

et al., 2003) reminiscent of the originally described neuro-

spheres. Self-renewing stem cells were characterized by the 

ability to form new multipotent mammospheres even after pas-

saging (Dontu et al., 2003). The other widely used culture assay 

of self-renewal in epithelial tissues is growth after plating at 

clonal density (for reviews see Watt, 1998; Mackenzie, 2006). 

We used both assays in the present study and showed that both 

mammospheres and multipotent clones could self-renew, al-

though we do not yet know how the fraction of the self-renewing 

clones compare between the assays.

Our fi ndings are pertinent to two poorly understood as-

pects of breast cancer evolution. For example, we know that 

breast cancers comprise at least two well-defi ned subtypes with 

distinct molecular profi les reminiscent of the luminal and basal 

lineages (Perou et al., 2000). This has led to a resurgence of 

speculation that breast cancers may arise in the different com-

partments within a stem cell hierarchy (Taylor-Papadimitriou 

et al., 1983; Rudland, 1987; Al-Hajj et al., 2003; Behbod and 

Rosen, 2005; Clarke, 2005). The hierarchy described here may 

guide the design of experiments to test the possible role of these 

progenitors in the origin of breast cancer subtypes, a possibility 

that is under investigation.

Materials and methods
Breast tissue and cell cultures
Normal breast biopsies (n = 54) were obtained from patients undergoing 
reduction mammoplasty for cosmetic reasons. The use of human material 
has been reviewed by the Regional Scientifi c Ethical Committees for 
 Copenhagen and Frederiksberg and approved with reference to (KF) 
(11) 263995.

Normal breast tissue was prepared as previously described (Rønnov-
Jessen and Petersen, 1993). Upon collagenase treatment, epithelial organ-
oids were either cultured as crude preparations or fi rst manually separated 
under an inverted phase-contrast microscope (TMS-F; Nikon) into ducts and 
lobules before explantation (microcollected). Microcollected ducts and lob-
ules were plated in collagen-coated (8 μg/cm2; Vitrogen100; Cohesion) 
T-25 fl asks (Nunc) in the presence of chemically defi ned medium (CDM3; 

Petersen and van Deurs, 1988) and were allowed to spread for 8 d. 
Cells were trypsinized and cloned by limited dilution in the presence of 
 serum-supplemented growth medium consisting of Ham’s F12 medium 
 (Invitrogen) supplemented with 2 mM glutamine, 50 mg/ml gentamycin 
(Biological Industries), 5% FCS (PAA Laboratories), 5 μg/ml insulin (Roche), 
1 μg/ml hydrocortisone (Sigma-Aldrich), 0.1 μg/ml cholera toxin (Sigma-
Aldrich), and 10 ng/ml EGF (PeproTech) at a density of 60 cells/cm2 
 (referred to below as F12 medium). After 7 d, some of the cultures were fi xed 
in methanol and stained with hematoxylin. For secondary cloning experi-
ments, cells were fi rst plated at a density of 400 cells/cm2 and cultured for 
12 d and then were subcloned at a density of 50 cells/cm2. Cultures were 
fi xed and stained after 10 d, and the number of colonies was quantifi ed. 
K19/K14 profi les were assessed by fl uorescence in parallel cultures and 
in cloned primary cultures seeded at a density of 350 cells/cm2. The K19/
K14 profi les of primary cultures derived from microcollected ducts or lob-
ules were assessed at day 7 at densities of 800 cells/cm2 and in cultures 
of secondary clones at a density of 60 cells/cm2 at day 10.

