
T
H

E
J

O
U

R
N

A
L

O
F

C
E

L
L

B
IO

L
O

G
Y

JCB: ARTICLE

© The Rockefeller University Press  $8.00
The Journal of Cell Biology, Vol. 174, No. 5, August 28, 2006 701–713
http://www.jcb.org/cgi/doi/10.1083/jcb.200605006

JCB 701

Introduction
Dynamic control of the actin cytoskeleton is essential for cell 

polarization, migration, and division (Evangelista et al., 2003; 

Pollard and Borisy, 2003). Proper actin remodeling involves the 

activation of different eukaryotic nucleation factors that can 

generate specifi c types of new actin fi laments. The actin-related 

protein 2/3 (Arp2/3) complex nucleates new actin fi laments 

while remaining anchored to the sides of existing fi laments, 

 creating branched actin networks (Higgs and Pollard, 2001). 

 Formin proteins nucleate unbranched fi laments, creating actin 

cables, contractile rings, and stress fi bers (Evangelista et al., 

2002; Sagot et al., 2002; Sharpless and Harris, 2002; Zigmond, 

2004). Although the Arp2/3 complex is known to play impor-

tant roles in processes such as cell polarization, motility, and 

vesicle traffi cking, much less is know about the biological func-

tions of formins, especially in higher eukaryotes. Similarly, al-

though molecular regulation of the Arp2/3 complex by upstream 

signals is understood in some detail (Higgs and Pollard, 2001), 

much less is known about the regulation and function of the 

much larger formin family.

The formins are defi ned by a conserved C-terminal formin 

homology (FH) 2 domain that mediates effects on actin (Wallar 

and Alberts, 2003; Watanabe and Higashida, 2004; Zigmond, 

2004; Higgs, 2005; Higgs and Peterson, 2005). The FH2 do-

main functions as a dimer and has varying effects in different 

formins, including actin fi lament nucleation, fi lament severing, 

and barbed-end binding with elongation (anticapping effect) or 

without elongation (capping effect; Evangelista et al., 2002; 

Kovar et al., 2003; Li and Higgs, 2003; Pring et al., 2003; Harris 

et al., 2004; Romero et al., 2004; Xu et al., 2004).

The function of the conserved N-terminal region found in 

most formins is still unclear. In vitro and in vivo studies with 

mouse diaphanous 1 (mDia1) have demonstrated a role for its 

N terminus in mediating the autoinhibition of FH2 activity (see 

the following paragraph; Watanabe et al., 1999; Alberts, 2001; 

Ishizaki et al., 2001; Li and Higgs, 2003, 2005). Other studies 

with the fungal formins Bni1p, Fus1, and SepA have implicated 

their N termini in regulating localization in vivo (Petersen et al., 

1998; Ozaki-Kuroda et al., 2001; Sharpless and Harris, 2002). 

For both Bni1p and Fus1, perturbation of cellular localization 

disrupts biological activity (Petersen et al., 1998; Ozaki-Kuroda 

et al., 2001). It is unclear whether the effects of the N terminus 
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on FH2 activity and cellular localization are linked or whether 

the N terminus simply serves different roles in different formins. 

Elucidating the general regulation of formin localization and 

activity in higher eukaryotes is important for understanding the 

biological activities of these molecules.

In the diaphanous-related formin (DRF) subfamily of 

formins, a short (�20 residue) conserved region called the 

 diaphanous autoregulatory domain (DAD) follows the FH2 

 domain in sequence (Alberts, 2001; Higgs and Peterson, 2005). 

