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Introduction
Chemotaxis is a pivotal response of many cells to spatial cues 

(Van Haastert and Devreotes, 2004; Affolter and Weijer, 2005; 

Wu, 2005). It plays important roles in diverse functions, such as 

fi nding nutrients in prokaryotes, forming multicellular struc-

tures in protozoa, and tracking bacterial infections in neutro-

phils (Baggiolini, 1998; Campbell and Butcher, 2000; Crone 

and Lee, 2002). Research on directional movement by external 

cues in eukaryotes is dominated by chemoattraction, which is 

the movement toward the chemical compound. Repellents play 

an important role in morphogenesis, especially during embry-

onic development (Yang et al., 2002; Schmitt et al., 2005). Cell 

movement during chick primitive streak formation is controlled 

by FGF8-mediated chemorepulsion of the cells away from the 

streak, followed by chemoattraction toward the FGF4 signal 

produced by the forming notochord (Yang et al., 2002). Axon guid-

ance during spinal chord development away from the roof plate 

is regulated by multiple repellents, such as BMP (Butler and 

Dodd, 2003), and by the attractant netrin toward the fl oor plate 

(Kennedy et al., 2006).

The mechanism by which repellents work is not well 

known (Dormann and Weijer, 2006). We envision that a critical 

step of the signal transduction pathway for cell movement is 

stimulated by a chemoattractant and inhibited by a repellent. 

It is essential that this hypothetical step is somehow connected 

with cell polarity to obtain directional movement. Dictyostelium 
discoideum cells have been instrumental in resolving the mech-

anism by which cells sense and respond to chemoattractants. It 

has been shown that phosphatidylinositol-3,4,5-trisphosphate 

(PI[3,4,5]P3), which is formed at the side of the cell closest to 

the source of chemoattractant, is a very strong inducer of pseudo-

pod extensions (Parent et al., 1998; Hirsch et al., 2000; Servant 

et al., 2000; Funamoto et al., 2002; Iijima and Devreotes, 2002). 

D. discoideum cells are known to be repelled by unidentifi ed 

compounds that are secreted by starving cells (Keating 

and Bonner, 1977; Kakebeeke et al., 1979), indicating that 

D. discoideum cells have a mechanism to process repellents. 

Previously, we have shown that several analogues of the attrac-

tant cAMP behave as a repellent (Van Haastert et al., 1984). The 

analogues mediate their effect through binding to the surface 

cAMP receptor cAR1 (Johnson et al., 1992), and they can be 

polar (3′deoxy, 3′amino-cAMP; 3′NH-cAMP) or lipophilic 

(8-para-chlorphenylthio-cAMP; 8CPT-cAMP). The analogues 

induce many signaling responses that are essentially identical to 

the responses induced by cAMP, including activation and adap-

tation of adenylyl and guanylyl cyclase (Peters et al., 1991; 

Bominaar and Van Haastert, 1993, 1994). We show that these 

analogues inhibit PLC, contrary to activation of PLC by 

cAMP. As a consequence, they induce dominant PI(3,4,5)P3 

signaling in the rear of the cell, by which cells move away from 

the repellent.
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phosphatidylinositol-3,4,5-trisphosphate (PI[3,4,5]P3). Using 

D. discoideum, we show that chemorepellent cAMP ana-

logues induce localized inhibition of PLC, thereby revers-

ing the polarity of PI(4,5)P2. This leads to the accumulation 

of PI(3,4,5)P3 at the rear of the cell, and chemotaxis occurs 

away from the source. We conclude that a PLC polarity 

switch controls the response to attractants and repellents.
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D
uring embryonic development, cell movement is 

orchestrated by a multitude of attractants and re-

pellents. Chemoattractants applied as a gradient, 

such as cAMP with Dictyostelium discoideum or fMLP with 

neutrophils, induce the activation of phospholipase C (PLC) 

and phosphoinositide 3 (PI3)-kinase at the front of the 

cell, leading to the localized depletion of phosphatidylino-

sitol 4,5-bisphosphate (PI[4,5]P2) and the accumulation of 
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Results and discussion
D. discoideum cells were stimulated with a micropipette con-

taining either the agonist cAMP or the commercially available 

antagonist 8CPT-cAMP. The cells moved toward the pipette 

with cAMP, but did not move effectively toward the pipette with 

8CPT-cAMP, and actually moved away from the pipette  (Fig. S1 

and Videos 1 and 2, available at http://www.jcb.org/cgi/content/

full/jcb.200611046/DC1). Experiments have been repeated with 

3′NH-cAMP, yielding the same results as with 8CPT-cAMP 

(unpublished data). Fig. 1 A shows four frames from a movie in 

which cells were stimulated with two pipettes containing cAMP 

and 8CPT-cAMP, respectively (Video 3). In buffer, cells move 

in random directions (Fig. 1 A, 1 min), and cells move away 

from the pipette with 8CPT-cAMP (Fig. 1 A, 16 min). Upon ap-

plication of the pipette with cAMP (cAMP and 8CPT-cAMP; 