For the nonadherent mammosphere assay, large ducts, terminal 
ducts (identifi ed by connecting alveoli), and lobules were isolated and 
trypsinized for 10–15 min at 37°C on an orbital shaker to obtain a single 
cell suspension. Nonadherent mammosphere cultures were prepared as 
previously described (Dontu et al., 2003). In brief, cells were plated at a 
concentration of 5,000–20,000 cells/ml. The cultures were monitored for 
up to 12 d for the appearance of mammospheres. After 8 d, cultures were 
photographed, and structures derived from ducts (large and terminal) and 
lobules, respectively, were quantifi ed and separated into two categories: 
>70 μm and <70 μm (n = 3 × 200 structures). For analysis of keratin 
expression, duct- and lobule-derived mammospheres were either smeared 
onto a glass slide and stained or trypsinized at day 9, plated at clonal 
density (200 cells/cm2), and propagated for 5 d in F12 medium before 
immunocytochemical staining. A total of 92 colonies from each segment 
were quantifi ed using a fl uorescence microscope (Dialux 20; Leitz) 
equipped with a 10× objective. Mammosphere populations derived from 
ducts and lobules were assessed for morphogenic potential by inoculation 
for 3 wk of each population in 300 μl lrECM (Matrigel; Becton Dickinson). 
Some cultures were conditioned by a feeder layer of primary human breast 
epithelial cells separated from the top gel by 200 μl of cell-free gel. The 
number of mammosphere-derived budding structures was assessed by 
phase-contrast microscopy.

To passage mammosphere cultures, mammospheres were collected, 
trypsinized for 10 min at 37°C while shaking, and single cells were plated 
at a concentration of 1,000 cells/ml (Dontu et al., 2003). Secondary mam-
mospheres were sampled and plated in monolayer culture and analyzed 
for SSEA-4 expression by immunocytochemical staining (see supplemental 
Materials and methods, available at http://www.jcb.org/cgi/content/
full/jcb.200611114/DC1). For RT-PCR analysis of laminins (see supple-
mental Materials and methods), myoepithelial cells and fi broblasts were 
purifi ed and cultured as previously described before RNA extraction (Rønnov-
Jessen and Petersen, 1993; Gudjonsson et al., 2002a).

Cell lines and clones
Cells representing K19+/K14+, K19+/K14−, K19−/K14−, and K19−/
K14+ profi les were recovered in primary culture and were HPV16 E6/E7 
transduced using a previously described protocol (Gudjonsson et al., 
2002b). Fig. S4 D shows the culture history of each of the representative 
cell lines. For 3D culture, single cell suspensions of 105 cells were inocu-
lated in lrECM as previously described (Petersen et al., 1992; Gudjonsson 
et al., 2002b) and were observed for a period of 12 d.

FACS analysis and cloning
For analysis of the robustness of transduced lineages, uncultured epithelial 
organoids or normal breast epithelial cells grown in primary monolayer cul-
tures in chemically defi ned medium (CDM3; Petersen et al., 1990) were 
trypsinized and fi ltered through a 20-μm cell strainer (Miltenyi Biotec) and 
resuspended in Hepes buffer supplemented with 0.5% BSA (bovine fraction V; 
Sigma-Aldrich) and 2 mM EDTA (Merck), pH 7.5. The suspended cells 
were incubated for 30 min at 4°C in the presence of monoclonal primary 
antibodies recognizing MUC1 (CD227; 1:100) and Thy1 (CD90; 1:50). 
Control samples were incubated without primary antibody. Upon incuba-
tion, the cells were washed twice in Hepes/BSA/EDTA buffer and incubated 
for 15 min at 4°C with secondary isotype-specifi c fl uorescent antibodies, 
 AlexaFluor488 goat anti–mouse IgG2b, and AlexaFluor633 goat anti–
mouse IgG1 antibodies (1:500; Invitrogen). After incubation, the cells were 
washed twice in Hepes/BSA/EDTA buffer and resuspended in a volume of 
1 ml of buffer. Propidium iodide (Invitrogen) was added at a concentration 
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of 1 μg/ml, and the cells were analyzed and sorted using a fl ow cytometer 
(FACSAria; BD Biosciences). The sorted populations were subsequently 
plated in collagen-coated T-25 culture fl asks in chemically defi ned media 
(CDM6; Péchoux et al., 1999) for MUC1+/Thy1− cells and in CDM4 for 
MUC1−/Thy1+ cells. The sorted cell populations were transduced as previ-
ously described (Gudjonsson et al., 2002b). Untransduced sorted cell cul-
tures were run in parallel as controls. Secondary cultures were analyzed for 
the expression of MUC1 and Thy1 by FACS analysis as described above.