In mDia1, the DAD binds to the N terminus to inhibit the actin 

assembly activity of the FH2 domain through an unknown 

mechanism (Alberts, 2001; Li and Higgs, 2003). The DAD-

binding element in the N terminus is called the diaphanous 

 inhibitory domain (DID; Li and Higgs, 2005). Rho binds to the 

mDia1  N terminus through a region that spans a portion of the 

DID and an adjacent sequence element termed the G region (for 

GTPase binding; Otomo et al., 2005; Rose et al., 2005). Rho 

binding destabilizes interactions between the N and C termini, 

leading to partial activation of the mDia1 FH2 domain  (Watanabe 

et al., 1999; Li and Higgs, 2003). The mDia1 N terminus forms 

a dimer through its dimerization domain (DD) and coiled coil 

(CC) region (Otomo et al., 2005; Rose et al., 2005). Based on 

sequence similarity, the G-DID-DD-CC architecture of the 

mDia1 N terminus is likely to hold for other DRF family members 

(Higgs, 2005). The formin FHOD1 is also likely to be auto-

inhibited based on cytoskeletal effects of mutant proteins stud-

ied in vivo (Koka et al., 2003). However, the generality of FH2 

domain autoinhibition through a DAD–DID interaction and 

 activation by Rho GTPases has yet to be established directly for 

DRFs other than mDia1.

FRLα (formin-related gene in leukocytes α) is a 

 macrophage-enriched DRF whose FH2 domain can nucleate 

new actin fi laments and sever existing fi laments in vitro 

(Yayoshi-Yamamoto et al., 2000; Harris et al., 2004). FRLα has 

been reported to bind to Rac and modulate cell adhesion, migra-

tion, and survival, but its molecular function in macrophages 

has not been explored in detail (Yayoshi-Yamamoto et al., 

2000). Because of its unique expression profi le, we hypothe-

sized that understanding FRLα may reveal new aspects of for-

min biology in higher eukaryotes as well as elucidate general 

principles governing the biological and biochemical regulation 

of formin proteins.

We fi nd that the FRLα N terminus binds to the C terminus 

in a DAD-dependent manner and inhibits the actin assembly 

 activity of the FH2 domain. For both FRLα and mDia1, autoin-

hibition also regulates a previously unrecognized plasma mem-

brane localization activity of the N-terminal domains. This 

activity has both GTPase-dependent and -independent compo-

nents. For FRLα, active Cdc42 relieves the autoinhibition of 

FH2 activity in vitro and membrane localization activity in 

macrophages. Knockdown experiments reveal that FRLα is re-

quired for effi cient Fc-γ receptor–mediated phagocytosis, which 

is consistent with its role as a macrophage-enriched Cdc42 

 effector. Live cell imaging shows that FRLα is transiently re-

cruited to the phagocytic cup in a Cdc42-dependent manner. 

These studies reveal a general mechanism of DRF regulation 

in which autoinhibition controls actin assembly activity and 

 cellular localization. In addition, we identify a new biological 

function for DRFs in the immune system of higher eukaryotes.

Results
Autoinhibition regulates the actin 
assembly activity and intracellular 
localization of FRL𝛂
Most previous in vivo studies of DRF N-terminus function have 

used fragments based on GTPase-binding domain (GBD)–FH3 

sequence elements (Yayoshi-Yamamoto et al., 2000; Kato 

et al., 2001). However, recent structural studies of the mDia1 

N terminus have demonstrated that these sequence elements 

do not demarcate structural elements of the protein. Therefore, 

the results from previous studies using constructs representing 

divided structural domains are diffi cult to interpret (Yayoshi-

Yamamoto et al., 2000; Kato et al., 2001). In this study, we have 

used predicted structural domains of FRLα based on sequence 

alignments with mDia1 to examine the function of its N- and 

C-terminal domains (Otomo et al., 2005). Our N-terminal con-

struct (residues 1–450) contains the regions of FRLα that align 

with the G, DID, and DD elements of mDia1 (FRLα appears to 

lack a CC region), whereas our C-terminal construct (residues 

612–1,094) contains the FH2 and DAD domains (Fig. 1 A). 