Fig. 1 A, 26 min) cells moved in nearly random directions. 

However, upon withdrawal of the pipette containing 8CPT-

cAMP, cells immediately moved toward the pipette with cAMP 

(Fig. 1 A, 38 min). The trajectories of the cells were analyzed. 

Data are presented as the chemotaxis index, which is the dis-

tance moved in the direction of the gradient (“upgradient”) di-

vided by the total distance moved in 30-s intervals. Data from 

Video 3 are presented in Fig. 1 B, and the means and the SEMs 

for six independent experiments are presented in Fig. 1 C. Wild-

type cells show an excellent chemotactic response toward cAMP, 

with a chemotaxis index of 0.81 ± 0.05. Cells are not attracted 

to the pipette containing 8CPT-cAMP, but instead exhibit a sig-

nificant negative chemotaxis index of −0.52 ± 0.04 (P � 

0.005). The chemotaxis index of cells stimulated simultane-

ously with cAMP and 8CPT-cAMP is −0.18 ± 0.11, indicating 

that 8CPT-cAMP antagonizes the positive chemotaxis toward 

cAMP and cAMP antagonizes the negative chemotaxis induced 

by 8CPT-cAMP. Finally, starting with stimulation by the two 

pipettes, upon withdrawal of the pipette with 8CPT-cAMP the 

chemotaxis index toward cAMP rapidly increases to 0.72 ± 

0.06. The results demonstrate that 8CPT-cAMP is a repellent 

that can reversibly inhibit the chemotactic response to cAMP.

D. discoideum cells move using actin fi laments in the 

front of the cell, which induce the formation of local pseudopodia, 

and actomyosin fi laments in the rear of the cell, which inhibit 

pseudopod formation and retract the uropod. We coexpressed 

Myosin-RFP and the fi lamentous actin-binding protein LimE-GFP 

from a single plasmid. A pipette with cAMP induces the ex-

pected movement of the cells upgradient with LimE-GFP local-

ized in the front and Myosin-RFP in the rear of the cell (Fig. 

2 A and Video 4, available at http://www.jcb.org/cgi/content/full/

jcb.200611046/DC1). Interestingly, the localization of LimE-

GFP in the protruding front and Myosin-RFP in the retracting 

back is identical in cells stimulated with 8CPT-cAMP, except 

that the front is downgradient and cells move away from the 

 pipette (Fig. 2 A and Video 5).

Figure 1. Antagonism of chemotaxis to cAMP by 8CPT-cAMP. Starved D. discoideum cells were spread on a polystyrene surface in a droplet with 0.5 ml 
of 10 mM phosphate buffer, pH 6.1, at room temperature, and stimulated by micropipettes fi lled with 10 mM 8CPT-cAMP (bottom right, open circle) or 
0.1 mM cAMP (top left, asterisk); see Materials and methods for further details. (A) Four frames from a movie (Video 3) showing the distribution of cells without 
stimulus, 8 min after stimulation with 8CPT-cAMP, 5 min after stimulation with 8CPT-cAMP and cAMP, and 12 min after stimulation with cAMP alone (by re-
moving the pipette with 8CPT-cAMP). (B) The chemotaxis index was determined for 20 cells that were shown in Video 3; (top) the fi lled sections show the 
simulation with cAMP and/or 8CPT-cAMP. (C) The chemotaxis index was calculated for 85 cells from 6 independent experiments; data shown are the mean ± 
the SEM. Video 3 is available at http://www.jcb.org/cgi/content/full/jcb.200611046/DC1.
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To investigate the mechanism by which 8CPT-cAMP 