To isolate putative stem cells within the lineage-negative epithelial 
cell population, breast organoids (n = 3 biopsy samples) were trypsinized 
for �10 min at 37°C under rotation. The solution was robustly agitated a 
few times during trypsination. Trypsination was stopped with FCS, and 
the cells were fi ltered through a 30-μm fi lter followed by fi ltration through 
a 10-μm fi lter to obtain a single-cell suspension. Cells were incubated 
with a cocktail of antibodies against stromal cells, which included CD31 

(JC70A; 1:50), CD34 (QBEnd/10; 1:50), CD45 (Bra-55; 1:250), and fi bro-
blast surface protein (1B10; 1:50). Cells were incubated at 4°C for 30 min. 
 After incubation, cells were washed twice in Hepes/BSA/EDTA buffer and 
incubated for 15 min at 4°C with goat anti–mouse IgG and rat anti–mouse 
IgM microbeads (Miltenyi Biotec). Cells were then washed again twice 
and further applied to a column for immunomagnetic cell sorting (MACS; 
Miltenyi Biotec). The fl owthrough from this column was collected and incu-
bated with CD49f (GoH3; 1:500) and EpCAM (VU1D9; 1:100). A control 
solution was also prepared in which the primary antibodies were excluded. 
The cells were incubated at 4°C for 30 min followed by two washes and 
were further incubated with the secondary fl uorescent antibodies Alexa-
Fluor488 rabbit anti–rat IgG and AlexaFluor633 goat anti–mouse IgG1 
(1:500; In vitrogen). Some degree of cross-reaction between CD49f and 
AlexaFluor633 was observed. For comparison with a directly conjugated 
EpCAM antibody, please see Fig. S3 C. The four FACS-sorted populations 