Pull-down assays show that the immobilized GST-tagged N 

terminus can interact directly with the untagged C terminus 

(Fig. 1 B). Binding is also observed when immobilized  maltose-

binding protein (MBP)–tagged C terminus is used to pull down 

GST-tagged N terminus (Fig. 1 C). The DAD motif is required 

for binding because a C-terminal construct mutated at a con-

served leucine residue within the DAD motif (L1062D) can-

not interact with the N-terminal fragment (Fig. 1, B and C). 

Mutation of the same residue in mDia1 (unpublished data) or 

mDia2 (Alberts, 2001) also prevents interactions between N- and 

C-terminal fragments.

As previously described, the FH2 domain of FRLα can 

stimulate actin fi lament assembly, although it is �50-fold less 

potent than the FH2 domain of mDia1 (Fig. 1 D; Li and Higgs, 

2003; Harris et al., 2004). The N terminus inhibits the activity 

of the C terminus in a dose-dependent manner with an IC50 of 

�100 nM (Fig. 1 E) but has no effect on the L1062D DAD mu-

tant or FH2-independent actin assembly (Fig. 1, D and F). Thus, 

the biochemical activity of the FRLα FH2 domain is regulated 

by high affi nity DAD-mediated autoinhibitory interactions with 

the N terminus.

We transfected RAW 264.7 cells, a mouse macrophage 

cell line, with GFP-tagged FRLα. Full-length FRLα is cyto-

plasmic and is excluded from the nucleus, as shown by confocal 

images of cells coexpressing FRLα-GFP and monomeric RFP 

(mRFP), a uniformly distributed fl uorescent control (Fig. 2 A). 

In contrast, the N-terminal fragment of FRLα is located pri-

marily at the plasma membrane, suggesting that in the full-length 

protein, the cellular localization of the N terminus may be con-

trolled by binding to the C terminus (Fig. 2 B). To test this hy-

pothesis, we determined the cellular localization of FRLα-GFP 

proteins with mutations that would impair the N + C  interaction. 

Introduction of the L1062D DAD mutation results in plasma 
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membrane localization of full-length FRLα (Fig. 2 C). In 

mDia1, an L260E mutation in the N-terminal DID region blocks 

DAD binding without affecting Rho interactions (Otomo et al., 

2005). The analogous mutation in full-length FRLα (V281E) 

causes the protein to localize at the plasma membrane (Fig. 2 D). 

Quantitation of the ratio of GFP fl uorescence intensity at the 

plasma membrane to the intensity in the cytosol shows that all 

membrane-localized FRLα constructs exhibit 2–4.5-fold en-

richment at the plasma membrane, whereas cytosolic FRLα 

constructs have a ratio near 1 (Fig. 2 F). The degree of enrich-

ment is largely independent of the overall expression level for 

all constructs shown here (Fig. 2 F).

To test whether interactions between the N terminus and 

DAD are suffi cient to mediate the control of FRLα cellular 

 localization, we constructed a truncated FRLα protein called 

mini-FRLα, which lacks the FH2 domain. Mini-FRLα contains 

the G, DID, and DD regions tethered by a (Gly-Gly-Ser)2 linker 

to the DAD-containing C-terminal 101 residues (Fig. 1 A). 

When purifi ed from overexpressing bacteria, this protein is 

 dimeric as assessed by multiwavelength static light scattering 

(measured mol wt = 148.2 ± 0.2 kD compared with 71.9 kD 

for the monomer; unpublished data), which is the expected 

 molecular organization of full-length FRLα. When expressed 

in macrophages, mini-FRLα–GFP is located in the cytoplasm 

of transfected cells (Fig. 2, E and F).