induces negative chemotaxis, wild-type cells expressing the 

PI(3,4,5)P3 detector PHcracGFP were stimulated with cAMP 

and 8CPT-cAMP. Similar to previous investigations (Parent 

et al., 1998; Huang et al., 2003), a pipette with cAMP induces 

strong localization of PHcracGFP to the plasma membrane at 

the upgradient side of the cell. Pseudopodia are extended from 

PHcracGFP-containing areas and cells move upgradient toward 

the pipette (Fig. 2 B and Video 6, available at http://www.jcb

.org/cgi/content/full/jcb.200611046/DC1). 8CPT-cAMP also 

induces strong localization of PHcracGFP at the plasma mem-

brane, but with opposite polarity compared with cAMP, which 

is downgradient (Fig. 2 B and Video 7). Cells extend pseudo-

podia from these PHcracGFP-containing areas, and therefore 

move away from the pipette with 8CPT-cAMP. The size of the 

PHcracGFP patches induced by 8CPT-cAMP (9.0 ± 0.43 μm) 

is only slightly larger than the patches induced by cAMP (6.6 ± 

0.17 μm), indicating that 8CPT-cAMP effectively reverses the 

PI(3,4,5)P3 polarity.

PI(3,4,5)P3 is formed by PI3-kinase (PI3K) and degraded 

by PTEN that, in cAMP gradients, are localized at the leading 

edge and the rear of the cell, respectively. In 8CPT-cAMP gra-

dients, the localization of PI3K and PTEN is reversed compared 

with cAMP gradients (Fig. 2 B). To investigate the role of PI3K 

activity in polarity and chemotaxis reversal, we investigated the 

chemotactic activity of pi3k1/2−-null cells toward cAMP and 

8CPT-cAMP. In pi3k1/2−-null cells, two PI3Ks are deleted 

that, together, mediate the vast majority of cAMP-stimulated 

PI(3,4,5)P3 production (Zhou et al., 1998; Funamoto et al., 

2002; Huang et al., 2003). These experiments are possible 

 because PI3K is not essential for chemotaxis, and directional 

sensing can be mediated by other pathways (Hirsch et al., 2000; 

Figure 2. Confocal fl uorescent images of cells 
stimulated with cAMP or 8CPT-cAMP. (A) Cells 
expressing myosin II-RFP (red) and the F-actin–
binding protein LimE-GFP (green) were stimu-
lated with cAMP or 8CPT-cAMP by pipettes 
that are positioned at the right. The figure 
shows 3 frames of a movie with 5-min intervals 
(cAMP, Video 4; 8CPT-cAMP, Video 5). (B) Cells 
expressing the PI(3,4,5)P3 detector PHcrac-
GFP, PI3K-GFP, or PTEN-GFP were stimulated 
with cAMP or 8CPT-cAMP by pipettes that are 
positioned at the right. The fi gure shows a rep-
resentative cell for each case (a fi eld of cells 
expressing PHcrac-GFP is presented in Video 4 
for cAMP and Videos 5 and 6 for 8CPT-cAMP). 
Videos 4–6 are available at http://www.jcb
.org/cgi/content/full/jcb.200611046/DC1.
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Funamoto et al., 2002; Iijima and Devreotes, 2002; Huang 

et al., 2003; Postma et al., 2004; Loovers et al., 2006). Fig. 3 

shows that pi3k1/2−-null cells exhibit a good chemotactic re-

sponse toward a pipette with cAMP (chemotaxis index is 0.80 ± 

0.13). In contrast to the negative chemotaxis induced by 8CPT-

cAMP in wild-type cells, pi3k1/2‒ null cells do not exhibit a sig-

nifi cant negative or positive response to 8CPT-cAMP (chemotaxis 

index is 0.11 ± 0.12). More importantly, using two pipettes 

with cAMP and 8CPT-cAMP, respectively, pi3k1/2−-null cells 

effectively move toward cAMP and are not inhibited by 8CPT-

cAMP (Fig. 3 and Video 8, available at http://www.jcb.org/cgi/

content/full/jcb.200611046/DC1), indicating that PI3K is essential 

for the repellent activity of 8CPT-cAMP and for the inhibitory 

effect of 8CPT-cAMP on cAMP chemoattraction.