Table I. List of antibodies, suppliers, and dilutions used

Antigen Clone Isotype Company Dilution Fixation

1B10 1B10 IgM Sigma-Aldrich 1:50 *

BCA-225 CU-18 IgG1 Signet 1:10 M

Bcl-2 124 IgG1 DakoCytomation 1:75 M

Bcl-2 8C8 IgG1 Neomarkers 1:50 M

CALLA 56C6 IgG1 Novocastra 1:50 M

CD31 JC70A IgG1 DakoCytomation 1:50 *

CD34 QBEnd/10 IgG1 Novocastra 1:50 *

CD45 Bra-55 IgG1 Oncogene Research Products 1:250 *

CD49f GoH3 IgG2a (rat) BD Biosciences 1:500 **

CDw75 LN1 IgM Neomarkers 1:30–1:50 M

Chondroitin sulphate 9.2.27 IgG2a BD Biosciences 1:50 M/F

Collagen IV 1042 IgG2b Monosan 1:5 M

E-cadherin HECD-1 IgG1 Zymed Laboratories 1:25 M

EMA E29 IgG2a DakoCytomation 1:10 M

EpCAM Ber-EP4 IgG1 DakoCytomation 1:100 **

EpCAM VU1D9 IgG1 Novocastra 1:25–1:100 M**

EpCAM-FITC VU1D9 IgG1 Abcam 1:100 **

Integrin-β4 3E1 IgG1 Chemicon 1:500–1:1,000 M**

Keratin 14 LL002 IgG3 Novocastra 1:25–1:100 M

Keratin 15 LHK15 IgG2a Neomarkers 1:10–1:100 M

Keratin 17 E3 IgG2b DakoCytomation 1:10–1:25 M/F

Keratin 19 A53-B/A2 IgG2a Abcam 1:50–1:100 M

Keratin 5 XM26 IgG1 Novocastra 1:250–1:500 M/F

Keratin 5 Rabbit Covance 1:1,000 M

Keratin 5/6 D5/16B4 IgG1 Boehringer 1:250 M

Keratin 6a Ks6.KA12 IgG1 Monosan 1:10 M/F

Keratin 7 RCK105 IgG1 Abcam 1:100 M

Keratin 8 LE41 IgG1 Lane, 1982 1:10 M

Keratin 8 35βH11 IgM DakoCytomation 1:25–1:100 M

Ki-67 MIB1 IgG1 DakoCytomation 1:100 M

Laminin-α1 161 EB7 IgG Maatta et al., 2001 1:5 M

Laminin-α2 5H2 IgG1 Engvall et al., 1990 1:1 M/F

MCM2 CRCT2.1 IgG1 Abcam 1:25–1:100 F

MCSP LHM2 IgG1 Abcam 1:50 M/F

MUC1 115D8 IgG2b Biogenesis 1:10–1:50 M**

Occludin OC-3F10 IgG1 Zymed Laboratories 1:50–1:100 M

p63 7JUL IgG1 Novocastra 1:10–1:25 M

Smooth muscle actin HHF35 IgG1 Enzo Diagnostics 1:25 M

SSEA-4 MC-813-70 IgG3 Chemicon 1:25–1:100 M/F**

SSEA-4 5C1 IgG3 (rat) US Biological 1:25–1:100 M

Thy1 AS02 IgG1 Dianova 1:25–1:100 M**

Vimentin Vim3B4 IgG2a DakoCytomation 1:25–1:100 M

WT1 6F-H2 IgG1 DakoCytomation 1:10–1:50 M/F

Staining was performed after fi xation with methanol (M) and/or formaldehyde (F). Single asterisks indicate use in immunomagnetic cell sorting (MACS). 
Double asterisks indicate use in FACS analysis.
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in gates I–IV were analyzed for luminal and myoepithelial markers as de-
scribed below and were tested for self-renewal by limited dilution cloning 
in collagen-coated six-well plates (70 cells/cm2) in the presence of F12 
medium. Morphogenic potential was analyzed in 24 wells in the presence 
of CDM3 by inoculation in lrECM at a density of 2 × 104 cells in 300 μl 
lrECM placed on top on a 200-μl cell-free gel solidifi ed on top of a feeder 
layer of primary breast epithelial cells. The cultures were observed for 3 wk 
and assessed in triplicate for morphogenesis by phase-contrast microscopy 
in 50–80-μm spherical acinus-like structures, budding structures, and 
spherical colonies (>100 μm).

Immunohistochemistry and cytochemistry
Monolayer cultures and cells derived directly from collagenase digested 
tissue, cryostat sections of biopsies, mammospheres, or cell lines cultured 
in 3D lrECM were prepared and stained by immunoperoxidase or immuno-
fl uorescence as previously described (Petersen and van Deurs, 1988; Rønnov-
Jessen et al., 1992; Gudjonsson et al., 2002b). For antibodies and further 
details, also see Table I.

The four CD49f/EpCAM cell populations were smeared onto glass 
slides and stained for BCA-255, K6a, K17, and WT1 by immunoperoxi-
dase and for K19/K14 by fl uorescence staining with isotype-specifi c Alexa-
Flour488 goat anti–mouse IgG3 and AlexaFlour568 goat anti–mouse 
IgG2a and were quantifi ed (n = 3 × 100 cells; in triplicate from a repre-
sentative biopsy). As controls, sorted cells were smeared without further 
staining to check for residual background fl uorescence, or cells were stained 
after having switched the secondary antibodies to use different colors than 
were used previously. For staining of whole mounts of 3D cultures of cloned 
FACS-sorted cells, gels were fi xed in methanol/acetone (1:1) for 30 min at 
−20°C followed by a 2-h incubation with blocking buffer and were incu-
bated with 400 μl of antibody solution  (K14 [1:25] and K19 [1:50]) over-
night at 4°C, washed for 3–4 h, and incubated with secondary antibodies 
at 4°C overnight. Immunofl uorescence stainings were evaluated using a 
 laser-scanning microscope (LSM 510; Carl Zeiss MicroImaging, Inc.).