In the crystal structure of the DAD–DID complex from 

mDia1, the DAD forms an amphipathic helix with its hydro-

phobic face contacting the DID. Mutation of conserved residues 

on the hydrophobic face signifi cantly decreases DAD–DID 

 affi nity, and the mutation of hydrophilic residues on the solvent 

exposed face has little effect on this interaction (Lammers et al., 

2005; Otomo et al., 2005; Rose et al., 2005). With mini-FRLα, 

the mutation of any one of the conserved hydrophobic residues 

I1058, I1059, or L1062 on the hydrophobic face of the analo-

gous predicted helix results in plasma membrane localization 

of the protein (Fig. 2, G and H). In contrast, the mutation of 

 residues G1053 or E1056 on the hydrophilic face has no ef-

fect on localization (Fig. 2, G and H). Furthermore, the FRLα 

Figure 1. The N terminus of FRL𝛂 negatively 
regulates actin assembly activity of the 
 C-terminal FH2 domain. (A) Schematic dia-
grams of FRLα and mDia1 constructs used in 
this study. (B) Interaction between the N and 
C termini of FRLα. 3 μM GST-tagged  N-terminal 
proteins were immobilized on glutathione–
Sepharose beads and used to pull down 3 μM 
C-terminal constructs. Purifi ed proteins are 
shown in lanes 2, 3, 6, and 9. Unbound pro-
teins in the fl ow through (FT) and proteins re-
maining on the beads after fi ve washes (B) are 
shown for each experiment. GST–N terminus 
was used to pull down wild-type C terminus 
(lanes 4 and 5) or C terminus L1062D contain-
ing a point mutation in the DAD domain (lanes 
7 and 8). GST–N terminus T126D (Cdc42-
binding mutant) was used to pull down wild-
type C terminus (lanes 10 and 11). For each 
experiment, the volumes loaded on the SDS-
PAGE gel were adjusted to equalize protein 
concentrations in the fl ow through and bead 
lanes. Gels are stained with Coomassie blue. 
(C) Similar to B except that the MBP-tagged 
wild-type C terminus (lane 2) or mutant C termi-
nus (lane 6) was immobilized on amylose resin 
and used to pull down GST–N terminus (lane 3). 
Flow through and bead samples from the wild-
type C-terminal pull down (lanes 4 and 5) or 
the mutant C-terminal pull down (lanes 7 and 8) 
are shown. (D) Dose-dependent inhibition of 
the actin assembly activity of 200 nM FRLα C 
terminus in the presence of the N terminus 
monitored by the increase in fl uorescence of 
4 μM pyrene-actin (5% labeled) upon incorpo-
ration into fi laments. (E) Maximum actin as-
sembly rate versus the concentration of N 
terminus. (F) Effect of the L1062D DAD motif 
mutation on the ability of 400 nM N terminus 
to inhibit 4 μM actin assembly (5% pyrene la-
beled) by 400 nM wild-type or mutant C termi-
nus. Note that mutant C terminus alone or 
mutant C terminus + N terminus curves over-
lap signifi cantly.
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N  terminus is cytoplasmic in cells coexpressing the DAD-

 containing C-terminal 100 residues of the protein but is mem-

brane  localized in cells coexpressing an L1062D mutant C 

terminus (Fig. S1, available at http://www.jcb.org/ cgi/content/

full/jcb.200605006/DC1). These results suggest that binding of 

the hydrophobic face of the amphipathic DAD helix is neces-

sary and suffi cient to block membrane localization mediated by 

the FRLα N terminus. Our combined in vitro and in vivo data 

show that the interactions between the N and C termini are mu-

tually autoinhibitory, with the N terminus blocking the actin as-

sembly activity of the FH2 domain and the C terminus blocking 

the plasma membrane localization activity of the N terminus.

Cdc42 relieves FRL𝛂 autoinhibition in vitro 
and in vivo
We next sought to determine whether Rho GTPases could re-