The molecular mechanism by which cAMP mediates 

PI(3,4,5)P3 accumulation upgradient in D. discoideum cells has 

been well described. PI3K is activated and enriched upgradient 

in the cell, whereas the PI(3,4,5)P3-degrading enzyme PTEN 

strongly localizes downgradient in the cell (Funamoto et al., 

2002; Iijima and Devreotes, 2002). PTEN has been demon-

strated to bind to phosphatidylinositol-3,4,5-trisphosphate 

(PI[4,5]P2), suggesting that PI(4,5)P2 is depleted upgradient 

in the cell (Iijima et al., 2004). This depletion of PI(4,5)P2 

could be induced by several nonexclusive methods, such as the 

observed conversion of PI(4,5)P2 to PI(3,4,5)P3 upgradient by 

PI3K (Funamoto et al., 2002; Huang et al., 2003), but also by 

the conversion of PI(4,5)P2 to Ins(1,4,5)P3 and DAG by PLC, 

which is known to be activated by cAMP (Drayer and van Haastert, 

1992; Bominaar et al., 1994). We propose a mechanism by 

which 8CPT-cAMP could revert the polarity of chemotactic 

sensing that is based on the observation that cAMP stimulates 

PLC, whereas 8CPT-cAMP inhibits this enzyme (Peters et al., 

1991; Bominaar and Van Haastert, 1993; Bominaar and Van 

Haastert, 1994; supporting biochemical data are presented in 

Fig. S2, available at http://www.jcb.org/cgi/content/full/jcb

.200611046/DC1). Upgradient stimulation of PLC by cAMP 

will lead to local depletion of PI(4,5)P2, and thereby prevent 

PTEN binding, by which the upgradient PI(3,4,5)P3 accumula-

tion is stabilized. In contrast, the upgradient inhibition of PLC 

by 8CPT-cAMP will lead to the local accumulation of PI(4,5)P2, 

thereby inducing PTEN binding and upgradient PI(3,4,5)P3 

degradation (Fig. 4). This relatively simple model for polarity 

reversal predicts that 8CPT-cAMP does not induce polarity 

switching in plc-null cells. D. discoideum cells contain a single 

plc gene encoding a PLCδ isoform (Drayer and van Haastert, 

1992), which, like PI3K, is instrumental but not essential for 

chemotaxis (Drayer et al., 1994). Expression of GFP-tagged 

reporter proteins in plc-null cells reveal, as predicted, cytosolic 

Figure 3. Chemotaxis of mutants with dele-
tions of PI3K or PLC. (A) Frames from movies 
presenting the distribution of cells at 15 min af-
ter stimulation with both 8CPT-cAMP (open cir-
cles) and cAMP (asterisks) taken from Video 3 
for WT cells, Video 8 for pi3k1/2-null cells, 
and Video 9 for plc-null cells. Wild-type cells 
show random distribution, whereas pi3k1/2-
null and plc-null cells are attracted toward the 
pipette with cAMP. (B) Chemotaxis index of 
wild-type, pi3k1/2-null, and plc-null cells to-
ward cAMP, 8CPT-cAMP, or 8CPT-cAMP and 
cAMP. The results show that wild-type cells move 
away from 8CPT-cAMP, whereas pi3k1/2-null 
and plc-null are not repelled from 8CPT-cAMP. 
Moreover, chemotaxis toward cAMP is antago-
nized by 8CPT-cAMP in wild-type cells, but not in 
pi3k1/2-null and plc-null cells. Videos 3, 8, and 
9 are available at http://www.jcb.org/cgi/
content/full/jcb.200611046/DC1.
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localization of PH-cracGFP and enhanced PTEN-GFP expres-

sion at the membrane in cAMP and 8CPT-cAMP gradients 

(Fig. S3). As presented in Fig. 3 B and Video 9, plc-null cells show 

a similar chemotactic response toward 8CPT-cAMP as pi3k-null 

cells: they move in random directions in the presence of 8CPT-

cAMP alone and, subsequently, move effectively toward an 

additional pipette with cAMP. This indicates that PLC is also 

essential for mediating the inhibitory effect of 8CPT-cAMP, as 

is PI3K. Finally, pten-null cells were investigated, showing that 

these cells are attracted toward cAMP, but are not repelled by 

8CPT-cAMP (unpublished data).

