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Introduction
Apoptosis is a critical process in development and normal tis-

sue homeostasis and results in immediate removal of dying 

cells, either by neighboring cells or by professional phagocytes, 

such as macrophages or dendritic cells. The engulfment of 

apoptotic cells is one of the most primitive forms of phagocyto-

sis, and many of the molecules implicated in the phagocytosis 

of apoptotic cells appear to have a high degree of conservation 

from the nematode Caenorhabditis elegans to mammalian cells 

(Henson et al., 2001). Phagocytosis of apoptotic cells is distin-

guished from the evolutionarily much younger Fc receptor 

(FcR)–mediated phagocytosis in terms of receptors, signaling 

molecules, and cytoskeletal as well as plasma membrane reor-

ganizations (Aderem and Underhill, 1999).

In C. elegans, at least two partially redundant processes 

are important in the engulfment of dying cells, one that involves 

CED-2, -5, and -12 and another involving CED-7, -1, and -6, 

and subsequently both pathways converge at CED-10 (Kinchen 

et al., 2005). In the second pathway, CED-7 may be required for 

the function of CED-1 (Wu and Horvitz, 1998), although recent 

data indicate that CED-7 may have alternative roles during the 

removal of apoptotic cells (Kinchen et al., 2005). For all of 

these ced genes, mammalian orthologues have been proposed 

(for review see Reddien and Horvitz, 2004). For CED-7, the 

ATP-binding cassette transporter A1 (ABCA1) has been sug-

gested as the mammalian orthologue, based on sequence con-

servation and in vivo and cell culture studies suggesting a role 

of ABCA1 in the phagocytosis of apoptotic cells (Luciani and 

Chimini, 1996; Marguet et al., 1999; Hamon et al., 2000). The 

low-density lipoprotein receptor–related protein 1 (LRP1) or 

CD91 has been suggested as a protein with function similar to 

CED-1 (Su et al., 2002). LRP1 is a multifunctional scavenger 

and signaling receptor (Herz and Strickland, 2001). The sugges-

tion that LRP1 has a function similar to CED-1 is based on in-

tracellular sequence similarity and an important role of LRP1 in 

the phagocytosis of apoptotic cells (Ogden et al., 2001; Vandivier 

et al., 2002; Gardai et al., 2003, 2005). Moreover, both LRP1 

and CED-1 can interact via a phosphotyrosine binding motif 
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T
he mammalian ATP-binding cassette transporters 

A1 and A7 (ABCA1 and -A7) show sequence simi-

larity to CED-7, a Caenorhabditis elegans gene 

that mediates the clearance of apoptotic cells. Using RNA 

interference or gene targeting, we show that knock down 

of macrophage ABCA7 but not -A1 results in defective 

engulfment of apoptotic cells. In response to apoptotic 

cells, ABCA7 moves to the macrophage cell surface and 

colocalizes with the low-density lipoprotein receptor–

 related protein 1 (LRP1) in phagocytic cups. The cell sur-

face localization of ABCA7 and LRP1 is defective in 

ABCA7-defi cient cells. C1q is an opsonin of apoptotic 

cells that acts via phagocyte LRP1 to induce extracellular 

signal–regulated kinase (ERK) signaling. We show that 

ERK signaling is required for phagocytosis of apoptotic 

cells and that ERK phosphorylation in response to apo-

ptotic cells or C1q is defective in ABCA7-defi cient cells. 

These studies reveal a major role of ABCA7 and not -A1 

in the clearance of apoptotic cells and therefore suggest 

that ABCA7 is an authentic orthologue of CED-7.
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(NPXY motif) within their cytoplasmic tails with the adaptor 

proteins CED-6 and its mammalian orthologue GULP (engulf-

ment adaptor protein), respectively (Su et al., 2002). However, 

LRP1 and CED-1 show very limited overall sequence homol-

ogy, and it is possible that the apparent similarity in their func-

tions represents convergent evolution.

ABCA7, a close homologue of ABCA1, is a 220-kD pro-

tein expressed in a variety of tissues, including macrophages 

(Wang et al., 2003). We have shown that ABCA7 binds apolipo-

protein A-I (apoA-I) and promotes the effl ux of phospholipids 

but not cholesterol to apoA-I in ABCA7-transfected 293 cells. 

In resting macrophages, ABCA7 is found intracellularly and 

does not contribute to phospholipid or cholesterol effl ux (Kim 

et al., 2005; Linsel-Nitschke et al., 2005). The physiological 

role of ABCA7 in these cells remains unknown.

In this paper, we show that ABCA7 has a high sequence 

similarity to CED-7 and is required for effi cient phagocytosis of 

apoptotic cells. We were unable to demonstrate a role of ABCA1 

in the phagocytosis of apoptotic cells as reported previously 

(Luciani and Chimini, 1996; Hamon et al., 2000). ABCA7 ap-

pears to facilitate the cell surface localization of LRP1 and as-

sociated signaling via extracellular signal–regulated kinase 

(ERK), thereby promoting the phagocytosis of apoptotic cells. 

Together, these data suggest that ABCA7 and not -A1 is a func-

tional orthologue of CED-7.

Results
Sequence similarity of ABCA7 and CED-7
An alignment of CED-7 and mouse ABCA7 showed that 25% 

of amino acids were identical and 43% were similar. A similar 

result was obtained if CED-7 was aligned to mouse ABCA1, re-

sulting in 24% identity and 42% similarity. These homologies 

are in the range reported for known orthologous proteins (e.g., 

CED-6 and GULP; Su et al., 2002). Compared with ABCA1 

and -A7, CED-7 has a gap in the amino acid sequence starting 

at amino acid 198 (Fig. S1 a, available at http://www.jcb.org/

cgi/content/full/jcb.200601030/DC1). This difference is more 

pronounced for ABCA1 (Fig. S1 b, dashed line). No other mam-

malian genes are more homologous to CED-7 than ABCA7 

or -A1. Based on these sequence similarities, both ABCA7 and 

-A1 could be considered as potential orthologues to CED-7; 

thus, we undertook a study of the function of ABCA7 in the 

phagocytosis of apoptotic cells.

Localization of ABCA7 in membrane ruffl es 
and phagocytic cups
The fi rst observation indicating that ABCA7 might be involved in 

phagocytosis came from fl uorescence microscopy experiments. 

We previously reported that “resting” macrophages show mainly 

intracellular staining for ABCA7 (Linsel-Nitschke et al., 2005). 