lieve the autoinhibition of FRLα. Previously reported pull-down 

assays indicated that an N-terminal fragment of FRLα can 

 specifi cally associate with Rac1 in a nucleotide-independent 

manner (Yayoshi-Yamamoto et al., 2000). However, we could 

not detect an interaction between recombinant Cdc42 or Rac1 

loaded with a GTP analogue, β,γ-imidoguanosine 5′-triphos-

phate (GMPPNP), and GST-tagged FRLα N terminus using 

similar assays (unpublished data). Unexpectedly, high concen-

trations of Cdc42-GMPPNP can relieve N-terminal inhibition 

of the FRLα FH2 domain (Fig. 3 A). The Cdc42 effect is dose 

dependent and saturates at �400 μM GTPase, a concentration 

that slightly decreases the activity of the isolated C terminus 

(Fig. 3, A and D). Under these conditions, although Cdc42-

GMPPNP exhibits low potency, it essentially fully relieves inhi-

bition by the N terminus. Cdc42-GDP is a much weaker activator 

compared with Cdc42-GMPPNP (Fig. 3, B and D). Rac1-

GMPPNP is unable to relieve the autoinhibition of FRLα actin 

assembly activity (Fig. 3 C) even at concentrations (�400 μM) 

at which Cdc42-GMPPNP is maximally effective (Fig. 3 C). 

A V161D mutation in the mDia1 DID decreases Rho binding 

without affecting DAD binding (Otomo et al., 2005). The analo-

gous T126D mutation in the FRLα N terminus does not affect 

Figure 2. Autoinhibition regulates FRL𝛂 
 localization. Confocal images of RAW cells co-
expressing GFP fusion proteins and mRFP. The 
mRFP serves as an evenly distributed control 
fl uorophore. For these and all subsequent con-
focal images, the intensities for each channel 
have been normalized against the maximum 
value in the cell depicted in each image. As il-
lustrated in F, the degree of membrane local-
ization is not dependent on the total expression 
level of FRLα proteins. GFP fusion proteins are 
as follows: (A) full-length FRLα-GFP; (B) FRLα N 
terminus–GFP; (C) full-length FRLα-GFP contain-
ing an L1062D mutation in the DAD; (D) full-
length FRLα-GFP containing a V281E mutation 
in the DID; and (E) mini-FRLα–GFP consisting of 
the N terminus of FRLα fused directly to the 
DAD domain with an artifi cial (Gly-Gly-Ser)2 
linker. (F) Membrane enrichment versus expres-
sion level for the indicated constructs. Each 
data point represents one transfected cell. As 
described in Materials and methods, for each 
cell expressing a given GFP fusion protein, 
 ratios were obtained for the GFP intensity at 
the plasma membrane against the GFP intensity 
in the cytosol. The ratios are plotted against 
the total GFP expression level in each cell 
 (expressed as the fl uorescence intensity per 
unit area). (G) Membrane enrichment versus 
expression level for the indicated constructs. 
Each data point represents one transfected 
cell. (H) Confocal images of cells coexpressing 
mRFP and the indicated mutant mini-FRLα–GFP 
fusion protein. The schematic protein diagram 
refers to the mini-FRLα construct depicted in 
Fig. 1 A and contains an asterisk signifying that 
the point mutations are all contained within the 
DAD region.
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binding to the C terminus (Fig. 1 B) or inhibition of FH2-

 mediated actin assembly (Fig. 3 E) but blocks the ability of 

Cdc42-GMPPNP to relieve inhibition (Fig. 3 E).

When cotransfected with constitutively active Cdc42, 

both FRLα-GFP and mini-FRLα–GFP localize at the plasma 

membrane (Fig. 4, A, B, and I). The localization of FRLα is 

nucleotide and GTPase specifi c, as the protein remains pri-

marily cytosolic in cells coexpressing dominant-negative Cdc42 

or constitutively active Rac1 or RhoA (Fig. 4, C–E and I). In 

all cases, expression of the different GTPase mutants was con-

fi rmed by immunostaining (Fig. S2, available at http://www.

jcb.org/cgi/content/full/jcb.200605006/DC1). Like our GFP fu-

sions of FRLα, endogenous FRLα is primarily cytosolic in the 

absence of Cdc42. In cells transfected with constitutively ac-

tive Cdc42, endogenous FRLα becomes enriched at the plasma 

membrane (Fig. S2).