A scheme for PI(3,4,5)P3-mediated chemotaxis reversal 

by 8CPT-cAMP consists of three parts (Fig. 4). The basis is a 

PLC/PI(4,5)P2 polarity switch. In D. discoideum, PLC is regu-

lated by the activating Gα2 and inhibitory Gα1, which, in a gra-

dient of attractant or repellent, will determine the polarity of the 

PI(4,5)P2 gradient. The attractant cAMP shows predominant 

 activation of PLC, leading to lower PI(4,5)P2 levels upgradient, 

while the repellent 8CPT-cAMP inhibits PLC, leading to higher 

PI(4,5)P2 levels upgradient. The resulting gradients of PI(4,5)P2 

and colocalized PTEN mediate opposite gradients of PI(3,4,5)P3, 

leading to the localized polymerization of actin. The gradients 

of localized PTEN and PI3K are stabilized because PTEN 

 accumulates at the site of its product PI(4,5)P2, whereas PI3K 

accumulates at sites of its effector, PI(3,4,5)P3-induced F-actin. 

This mutually spatial exclusion of PI3K and PTEN will result 

in symmetry breaking, by which small spatial differences in 

the underlying polarity gradient can be amplified to the ob-

served strong PI(3,4,5)P3 gradient. Although PI3K and PLC 

are not essential for chemotaxis, the results clearly demonstrate 

that local formation of PI(3,4,5)P3 is a very strong inducer of 

pseudopod formation, such that the cells can even move down-

gradient, over ruling any upgradient signaling that 8CPT-cAMP 

may induce.

In our model, a compound is a repellent because it binds 

to a receptor that is preferentially coupled to PLC via an inhibi-

tory G protein, whereas it is an attractant when the receptor is 

coupled to a stimulatory G protein. The regulation of D. discoideum 

PLC by the stimulatory G2 and inhibitory G1 forms the basis 

for the polarity switch, and it allows the cell to respond to chem-

ical gradient with repulsion or attraction. This polarity switch 

may be used by the cell during development. D. discoideum 

cells grow on bacteria. Cells starved for <1 h secrete unidentifi ed 

compounds that induce repulsion of the cells, by which cells 

may fi nd bacteria in a larger area (Keating and Bonner, 1977; 

Kakebeeke et al., 1979). Cells starved for 	5 h secrete cAMP, 

to which they are attracted and which allows the cells to form a 

multicellular structure. Interestingly, G1 is expressed through-

out development, whereas G2 is nearly absent during early star-

vation and expressed only after 	4 h (Pupillo et al., 1989). 

Thus, in early starved cells with the predominant inhibitory G1, 

the PLC–PI3K system is pruned for repulsion, whereas it be-

comes a system for attraction by expression of the stimulatory 

G2 during late starvation.

The mechanism of polarity reversal of PLC–PI3K signal-

ing could be instrumental in mammalian cells to navigate in 

complex chemotactic gradients. During development, many 

cells, such as neurons and gonads, are projected in the body by 

mixtures of attractants and repellents (Yang et al., 2002; Schmitt 

et al., 2005). Observations on the action of Slit2 may be instru-

mental. Slit2 is a repellent for neuronal cells (Niclou et al., 

2000; Ringstedt et al., 2000). In contrast, Slit2 does not affect 

the direction of movement of vascular smooth muscle cells, but 

strongly inhibits PDGF-stimulated chemotaxis by inhibition of 

PDGF stimulation of Rac1 (Wu et al., 2001; Chen et al., 2004). 

It is possible that, in neuronal cells, Slit2 induces a polar inhibi-

tion of Rac1, thereby inducing repulsion, whereas in vascular 

smooth muscle cells Slit2 induces uniform inhibition of Rac1 

and is therefore not a repellent, but only an inhibitor of chemo-

attractants. Rac1 is known to be regulated by PIP3 in mam-

malian (Srinivasan et al., 2003; Kunisaki et al., 2006) and 

D. discoideum (Park et al., 2004) cells. The observed simplicity 

by which PLC-mediated polarity inversion of PI3K signaling in 

D. discoideum converts attraction to repulsion may provide a 

single mechanism to integrate complex positive and negative 

chemotactic signals during development.