We confi rmed this fi nding by confocal microscopy and saw 

mainly intracellular staining for ABCA7 (Fig. 1 a). Some cells 

also showed staining for ABCA7 at the leading edge (Fig. 1 a, 

solid arrows). Affi nity-purifi ed preimmune serum showed no 

staining in macrophages. Colocalization studies in resting 

 macrophages indicated partial overlap of ABCA7 with the 

Golgi marker Golgi 58K and an early endosome marker 

(rab4; unpublished data). The distribution of ABCA7 altered in 

macrophages undergoing phagocytosis with redistribution of 

ABCA7 into phagocytic cups (Fig. 1 b, top left) and enrichment 

in membrane ruffl es (Fig. 1 d, top left, solid arrows). This redis-

tribution of ABCA7 was not specifi c for phagocytosis of apo-

ptotic cells, as it was also seen with IgG-coated latex beads fed 

to J774  macrophages (Fig. S2, bottom left, arrows; available at 

http://www.jcb.org/cgi/content/full/jcb.200601030/DC1).

ABCA7 colocalizes with LRP1 
within the phagocytic cup
Based on the report that CED-7, a possible orthologue of 

ABCA7, may be required for the function of CED-1 (Wu and 

Horvitz, 1998) and the suggestion that LRP1 could have a func-

tion similar to CED-1 (Su et al., 2002), we also compared 

the localization and functions of ABCA7 and LRP1. Studies in 

“resting” macrophages showed very little colocalization of 

ABCA7 (Fig. 1 c, red) and LRP1 (green). However, confocal 

Figure 1. ABCA7 and LRP1 colocalize in the phagocytic cup and in 
 membrane ruffl es. (a) ABCA7 in resting macrophages. Mouse peritoneal 
macrophages were cultured for 2 d before fi xation, permeabilization, and 
incubation with peptide affi nity column purifi ed antibody against ABCA7 
(red). Confocal image with orthographic projection shows mainly intracel-
lular staining for ABCA7. (b) Confocal picture showing a macrophage 
(Mø; open arrows) engulfi ng an apoptotic cell (solid arrows). The top left 
panel shows localization of ABCA7 in the phagocytic cup. The top right 
panel shows localization of LRP1 in the phagocytic cup. In the overlay 
(bottom left), the colocalization of ABCA7 and LRP1 within the phagocytic 
cup is shown in yellow. (c) Confocal image showing staining for ABCA7 
and LRP1 in resting macrophages. The staining for ABCA7 (red) and 
LRP1 (green) was mainly intracellular with very limited colocalization. 
(d) Differential interference contrast (DIC) microscope image (bottom left) 
and immuno fl uorescence images showing colocalization of ABCA7 and 
LRP1 mainly within membrane ruffl es (solid arrows) after stimulation of 
macrophages with 10 μg/ml C1q for 20 min.
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microscopy of macrophages (Fig. 1 b, open arrows) engulfi ng 

an apoptotic cell showed that ABCA7 (red) and LRP1 (green) 

colocalized within the phagocytic cup (solid arrow), as shown 

by the yellow in the overlay. Colocalization of ABCA7 and 

LRP1 was also observed within membrane ruffl es after activa-

tion of macrophages by C1q (Fig. 1 d, bottom right).

Knock down of ABCA7 reduces 
phagocytosis of apoptotic cells but has no 
effect on FcR-mediated phagocytosis
To test whether ABCA7 is of functional relevance in phagocy-

tosis, we performed genetic knockdown experiments of ABCA7 

in mouse peritoneal macrophages. Six different siRNA con-

structs complementary to ABCA7 were tested to down-regulate 

ABCA7. The best three constructs were used in subsequent 

 experiments. Each of them suppressed ABCA7 by �60–80% 

(Fig. 2 a). The control siRNAs did not affect ABCA7 protein 

expression (unpublished data). Fig. 2 b shows that all three 

siRNA constructs for ABCA7 signifi cantly inhibited the phago-

cytosis of apoptotic cells by 60–70%. Knock down of ABCA7 

did not impair binding of apoptotic cells to macrophages 

 (unpublished data). In some experiments, the second control siRNA 

(control siRNA2; Fig. 2 b, white column with horizontal lines) 

also slightly reduced the phagocytic index (PI). Therefore, for 

further experiments the fi rst control siRNA (control siRNA1) 

was used.

As it has been suggested that ABCA1 plays a role in 

phagocytosis of apoptotic cells (Hamon et al., 2000), we also 

compared the relative importance of ABCA7 and -A1 in this 

process. Surprisingly, the knock down of ABCA1 did not de-

crease the phagocytosis of apoptotic cells (Fig. 2 c), even 

though the siRNA constructs used for ABCA1 were as effec-

tive as the constructs used for ABCA7 (reduction of ABCA1 

protein by 60–80%; Fig. S3, available at http://www.jcb.org/

cgi/content/full/jcb.200601030/DC1). We further tested the 

 effect of genetic suppression of ABCA7 on FcR-mediated 

phagocytosis. Even though ABCA7 localizes in phagocytic 

membranes during uptake of IgG-coated latex beads (Fig. S2), 

down-regulation of ABCA7 had no effect on FcR-mediated 

phagocytosis (Fig. 2 d).

Phagocytosis of apoptotic cells 
is also reduced in macrophages 
from ABCA7 +/− mice
We have obtained mice with a targeted deletion of the ABCA7 

gene in exon 21. In contrast to the recently published ABCA7 

knockout mouse, created using a different targeting strategy 

Figure 2. Knock down of ABCA7 reduces phagocytosis of apoptotic cells 
but has no effect on FcR-mediated phagocytosis. (a) Mouse peritoneal mac-
rophages were transfected with either control siRNA or three different 
 siRNAs directed against ABCA7, and total cell lysates were subjected to 
Western immunoblotting using antibodies against ABCA7 and β-actin. 
Densitometric analysis of bands showed a 60–80% reduction of ABCA7 
protein with the different siRNA constructs. (b) Phagocytosis of apoptotic 
cells experiment using the siRNA constructs from panel a. Peritoneal mac-
rophages in a 24-well plate were incubated for 90 min with 106 apoptotic 
neutrophils, and wells were washed, fi xed, and stained followed by analy-
sis of PI. Two different scrambled (controls) and three different siRNAs 
 directed against ABCA7 (black bar, gray bar with horizontal lines, and 
gray bar) were used. n = 3; *, P < 0.001; **, P < 0.01 when compared 
with control siRNA1 (white bar); #, P < 0.01; ##, P = 0.02 when com-
pared with control siRNA2 (white bar with horizontal lines). (c) Using con-
trol siRNA (white bar), ABCA7 siRNA (black bar), and two different siRNAs 
directed against ABCA1 (dark gray and light gray bars), a signifi cant re-
duction of PI was seen with knock down of ABCA7 (n = 3; *, P = 0.005), 
whereas knock down of ABCA1 had no effect. (d) To compare phagocyto-
sis of apoptotic cells with FcR-mediated phagocytosis, either apoptosis was 
induced by UV radiation or viable neutrophils were coated with a mono-
clonal anti-CD18 antibody. White and black bars represent the PI of cells 
transfected with control or ABCA7 siRNA, respectively. The knockdown of 
ABCA7 only reduced phagocytosis of apoptotic cells (n = 4; *, P = 0.02) 
and had no effect on FcR-mediated phagocytosis. 