RNA isolation and RT-PCR
RNA isolation and PCR reactions were performed as previously described 
(Gudjonsson et al., 2002a,b). Specifi cally, primers included EpCAM for-
ward (A G T G T A C T T C A G T T G G T G C A C A A A ) and EpCAM reverse (A G T G T-
C C T T G T C T G T T C T T C T G A C ; TA 56°C for 29 cycles); estrogen receptor 
forward (C C C T A C T G C A T C A G A T C C A A G G ) and estrogen receptor reverse 
(C T G C A G G A A A G G C G A C A G C ; TA 60°C for 40 cycles); and tenascin 
forward (T C C T G C T G A C T G T C A C A A T C ) and tenascin reverse (T G C T C A C-
A T A C A C A T T T G C C ; TA 60°C for 30 cycles).

RS-PCR
To determine the integration sites of the HPV16 E6/E7–expressing vector, 
an RS-PCR assay was used (Sarkar et al., 1993; Ragin et al., 2004) The 
HPV-specifi c primers were modifi ed to locate to the E6/E7 ORF, and addi-
tional RS oligonucleotides were added to the assay. In brief, genomic DNA 
was extracted from each cell line using the DNeasy tissue kit (QIAGEN). 
Previously used HPV-specifi c primers (Gudjonsson et al., 2002b) were sup-
plemented with the HPV765-24D/HPV790-25D primer sets (Thorland 
et al., 2000). The RS oligonucleotides contain a T7 phage promoter, 10 
random nucleotides, and a specifi c RS recognition sequence.

Amplifi cation of vector-genome hybrid sequence was used by a 
seminested PCR reaction. The PCR reactions were performed using the Ex-
pand High Fidelity PCR System (Roche) in a 20-μl volume using 1 U poly-
merase enzyme, 1× PCR buffer, 200 μM deoxynucleotide triphosphate, 
2 pmol HPV primer, and 20 pmol RS oligonucleotide primer. 1 μl from the 
fi rst round of PCR was used as a template for the second round of amplifi -
cation. Cycling conditions for the fi rst round of PCR were 94°C for 2 min 
followed by 30 cycles of 94°C for 30 s, annealing for 30 s at 65°C de-
scending 0.5°C each cycle, and extension at 72°C for 2 min. This was fol-
lowed by 15 more cycles at a fi xed TA of 55°C. The conditions for the 
second round of PCR were similar, and products were run on agarose gels, 
bands of interest were cut out, and specifi c products were extracted using 
a QIAquick Gel Extraction kit (QIAGEN). The presence of an E6- or E7-
specifi c sequence in the selected products was verifi ed by PCR reamplifi ca-
tion using internal E6/E7 primers. Sequencing using a genetic analyzer 
(ABI PRISM 310; Applied Biosystems) was performed as previously de-
scribed (Rønnov-Jessen et al., 2002).

Online supplemental material
Fig. S1 shows a more detailed characterization of the ductal stem cell 
zone. Fig. S2 shows that clonal colonies from ducts, in contrast to lobule-

derived colonies, are multipotent. Fig. S3 shows that SSEA-4hi cells cosort 
with the Lin−CD49f+EpCAMhi population and that these cells give rise to 
multipotent clonal colonies. Fig. S4 shows that the stemlike cells (+/+E6/E7) 
express surrogate stem cell markers and are bipotent. A fl ow chart describ-
ing the isolation of one stemlike cell and three lineage-restricted progenitor 
cells is also shown. Table S1 shows that bypass of senescence maintains 
the differentiation repertoire of target cells with respect to a panel of markers 
for differentiated luminal and myoepithelial cells. Supplemental materials 
and methods provides further details about cell lines and clones, FACS 
analysis and cloning, immunohistochemistry and cytochemistry, and RNA 
isolation and RT-PCR. Online supplemental material is available at http://
www.jcb.org/cgi/content/full/jcb.200611114/DC1.
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