Figure 4. Model for polarity reversal leading to cAMP-
induced attraction and 8CPT-cAMP–induced repulsion. 
The model contains three regulatory loops: fi rst, a PLC ac-
tivation/inhibition loop providing primary polarity of the 
PI(4,5)P2 gradient; second, a PI(4,5)P2/PTEN loop provid-
ing degradation of PI(3,4,5)P3; and third, a PI3K/F-actin 
loop providing PI(3,4,5)P3-mediated pseudopod exten-
sion. Because of inhibition of PLC by 8CPT-cAMP com-
pared with stimulation by cAMP, the PI(4,5)P2 polarity 
inverses, PI(3,4,5)P3 accumulates downgradient, and cells 
move away from the pipette. The scheme is based on the 
observation that the PI(3,4,5)P3-degrading enzyme PTEN 
binds to PI(4,5)P2, whereas PI3K binds to actin fi laments 
in the leading edge (Iijima et al., 2004; Sasaki et al., 
2004), and on the observation that cAMP activates PLC, 
whereas 8CPT-cAMP inhibits this enzyme (Bominaar and 
Van Haastert, 1993, 1994; Peters et al., 1991). The me-
diating G proteins have been identifi ed using knock-out 
cells (see supporting biochemical data in Fig. S1). Fig. S1 
is available at http://www.jcb.org/cgi/content/full/
jcb.200611046/DC1.
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Materials and methods
Plasmids and cells
The plasmid pWF38 (PHcracGFP) expressing the 700-bp N-terminal PH 
domain of CRAC fused to GFP (Parent et al., 1998), and plasmids express-
ing PI3K2-GFP (Funamoto et al., 2002; Iijima and Devreotes, 2002) and 
PTEN-GFP (Iijima and Devreotes, 2002) were provided by P. Devreotes 
(Johns Hopkins University School of Medicine, Baltimore, MD). Plasmid 
339-3 expressing mRFPmars (Fischer et al., 2004) was provided by 
A. Muller-Taubenberger (Ludwig Maximilians University Munich, Munich, 
Germany). Plasmid pBIG-GFP-myo expressing a GFP fusion with myosin 
heavy chain II (Levi et al., 2002) was a gift from T. Egelhoff (Case Western 
Reserve University, Cleveland, OH). pi3k1/2-null cells were provided by 
R. Firtel (University of California, San Diego, La Jolla, CA).

Plasmid LB15B expressing LimE-GFP and Myo-RFP was constructed 
as follows. The neomycin resistance gene of MB74 was exchanged for 
the HPH hygromycin resistance gene that was preceded by an actin 
15 pro motor and terminated with a cabA terminator. The DNA coding for 
the actin-binding domain of LimE (aa 1–145) was cloned behind an actin 
15 promoter and 5 adenosines, which serve as the Kozak sequence. It was 
followed by a SpeI site (coding for Thr and Ser) and the complete open 
reading frame of GFP (S65T variant), followed by a stop codon and an ac-
tin 8 terminator. This yielded the plasmid MB74hyg-LimE-GFP. The gene 
 encoding the monomeric red fl uorescent protein mRFPmars (Fischer et al., 
2004) was amplifi ed by PCR on plasmid DNA. The gene was preceded 
by a NgoMIV site, an actin 15 promotor, and 5 adenosines, and was 
 followed by a BamHI site (encoding Gly and Ser), the sequence encoding 
aa 2–2116 of myosin heavy chain, the myosin terminator from the vector 
pBIG-GFP-myo (Levi et al., 2002), and a NgoMIV site. Finally, the gene 
 encoding the mRFPmars-myosin fusion was released using the NgoMIV site 
and cloned into the single NgoMIV site of MB74hyg-LimE-GFP.

The D. discoideum strain AX3 was used as wild-type control in all 
experiments. The mutants strains used are the plc-null strain 1.19 (Drayer 
et al., 1995), the pi3k-null pi3k1−/pi3k2− strain GMP1 (Funamoto et al., 
2001), and pten-null cells (Iijima and Devreotes, 2002). Cells were grown 
in shaking culture in HG5 medium (containing per liter: 14.3 g oxoid 
peptone, 7.15 g bacto yeast extract, 1.36 g Na2HPO4× 12H2O, 0.49 g 
KH2PO4, 10.0 g glucose) at a density between 5 × 105 and 6 × 106 
cells/ml. Cells were harvested by centrifugation for 3 min at 300 g, 
washed in PB (10 mM KH2PO4/Na2HPO4, pH 6.5), and starved in PB in 
6-well plates (Nunc) for 5h. Cells were then resuspended in PB, centri-
fuged, and washed once in PB, and resuspended in PB at a density of 6 × 
106 cells/ml.