Figure 3. Phagocytosis of apoptotic cells is reduced in ABCA7 +/− com-
pared with ABCA7 +/+ but not in ABCA1 +/− or −/− mice. (a) Uptake 
of apoptotic neutrophils was reduced 41% in macrophages from ABCA7 
+/− compared with macrophages from ABCA7 +/+ mice (n = 8; 
*, P < 0.001), whereas there was no difference for FcR-mediated phagocy-
tosis performed in parallel with viable neutrophils coated with a monoclonal 
anti-CD18 antibody. For all experiments, mouse peritoneal macrophages 
were harvested and cultured for 2 d before phagocytosis assays were per-
formed. (b) FcR-mediated phagocytosis with 4-μm IgG-coated latex beads. 
Compared with the uptake of apoptotic or anti-CD18 antibody labeled 
 viable neutrophils, the PI was much higher (273 ± 33) with the smaller 
IgG-coated latex beads. Uptake was similar for ABCA7 +/+ and +/− 
macrophages (n = 3; P = 0.3). (c) Phagocytosis of apoptotic cells was also 
performed with apoptotic Jurkat T cells. PI for the ABCA7 +/− was reduced 
by 39% compared with wild-type control (ABCA7 +/+, n = 3; ABCA7 
+/−, n = 5; *, P = 0.015). (d) No difference was found in the uptake of 
apoptotic Jurkat T cells by macrophages with different genotypes for ABCA1 
(ABCA1 +/+, n = 3; ABCA1 +/−, n = 3; ABCA1 −/−, n = 3).
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(Kim et al., 2005), we have not obtained any viable ABCA7 

−/− mice. Although we do not know the reason for this dis-

crepancy, a difference in the genetic background of the mice is 

unlikely, as we were unable to obtain ABCA7 −/− mice in ei-

ther the C57Bl6 (87 animals screened) or in a C57Bl6 × 129 F2 

hybrid background (23 mice screened: 7 +/+, 16 +/−, and 

0 −/−). Thus, we used ABCA7 +/− mice for the experiments. 

As we demonstrated previously, peritoneal macrophages from 

ABCA7 +/− mice showed a 50–60% reduction in ABCA7 pro-

tein levels (Linsel-Nitschke et al., 2005). Phagocytosis of apo-

ptotic neutrophils was reduced by 41% in macrophages from 

ABCA7 +/− mice (Fig. 3 a), and similar results were obtained 

with apoptotic Jurkat T cells (Fig. 3 c). In contrast, macrophages 

from ABCA7 +/− animals had no defect in the FcR-mediated 

phagocytosis of viable neutrophils (Fig. 3 a) or IgG-coated latex 

beads (Fig. 3 b). We also compared the phagocytosis of apo-

ptotic cells in ABCA1 +/+, +/−, and −/− macrophages. 

As shown in Fig. 3 d, no difference could be detected between 

the ABCA1 +/+, +/−, and −/− mice.

In regard to ABCA1, our data contradict earlier work that 

reported a role of ABCA1 in the phagocytosis of apoptotic cells 

(Luciani and Chimini, 1996; Hamon et al., 2000). Therefore, we 

repeated the phagocytosis assays using a different microscopic 

method that counts red (prelabeled) apoptotic cells (Fig. 4 a) 

within green-labeled LAMP1-positive phagolysosomes to score 

phagocytosis. Using this phagocytosis assay, we found that 

phagocytosis of apoptotic cells was reduced by 39% in ABCA7 

+/− macrophages compared with ABCA7 +/+ control cells 

(Fig. 4 b), but ABCA1 −/− macrophages did not show a defect 

in phagocytosis (Fig. 4 c). Thus, using two different genetic ap-

proaches and two different microscopic phagocytosis assays, 

we found an essential role of ABCA7 in phagocytosis of apo-

ptotic cells but not in FcR-mediated phagocytosis and no com-

parable function of ABCA1.

A specifi c defect in the phagocytosis of apoptotic cells but 

not in FcR-mediated phagocytosis makes it unlikely that ABCA7 

has a general role in the reorganization of the cytoskeleton. 

A signifi cant general defect could be excluded further, as no 

difference in membrane ruffl ing was seen after stimulation of 

ABCA7 +/+ and +/− macrophages (Fig. S4, available at 

http://www.jcb.org/cgi/content/full/jcb.200601030/DC1).

ABCA7 plays a role in phagocytosis 
of apoptotic cells in vivo
To test whether the clearance of apoptotic cells is also dimin-

ished in ABCA7-defi cient mice, we used two established 

in vivo models of phagocytosis. In the fi rst model (Teder et al., 

2002; Vandivier et al., 2002), we assessed the clearance of ex-

ogenously instilled apoptotic cells in the lungs of ABCA7 +/− 

and +/+ mice. Mice were challenged intratracheally with ex-

ogenous apoptotic cells, and clearance was assessed by bron-

choalveolar lavage. In this model, defective phagocytosis of 

apoptotic cells is suggested either by decreased uptake by alve-

olar macrophages (i.e., decreased PI) or by increased recovery 

of apoptotic cells in the lavage (Teder et al., 2002; Vandivier 

et al., 2002). ABCA7 +/− mice showed a signifi cant reduction 

in the PI (Fig. 5 a). There was also a trend toward an increased 

 recovery of apoptotic cells for ABCA7 +/− mice compared 

with their +/+ age-matched controls (Fig. 5 b). In the second 

in vivo model, ABCA7 +/− and +/+ mice were challenged 

intratracheally with lipopolysaccharide (LPS), and the infl am-

matory response and the clearance of endogenous apoptotic 

cells was assessed by bronchoalveolar lavage at day 0 (control 

group without LPS) and 3 d after LPS instillation. Without LPS 

(day 0), the PI was small and no signifi cant difference between 

groups was observed (PI for ABCA7 +/+, 1.0 ± 0.6 [n = 6]; 

PI for ABCA7 +/−, 0.6 ± 0.4 [n = 4]). However, 3 d after LPS 

instillation, the PI was increased and was signifi cantly smaller 

in the ABCA7 +/− mice compared with their +/+ age-matched 

controls (Fig. 5 c). Total numbers of cells in the bronchoalveo-

lar lavage fl uids as well as the differential white cell count at 

baseline and after LPS were similar for ABCA7 +/+ and +/− 

mice (unpublished data).

ABCA7 facilitates the cell surface 
expression of ABCA7 and LRP1 after 
stimulation with apoptotic cells or C1q
In the experiments described so far, we have shown that ABCA7, 

like LRP1 (Ogden et al., 2001), is required for the phagocytosis 

of apoptotic cells but not for FcR-mediated phagocytosis. 

 Further, we have shown that both ABCA7 and LRP1 are redis tri-

buted from an intracellular pool to the phagocytic cup (an 

 extension of the plasma membrane) during phagocytosis (Fig. 1 b). 

We next asked whether there might be a defect in cell surface 

Figure 4. Uptake of apoptotic Jurkat T cells in LAMP1-positive phagolyso-
somes is reduced in ABCA7 +/− macrophages but not in ABCA1 −/− 
macrophages. Mouse peritoneal macrophages were incubated with 
CellTracker red prelabeled apoptotic Jurkat T cells for 45 min before fi xa-
tion, permeabilization, and incubation with an antibody against LAMP1 
(green). (a) Representative phase-contrast picture (left) with corresponding 
fl uorescent photomicrograph (right). The macrophage on the right side 
 engulfed one Jurkat T cells (solid arrow), as indicated by the yellow ring 
structure in the overlay. A second Jurkat T cell (dashed arrow) binds to the 
same macrophage and is clearly not within a LAMP1-positive compartment. 
(b) Uptake of apoptotic Jurkat T cells in LAMP1-positive phagolysosomes 
was reduced by 39% in ABCA7 +/− macrophages compared with 
ABCA7 +/+ macrophages (n = 4; *, P < 0.001). (c) There was no differ-
ence in the uptake of apoptotic Jurkat T cells in LAMP1-positive phagolyso-
somes by macrophages with different genotypes for ABCA1 (mean and SD 
of triplicate experiments of two pairs of ABCA1 +/+ and −/− mice).
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 expression of ABCA7 and LRP1 during phagocytosis in ABCA7 

+/− macrophages. As the movement of ABCA7 and LRP1 to the 

cell surface during phagocytosis is diffi cult to quantitate by mi-

croscopy, we developed a biochemical assay, i.e., cell surface bio-

tinylation followed by pull down with streptavidin beads and 

immunoblotting for ABCA7 and LRP1. Fig. 6 a shows a 12-fold 

and sustained enrichment in cell surface  levels of ABCA7 and a 

fourfold, more transient increase of cell  surface LRP1 in ABCA7 

+/+ macrophages after exposure to apoptotic cells. The enrich-

ment of ABCA7 and LRP1 was markedly attenuated in ABCA7 

+/− macrophages (2.5-fold for ABCA7 and 1.5–2-fold for LRP1; 

Fig. 6 a, representative result of three independent experiments). 

Overall levels of LRP1 and ABCA7 in cell lysates were not 

 affected by the uptake of apoptotic cells (unpublished data).

An early event during phagocytosis is binding of C1q on 

apoptotic cells to calreticulin/LRP1 on phagocytes, leading to 

signaling and uptake of apoptotic cells (Ogden et al., 2001). 

To see if the interaction of C1q with LRP1 was suffi cient to 

 induce cell surface expression of ABCA7, macrophages were 

serum starved and then exposed to C1q. Consistent with the 

 earlier result showing C1q-induced appearance of ABCA7 in 

membrane ruffl es (Fig. 1 d), this led to a substantial increase in 

cell surface expression levels of both ABCA7 and LRP1  (Fig. 6 b, 

representative result of six independent experiments). In ABCA7 

+/− cells, the increase in ABCA7 was greatly reduced, and 

LRP1, although readily detectable in the cell surface, showed 

minimal response to C1q treatment (Fig. 6 c). This suggests that 

the increased cell surface expression of ABCA7 and LRP1 in 

membrane ruffl es and during phagocytosis of apoptotic cells at 

least in part depends on signaling through LRP1 as well as on 

ABCA7 function. The failure to detect a substantial increase of 

ABCA7 and LRP1 in the cell surface in ABCA7 +/− cells after 

stimulation may in part result from a relatively high constitutive 

cell surface expression of these molecules.

Phosphorylation of ERK is diminished 
after stimulation with C1q or apoptotic 
cells in ABCA7 +/− macrophages
As activation of LRP1 by different ligands (Orr et al., 2003;  Yang 

et al., 2004) as well as C1q (unpublished data) leads to phosphor-

ylation of ERK, we tested the signaling function of LRP1 by 

evaluating ERK phosphorylation after stimulation of macro-

phages with C1q. As shown in Fig. 7 a, after stimulation with C1q 

for 10 and 20 min, ERK phosphorylation was reduced by 57 and 

65% in ABCA7 +/− macrophages, respectively (similar results 

Figure 5. ABCA7 +/− mice show a phagocytosis defect in vivo. 
(a) Decreased uptake of apoptotic cells by resting (not infl amed) alveolar 
macrophages. 10 × 106 apoptotic thymocytes were instilled intratracheally. 
1 h later, whole lung lavage was performed, followed by analysis of the 
alveolar macrophage PI. The fi gure shows a box blot (with 90, 75, 50, 25, 
and 10 percentile values of PI) for 10 ABCA7 +/+ mice and a box blot 
for 9 ABCA7 +/− mice (in one ABCA7 +/− mouse, the trachea was ac-
cidentally perforated, and this mouse was excluded from analysis). The 
mean PI was signifi cantly lower for ABCA7 +/−. *, P = 0.049. (b) Same 
experiment as in panel a: from the whole lavage, the recovery of apoptotic 
thymocytes was also determined. The mean recovery in ABCA +/+ mice 
(black bar with SEM) tended to be slightly lower than for ABCA7 +/− 
mice (white bar with SEM; *, P = 0.13). (c) Decreased phagocytosis of 
LPS-induced apoptotic cells by infl amed alveolar macrophages. 3 d after 
200 mcg LPS was instilled into the lungs, lung lavage was performed, fol-
lowed by analysis of the alveolar macrophage PI. The fi gure shows a box 
blot (with 90, 75, 50, 25, and 10 percentile values of PI) for 10 ABCA7 
+/+ mice and a box blot for 8 ABCA7 +/− mice. The mean PI was 
 signifi cantly lower for ABCA7 +/−. *, P = 0.046.