Recording of movies
Unless otherwise mentioned, digital images of cells in PB at room tempera-
ture were captured at 10-s time intervals over 45 min. Videos 1, 2, 4, and 
5–7 were captured using a confocal laser scanning microscope (LSM 510 
META-NLO; Carl Zeiss Microimaging, Inc.) equipped with a 63×/NA 1.4 
objective (Plan-Apochromatic; Carl Zeiss Microimaging, Inc.). For excita-
tion of the fl uorochromes, GFP (S65T variant), and mRFPmars, a 488-nm 
argon/krypton laser and a 543-nm helium laser were used, respectively. 
The fl uorescence was fi ltered through a BP500-530 IR and a LP560 fi lter, 
and was detected by a photomultiplier tube. The fi eld of observation is 
206 × 206 μm; Videos 1 and 2 present the phase-contrast channel, whereas 
the fl uorescent channel is shown in Videos 4–7. For Videos 3 and 9, an in-
verted light microscope (Type CK40 with a LWD A240 20×/NA 0.4 ob-
jective; Olympus) fi tted with a charge-coupled device camera (TK-C1381; 
JVC) was used. Digital images were captured on a PC using VirtualDub 
software and Indeo video 5.10 compression. The fi eld of observation is 
358 × 269 μm. Video 8 was captured using a 10× numerical aperture 
0.25 objective, and presents a selected fi eld of the same size, namely 358 × 
269 μm. For all individual videos, specifi c time periods were selected that 
start at the moment the pipette was lowered to the plane just above the 
cells. In the phase-contrast videos, the pipette tips are visible as dark tri-
angular shadows. In the fl uorescence videos (Videos 4–7), the place of the 
pipette tip is indicated with an asterisk.

Analysis of chemotaxis
The chemotaxis index, which is defi ned as the ratio of the cell displacement 
in the direction of the gradient and its total traveled distance, was determined 
for 	25 cells in a video, as follows. First, the position of the centroid of a cell 
was determined with ImageJ (National Institutes of Health; rsb.info.nih.gov/ij) 
for frames at 30-s intervals, yielding a series of coordinates for that cell. Using 
these coordinates, the chemotaxis index of each 30-s step was calculated 

and averaged, yielding the chemotaxis index for that cell in the movie. The 
data shown are the average and SEM of the chemotaxis indices from at least 
three independent experiments, with 	25 cells per experiment.

Online supplemental material
Fig. S1 shows cell trajectories of wild-type cells in a gradient of cAMP and 
8CPT-cAMP, revealing that cells are attracted toward cAMP, but repelled 
from 8CPT-cAMP. Fig. S2 shows inhibition of PLC signaling by the antago-
nist 3′NH-cAMP. 8CPT-cAMP has similar properties to 3′NH-cAMP. Fig. S3 
shows the localization of PHcrac-GFP, PTEN-GFP, and PI3K-GFP in plc-null 
cells in a gradient of cAMP or 8CPT-cAMP. Video 1 shows chemotaxis to-
ward a pipette with cAMP. Video 2 shows chemotaxis away from a pipette 
with 8CPT-cAMP. Video 3 shows cell movement in gradients of 8CPT-cAMP 
and cAMP+8CPT-cAMP, followed by movement in only cAMP. Video 4 
shows the localization of F-actin at the leading edge and myosin in the 
back of cells chemotaxing toward cAMP. Video 5 shows the localization of 
F-actin at the leading edge and myosin in the back of cells chemotaxing 
away from 8CPT-cAMP. Video 6 shows the localization of PHcracGFP (de-
tecting PI[3,4,5]P3) at the leading edge of cells chemotaxing toward cAMP. 
Video 7 shows the localization of PHcracGFP (detecting PI[3,4,5]P3) at the 
leading edge of cells chemotaxing away from 8CPT-cAMP. Video 8 shows 
chemotaxis of pi3k1/2-null cells toward cAMP in the presence of 8CPT-cAMP. 
Video 9 shows chemotaxis of plc-null cells toward cAMP in the presence of 
8CPT-cAMP. The online version of this article is available at http://www
.jcb.org/cgi/content/full/jcb.200611046/DC1.

We thank B. Jastorff for a kind gift of 3′NH-cAMP; A. Bominaar for data on 
PLC regulation by 3′NH-cAMP; R. Firtel for pi3k1/2-null cells; P. Devreotes for 
plasmids expressing PHcracGFP, PI3K2-GFP, and PTEN-GFP; A. Muller-Tauben-
berger for plasmid expressing mRFPmars; T. Egelhoff for plasmid expressing a 
GFP fusion with myosin heavy chain II; and Dr. L Bosgraaf for plasmid express-
ing LimE-GFP/Myo-RFP. Plasmids and cells were obtained through the Dictyo-
stelium Stock Center.
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