Figure 6. ABCA7 facilitates cell surface expression of ABCA7 and LRP1 
after stimulation with apoptotic cells or after stimulation with C1q. (a) Cell 
surface levels of ABCA7 and LRP1 in phagocytes after exposure to apo-
ptotic cells. Apoptotic Jurkat T cells were added to monolayers of ABCA7 
+/+ and +/− macrophages. At the indicated time points, apoptotic cells 
were removed and macrophages were washed and biotinylated on ice, 
and biotinylated proteins were recovered with streptavidin beads and pro-
cessed for immunoblotting. Recovery of biotinylated proteins was moni-
tored by Ponceau staining of membranes or by Western blotting for integrin 
β1. A representative experiment of three experiments is shown. (b) Before 
stimulation of macrophages with 10 μg/ml C1q, cells were incubated in 
serum-free DME for 3–4 h. At the indicated time points, ABCA7 +/+ mac-
rophages were biotinylated on ice and processed as described above. 
 Results are representative of six similar experiments. (c) At the indicated 
time points after the addition of C1q, ABCA7 +/− macrophages were 
biotinylated on ice and processed as described above. Results are repre-
sentative of fi ve different experiments. 
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were obtained in four experiments). In contrast, after stimulation 

of the FcR with aggregated IgG, the magnitude and the time 

course of ERK phosphorylation were very similar in ABCA7 

+/+ and +/− macrophages (Fig. S5, available at http://www.jcb.

org/cgi/content/full/jcb.200601030/DC1). Macrophages were 

also stimulated more physiologically by apoptotic cells (Fig. 7, 

b and c). Apoptotic cells caused a rapid increase in ERK phosphor-

ylation in phagocytes that was sustained to the end of the exper-

iment. Compared with wild-type cells, in ABCA7 +/− cells, 

basal levels of ERK phosphorylation were slightly higher, there 

was less initial increase in ERK phosphorylation, and the response 

was transient, returning to the baseline level after 20–40 min (Fig. 

7 c shows quantifi cation of three independent experiments).

Inhibition of ERK phosphorylation 
reduces phagocytosis of apoptotic cells 
and prevents the increase of cell surface 
expression of ABCA7 and LRP1 after 
stimulation with apoptotic cells
To see whether attenuated ERK phosphorylation in ABCA7+/− 

macrophages could explain the decreased phagocytosis of 

 apoptotic cells, the effect of two inhibitors of ERK phosphory-

lation on the phagocytosis of apoptotic cells was tested. Viability 

of macrophages was not affected by the use of inhibitors as 

 assessed by annexin V staining (unpublished data). As shown 

in Fig. 8 a, both inhibitors reduced phagocytosis of apoptotic 

cells and C1q-coated apoptotic cells, whereas the effect on FcR-

mediated phagocytosis was not signifi cant. This may explain 

the reduced phagocytosis of apoptotic cells by ABCA7 +/− 

macrophages, as they show a defect in ERK phosphorylation 

(Fig. 7, a, b, and c).

Finally, we addressed the question of whether ERK phos-

phorylation is required for the increased ABCA7 and LRP1 ex-

pression at the cell surface upon stimulation with apoptotic cells. 

Inhibition of ERK prevented the increase of ABCA7 and LRP1 

expression at the cell surface after stimulation with apoptotic 

cells (Fig. 8 b). At baseline (without addition of apoptotic cells), 

cell surface expression levels of ABCA7 and LRP1 were higher 

after inhibition of ERK phosphorylation, similar to fi ndings in 

ABCA7 +/− macrophages, where basal cell surface expression 

of these molecules was relatively high, but showed only limited 

increase upon stimulation with apoptotic cells or C1q.

Discussion
The clearance of apoptotic cells occurs throughout the lifespan 

of multicellular organisms and is important for development 

during embryogenesis, the maintenance of tissue integrity and 

function, and the resolution of infl ammation (deCathelineau 

and Henson, 2003). Here, we report that macrophage ABCA7 

enhances the clearance of apoptotic cells in vitro and in vivo. 

ABCA7 and LRP1 move to the cell surface after stimulation 

with C1q or apoptotic cells and localize to membrane ruffl es or 

phagocytic cups, respectively. However, ABCA7 also localizes 

to phagocytic membranes during FcR-mediated phagocytosis, 

in which ABCA7 levels are not rate limiting. More important, 

ABCA7 is required for optimal ligand-induced signaling 

through LRP1, as shown by C1q-induced ERK phosphorylation 

and for sustained ERK phosphorylation during phagocytosis of 

apoptotic cells. Finally, ERK phosphorylation itself is shown to 

be essential for phagocytosis of apoptotic cells but not for FcR-

mediated phagocytosis, suggesting a link between the defect in 

ERK phosphorylation and the impaired phagocytosis of apo-

ptotic cells observed in ABCA7 +/− cells.

A variety of different lines of evidence, using siRNA and 

gene targeted mice, demonstrate a signifi cant role of ABCA7 

in the phagocytosis of apoptotic cells. A 60–80% reduction of 

ABCA7 protein by siRNA resulted in a 60–70% reduction in 

the phagocytosis of apoptotic cells, and a 50–60% reduction 

in ABCA7 in ABCA7 +/− mice led to a 40% reduction in 

the phagocytosis of apoptotic cells, indicating a major role of 

ABCA7 in this process. By comparison, macrophages treated with 

antibodies against LRP1, C1q, and mannose binding lectin or in 

C1q −/− mice, phagocytosis of apoptotic cells is reduced by 

�50–75% (Taylor et al., 2000; Ogden et al., 2001). Furthermore, 

LPS-induced lung infl ammation in CD44 −/− mice (Teder 

et al., 2002; the same model used in this study [Fig. 5 b])  resulted 

in a reduced PI, similar to that reported here.

Figure 7. ERK phosphorylation after stimulation with C1q or after addi-
tion of apoptotic cells is impaired in macrophages from ABCA7 +/− mice. 
(A) Time course of ERK phosphorylation after exposure of macrophages to 
C1q. Before stimulation of macrophages with 10 μg/ml C1q, cells were 
incubated in serum-free DME for 3–4 h. At the indicated time points, cells 
were lysed and lysates were analyzed for phospho-ERK1/2 (P-ERK1/2) 
and total ERK1/2 by immunoblotting and analyzed by densitometry. Levels 
of phospho-ERK1/2 were normalized to total ERK1/2 levels and expressed 
as P-ERK/ERK ratios. Similar results were obtained in three additional 
 experiments. (b) Time course of ERK phosphorylation of exposure of mac-
rophages to apoptotic cells. Apoptotic Jurkat T cells were added to mono-
layers of ABCA7 +/+ and +/− macrophages. At the indicated time 
points, apoptotic cells were removed and macrophages were washed be-
fore lysis of cells. Immunoblotting was performed as indicated above. 
(C) Quantifi cation of P-ERK/ERK after stimulation with apoptotic cells. The 
y axis shows P-ERK/ERK for the indicated time points over baseline (time 
point 0’)  expressed as mean and SEM of three independent experiments.
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Surprisingly, parallel experiments could not confi rm 

a role of ABCA1 in the phagocytosis of apoptotic cells, 

and this clearly contrasts with previous data (Luciani and 

Chimini, 1996; Hamon et al., 2000). The reason for the 

 apparent discrepancy is unclear. It could be related to meth-

odological issues. Hamon et al. (2000) quantifi ed uptake of 

apoptotic cells in macrophages from a small number of mice 

using 51Cr-labeled apoptotic cells. This method may not 

 distinguish between apoptotic cells that have been ingested 

by phagocytes or are adherent to the phagocytes. Although 

more tedious, both microscopic methods used herein count 

only apoptotic cells clearly within phagocytes or LAMP1-

positive phagolysosomes.

Bared et al. (2004) identifi ed ABCA1 as a phagosomal 

protein and suggest a potential role of ABCA1 for phospholipid 

effl ux from the phagosomal compartment. Recent studies in our 

laboratory have shown that ABCA1 is induced in phagocytes 

ingesting apoptotic cells, suggesting that ABCA1 might have 

a role in the disposal of lipids during phagocytosis (Gerbod-

 Giannone et al., 2006). Together, these studies indicate that 

ABCA1, although not directly involved in the phagocytosis of 

apoptotic cells, may help to recover after phagocytosis.

The failure to obtain ABCA7 −/− mice indicates a role of 

ABCA7 during embryonic development. It is plausible that a de-

fect in the phagocytosis of apoptotic cells could lead to embryonic 

lethality, and several knockout mice for other proteins involved in 

the phagocytosis of apoptotic cells are lethal, notably the LRP1 

and calreticulin knockout mice (Herz et al., 1992; Rauch et al., 

2000). In contrast to our fi ndings, a recent report by Kim et al. 

(2005) found a Mendelian genotype distribution in a different line 

of ABCA7 −/− mice. One difference in the targeting strategies is 

that our mice have a β-gal gene inserted into the locus so that pro-

duction of any functional protein is unlikely, whereas Kim et al. 

(2005) used a replacement vector that could perhaps lead to the 

formation of small amounts of active protein products. The target-

ing vector in our mice is multicistronic with an internal ribosome 

entry site upstream of the LacZ sequence and, thus, a fusion pro-

tein of ABCA7 and Lac Z is unlikely to be formed. However, we 

cannot rule out completely the production of a dominant-negative 

ABCA7 peptide upstream of the LacZ-Neo-Cassette, which would 

not be detectable by our antibody. However, the proportionate 

 reduction in the PI resulting from gene targeting and knock down 

by multiple siRNAs makes this unlikely.

ABCA7 was shown to be important for ERK phosphory-

lation (Fig. 7), which in turn is required for effi cient phagocyto-

sis of apoptotic cells but not for FcR-mediated phagocytosis 

(Fig. 8 a). Osada et al. (2006) showed a role for both ERK and 

p38 MAPK signaling in the phagocytosis of apoptotic cells by 

Sertoli cells but no effect on the phagocytosis of latex beads. 

For FcR-mediated phagocytosis, ERK activation has been shown 

to be required in human neutrophils (Mansfi eld et al., 2000) but 

not in macrophages (Karimi and Lennartz, 1998). This suggests 

involvement of different MAPK signaling pathways depending 

on cell type and phagocytic mechanism. The requirement of 

ERK activation for phagocytosis may be related to the involve-

ment of ERK in the control of actin reorganization (Kutsuna 

et al., 2004), the regulation of focal adhesion disassembly 

(Orr et al., 2002), or cell spreading and migration (Ogura and 

Kitamura, 1998; Stahle et al., 2003).

The reduced ERK phosphorylation upon stimulation with 

C1q indicates defective signaling through LRP1. ERK phos-

phorylation after activation of LRP1 has been shown using 

thrombospondin binding to calreticulin and after stimulation of 

LRP1 with connective tissue growth factor (Orr et al., 2003, 

2004; Yang et al., 2004). As C1q also binds to calreticulin, the 

signaling pathway may be similar to the one reported for throm-

bospondin, calreticulin, and LRP1.

Stimulation of macrophages with apoptotic cells increases 

ABCA7 and LRP1 levels in the cell surface of ABCA7 +/+ 

macrophages, and this response is markedly reduced in ABCA7 

+/− cells (Fig. 6 a). Similarly, stimulation of LRP1 with C1q 

results in an enrichment of ABCA7 and LRP1 in the cell surface 

(Fig. 6 b), and this increase is almost abolished in ABCA7 +/− 

macrophages. ABCA7 may be involved in the traffi cking of 

ABCA7 and LRP1, and this may depend at least in part on ERK 

phosphorylation as indicated by the abolished increase of 

ABCA7 and LRP1 in the cell surface after inhibition of ERK 

phosphorylation (Fig. 8 b). The increase of ABCA7 and LRP1 

in ABCA7 +/+ macrophages and its failure in ABCA7 +/− 

Figure 8. Inhibition of ERK phosphorylation reduces phagocytosis of 
apoptotic cells and prevents the increase of cell surface expression of 
ABCA7 and LRP1 after stimulation with apoptotic cells. (a) J774 macro-
phages in a 24-well plate were preincubated with DMSO, 20 μM PD 
98059, or 10 μM U 0126 for 20 min, washed, and incubated for 90 min 
with 106 apoptotic Jurkat T cells, C1q-coated apoptotic Jurkat T cells, or 
 viable Jurkat T cells coated with human anti-CD3 antibody. Cells were then 
washed, fi xed, and stained followed by analysis of PI. In the absence of in-
hibitors, uptake of C1q-coated apoptotic cells increased 20% compared 
with apoptotic T cells (n = 3; #, P = 0.048). Inhibition of ERK phosphory-
lation inhibited uptake of apoptotic cells and C1q-coated apoptotic cells 
by 75 and 80%, respectively (n = 3; *, P < 0.01; **, P < 0.001), 
whereas both inhibitors had no signifi cant effect on FcR-mediated phago-
cytosis (PD 98059, P = 0.15; U 0126, P = 0.54). (b) Cell surface levels 
of ABCA7 and LRP1 in phagocytes after inhibition of ERK phosphorylation. 
Apoptotic Jurkat T cells were added to monolayers of wild-type macro-
phages, which were preincubated with DMSO or U 0126 (20 μM) for 
20 min. At the indicated time points, apoptotic cells were removed and 
macrophages were washed and biotinylated on ice, and biotinylated 
 proteins were recovered with streptavidin beads and processed for immuno-
blotting. Recovery of biotinylated proteins was monitored by Ponceau 
staining of membranes or by Western blotting for integrin β1. A represen-
tative of three experiments is shown.
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cells raises the possibility of a positive-feedback loop. That is, 

ABCA7 enables maximal LRP1-dependent ERK phosphoryla-

tion, which in turn leads to increased expression of ABCA7 and 

LRP1 at the cell surface, further increasing LRP1 signaling. 

This model indicating that ABCA7 is required for optimal func-

tion of LRP1 may also explain why ABCA7, analogous to LRP1 

(Ogden et al., 2001), is only required for the phagocytosis of 

apoptotic cells but not for FcR-mediated phagocytosis.

On a more fundamental level, the putative role of ABCA7 

in signaling events during the phagocytosis of apoptotic cells 

may be related to an underlying lipid translocase activity. Based 

on our previous fi nding that ABCA7 can promote effl ux of 

phosphatidylcholine and sphingomyelin from cells to apoA-I 

(Wang et al., 2003), we hypothesize that ABCA7 could be in-

volved in the translocation of phospholipids from the inner to 

the outer leafl et of the plasma membrane, as it has been shown 

for ABCB4 or MDR2 (multidrug resistance 2; Ruetz and Gros, 

1994). Such a “fl oppase” activity could lead to the formation of 

specialized membrane microdomains, which may be important 

for the clustering of receptors and signaling molecules such as 

LRP1 in the phagocytic cup.

In summary, the data herein show that ABCA7 but not 

-A1 is required for effi cient phagocytosis of apoptotic cells. The 

functional properties of ABCA7, together with the sequence 

similarity to CED-7, suggest that ABCA7 may be a mammalian 

orthologue of CED-7. Mechanistically, ABCA7 is important for 

maximal and sustained ERK phosphorylation, which in turn is 

shown to be essential for the phagocytosis of apoptotic cells. 

At least in part this is explained by the role of ABCA7 in  optimal 

ligand-induced signaling through LRP1 (Fig. 7). These fi ndings 

shed new light on the fundamental issue of the phagocytosis of 

apoptotic cells in mammals.

Materials and methods
Reagents and antibodies
1 mg/ml of purifi ed human C1q was obtained from Quidel Corp. The 
 antibody against ABCA7 has been described previously (Wang et al., 
2003). Antibody against ABCA1 was from Novus. The antibody against 
LRP1 for immunoblotting was provided by J. Herz (University of Texas South-
western Medical Center, Dallas, TX). The anti–integrin β1 subunit antibody 
was provided by E.E. Marcantonio (Columbia University, New York, NY). For 
fl uorescence microscopy of LRP1, monoclonal antibodies 5A6 and/or 8B8 
(Molecular Innovations) were used. Rat anti–mouse monoclonal antibody 
(clone 1D4B) against LAMP1 was obtained from BD Biosciences. Antibody 
against phospho-ERK1/2 and total ERK were obtained from Cell Signaling.

Animals
For the siRNA experiments, C57/B6 mice from The Jackson Laboratory or 
Taconic were used. ABCA1 heterozygous mating pairs were obtained 
from The Jackson Laboratory. ABCA7-null/LacZ knockin heterozygous mice 
were provided by G. Gao (Lilly Research Laboratories, Indianapolis, IN). 
Originally, these mice were generated by Deltagen, Inc. For in vivo experi-
ments, mice were in C57/B6 background (total number of backcrosses, 
n = 10). ABCA7 +/− mice were obtained by breeding ABCA7 +/+ 
 females with ABCA7 +/− males. The genotype distribution in the off-
spring was as expected with �50% ABCA7 +/+ and 50% ABCA7 +/−. 
Animal protocols were approved by the Institutional Animal Care and Use 
Committee of Columbia University and the National Jewish Medical and 
Research Center, respectively.

Cell culture and RNAi
Thioglycollate-elicited mouse peritoneal macrophages were plated in 
24-well plates and maintained in DME with 10% (vol/vol) heat-inactivated 

FBS, penicillin, and streptomycin under a humifi ed atmosphere of 90% air 
and 10% CO2. Control siRNA1 was designed by scrambling the sequence 
of a siRNA targeting mouse ABCA7 (control siRNA1, 5′-A A A A C T C C G A C-
T A C C G A A A C T -3′), and control siRNA2 was obtained from QIAGEN (con-
trol siRNA2, 5′-A A T T C T C C G A A C G T G T C A C G T -3′). Three siRNA targeting 
mouse ABCA7 (mABCA7) were used (mABCA7 siRNA1, C A G G G A C T T G-
A C C A A G G T T T A ; mABCA7 siRNA2, 5′-G C C T T C C T A G C T A T G C A G A C T -3′; 
mABCA7 siRNA3, 5′-A A G G C C G T G G T G C G T G A G A A A -3′) and two 
siRNA targeting mouse ABCA1 (mABCA1) were used (mABCA1 siRNA1, 
5′-T C G G T T G A C A T C A T T A A A T A T -3′; mABCA1 siRNA2, 5′-C T G G A T G T A T A-
A T G A G C A G T A -3′). Transfection with siRNA diluted in Opti-MEM I at a 
concentration of 180 nmol was performed using Oligofectamine  (Invitrogen). 
1 d after transfection, medium was changed. If RNAi was done for ABCA1, 
cells were grown in the presence of 2 μM TO901317 (Sigma-Aldrich) for 
the last 48 h.

Isolation of human neutrophils and induction of apoptosis
Healthy adult human subjects donated 400 ml of whole blood under a pro-
tocol approved by the National Jewish Medical and Research Center’s insti-
tutional review board. Neutrophils were separated as described previously 
(Haslett et al., 1985). Before phagocytosis, the cells were irradiated at 
312 nm (Fotodyne, Inc.) for 10 min and then cultured in RPMI with 1% BSA at 
5 × 106 cells per ml at 37°C plus 5% CO2 for 2–3 h to induce apoptosis.

Immunoblot analysis
Immunoblot analysis was performed as described previously (Linsel-Nitschke 
et al., 2005). Relative intensities of bands were determined by densitometry.

In vitro phagocytosis and ruffl ing experiments
For RNAi experiments, macrophages were plated at 0.5 × 106 cells per 
well, and for all other experiments, cells were plated at 0.1–0.2 × 106 per 
well (24-well plates). Phagocytosis experiments were done 2 d after RNAi 
or 2 d after harvesting of cells (if no RNAi was performed). If not otherwise 
indicated, phagocytosis assays were performed with human neutrophils. 
For some experiments, Jurkat T cells were used. For experiments with C1q-
coated apoptotic cells, Jurkat T cells were incubated with 10 μg/ml C1q 
followed by spin down and uptake of cells in new medium. Uptake condi-
tions and assessment were almost identical as previously described (Fadok 
et al., 1998). In brief, apoptotic cells were taken up in DME with 10% FBS 
and 106 cells were added to macrophages in 24-well plates. After 90 min, 
cells were washed twice in PBS before they were fi xed and stained with 
modifi ed Wright’s Giemsa. Using 40× light microscopy, macrophages 
were examined for uptake of apoptotic cells by counting triplicate or qua-
druplicate wells (200 macrophages/well) in a blinded fashion. The PI was 
calculated as the number of cells ingested per the total number of macro-
phages × 100. For measurement of uptake of apoptotic Jurkat T cells into 
LAMP1-positive phagolysosomes, Jurkat T cells were prelabeled with Cell-
Tracker red (Invitrogen) according to the manufacturer’s instructions before 
induction of apoptosis by UV radiation, and apoptotic cells were incu-
bated with macrophages for 45 min before samples were stained as indi-
cated in the following section. For FcR-mediated phagocytosis, neutrophils 
were incubated with mouse anti–human CD18 monoclonal antibody 
 (Immunotech), 10 μl per 106 cells (0.2 μg/μl), for 2–3 h. If Jurkat T cells 
were used they were coated with mouse anti–human CD3 (BD Biosciences). 
Phagocytosis assays with IgG-coated 4-μm Aldehyde/Sulfate latex beads 
(Invitrogen) were performed as previously reported (Booth et al., 2002). 
J774 macrophages were used for the experiments using PD 98059 (pre-
incubation for 20 min, 20 μM) and U 0126 (preincubation for 20 min, 
10 μM). For ruffl ing experiments, macrophages were incubates for 4–5 h 
in serum-free DME medium before stimulation with 0.05 μg/ml macro-
phage infl ammatory protein 1 α (PeproTech) for 5 min. Quantifi cation of 
ruffl ing was performed as described previously (Cox et al., 1997).

Immunofl uorescent microscopy
For immunofl uorescent microscopy, glass-bottomed cover dishes were 
used. Experiments were performed as for phagocytosis assays. After wash-
ing with PBS, cells were fi xed with 3.2% paraformaldehyde, permeabi-
lized with 0.1% Triton X-100, blocked with 10% goat serum in PBS, and 
incubated with peptide affi nity-purifi ed rabbit anti-ABCA7 antibody and/or 
mouse monoclonal anti-LRP1 antibodies at a dilution of 1:100 for 1 h at 
room temperature or at 4°C overnight. As a secondary antibody, goat 
anti–rabbit Cy3 (Jackson ImmunoResearch Laboratories) and/or goat anti–
mouse Alexa 488 (Invitrogen) were used. The experiments using latex 
beads were performed with J744 macrophages. Beads were added for 
20 min at 37°C. Confocal pictures were taken at room temperature with 
imaging medium PBS using a multiphoton, upright confocal microscope 
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(LSM 510 NLO; Carl Zeiss MicroImaging, Inc.) with a 63×/0.9 water lens 
(primary acquisition software obtained from Carl Zeiss MicroImaging, Inc.). 
For fl uorescent microscopy, Axiovert 200 (Carl Zeiss MicroImaging, Inc.) 
with a Plan-Neofl uar 63×/1.25 lens was used attached to a camera (Orca 
ER; Hamamatsu). Brightness was adjusted with Photoshop 6.0 (Adobe).

In vivo phagocytosis assay
In vivo phagocytosis assays were performed exactly as described by 
Morimoto et al. (2006). For LPS administration, Escherichia coli 0111:
B4 LPS (List Biological Laboratories) was suspended in PBS at a concentra-
tion of 2.5 mg/ml. 200 mcg of LPS was instilled intratracheally. 72 h later, 
bronchoalveolar lavage was performed.

Surface biotinylation and ERK phosphorylation assay
Thioglycollate-elicited mouse peritoneal macrophages were plated in 
12-well plates at 1.5 × 106 cells/well. The medium was changed the next 
day. After 2 d, cells were incubated with apoptotic Jurkat T cells for the 
 indicated time points followed by three washes with ice cold PBS. For ERK 
phosphorylation assays with clinical grade, 100 μg/ml of aggregated IgG 
macrophages were cultured for the last 18 h in the presence of 100 U/ml 
γ interferon followed by incubation for 3–4 h in serum-free DME. For C1q 
experiments, macrophages were incubated for 3–4 h in  serum-free DME be-
fore stimulation. Biotinylation was performed with 0.5 mg/ml Sulfo-NHS-SS-
Biotin (Pierce Chemical Co.) for 30 min on ice. Cells were lysed on ice, and 
the lysis buffer was supplemented with Tyr and Ser/Thr phosphatase inhibitor 
cocktail (Upstate Biotechnology). 100–200 μg of cell lysates were used for 
pull down with 25 μl of streptavidin beads (Pierce Chemical Co.) followed 
by two washes in lysis buffer. 25 μg of protein was used for immuno blotting 
according to the protocol provided with the ERK1/2 antibody.

Data analysis
Data are expressed as means and SD if not otherwise stated. Signifi cance 
of differences was always calculated with a two-sided unpaired t test. For 
box blots, StatView was used. For pairwise alignments, the program NEEDLE 
with scoring matrix EBLSOUM40 was used, and for multiple alignments, 
the ClustalW program was used.

Online supplemental material
Fig. S1 depicts the alignment of CED-7, mouse ABCA7, and ABCA1 
amino acid sequences. Fig. S2 shows localization of ABCA7 in phagocytic 
cups/phagosomes during FcR-mediated phagocytosis. Fig. S3 shows a 
representative immunoblot for ABCA1 and β-actin after knock down of 
ABCA1 in peritoneal macrophages. Fig. S4 shows membrane ruffl ing with 
quantifi cation of ABCA7 +/+ and +/− macrophages after stimulation. 
Fig. S5 shows immunoblot and quantifi cation of ERK phosphorylation after 
stimulation of ABCA7 +/+ and +/− macrophages with aggregated 
IgG. Online supplemental material is available at http://www.jcb.
org/cgi/content/full/jcb.200601030/DC1.
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