Because Cdc42 is membrane anchored through prenyl-

ation of its C-terminal CAAX motif, we tested whether Cdc42 

was directly recruiting FRLα to the plasma membrane of RAW 

cells. The T126D mutant FRLα N terminus, which is unrespon-

sive to Cdc42 in actin assembly assays, is enriched at the plasma 

membrane but to a lesser degree than the analogous wild-type 

fragment (Fig. 4, F and I). As with our other FRLα constructs, 

the degree of enrichment does not vary systematically with 

varying expression levels (Fig. 4 I). Thus, Cdc42 binding likely 

contributes to but is not necessary for membrane enrichment of 

the FRLα N terminus. However, signaling through Cdc42 does 

appear to be required for this membrane localization activity 

because coexpression of the FRLα N terminus with the GBD of 

the Wiskott-Aldrich syndrome protein (WASP; a reagent that at 

high levels should sequester the active GTPase) causes the 

FRLα fragment to be cytoplasmic (Figs. 4 G and S1). This relo-

cation to the cytoplasm is not observed when the FRLα N ter-

minus is coexpressed with a mutant WASP-GBD that cannot 

bind Cdc42 (Figs. 4 H and S1). These results suggest that mem-

brane localization activity of the FRLα N terminus derives, in 

part, from direct binding to Cdc42 and also from an interaction 

with some other membrane-associated factor that lies down-

stream of Cdc42.

Although our data suggest a direct interaction between 

Cdc42 and the N terminus of FRLα, we have been unsuc-

cessful in demonstrating a direct interaction in pull-down or 

 fl uorescence-based binding assays using bacterially expressed 

recombinant proteins (unpublished data). However, when co-

transfected into mammalian 293T cells, constitutively active 

Cdc42 and the wild-type FRLα N terminus can be coimmuno-

precipitated (Fig. 4 J, lanes a–c). The N terminus does not 

coimmunoprecipitate with constitutively active Rac1 or RhoA 

(Fig. 4 J, lanes g–i and j–l, respectively), suggesting speci fi city 

for Cdc42 over these other two Rho family members. One 

caveat here is that despite signifi cant effort, the level of Rac 

expression was always lower than that of Cdc42 in these exper-

iments. However, along with the biochemistry and aforemen-

tioned localization data, these results do support a much greater 

role for Cdc42 than Rac in regulating FRLα. The T126D mutant 

N terminus does not coimmunoprecipitate with Cdc42, sug-

gesting that in vitro and in cells, the Cdc42 responsiveness of 

FRLα is mediated by the same set of interactions (Fig. 4 J, lanes 

Figure 3. Active Cdc42 relieves the auto-
inhibition of FRL𝛂 actin assembly activity. 
Actin assembly assays were performed with 
4 μM actin (5% pyrene-labeled). (A) Effect on 
the inhibition of actin assembly by 200 nM 
C terminus in the presence of 400 nM N ter-
minus by the addition of the indicated amount 
of Cdc42-GMPPNP. (B) Similar to A except us-
ing Cdc42-GDP. (C) Similar to A except using 
Rac1-GMPPNP. (D) Actin assembly rate versus 
the concentration of Cdc42 based on curves 
in A and B. (E) Actin assembly by 200 nM 
C terminus in the presence of 1 μM wild-type 
N terminus or 1 μM T126D N terminus with or 
without 200 μM Cdc42-GMPPNP.
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d–f). Furthermore, full-length FRLα and mini- FRLα do not co-

immunoprecipitate with Cdc42 even though they localize at the 

plasma membrane when coexpressed with constitutively active 

Cdc42 (Fig. 4 J, lanes m–o and p–r, respectively). These results 

suggest that Cdc42 has higher affi nity for the FRLα N terminus 

as compared with an autoinhibited FRLα molecule, which is 

consistent with the idea that Cdc42 must compete with the auto-

inhibitory interactions present in full-length or mini-FRLα.

Our in vitro and in vivo data suggest that FRLα is a direct 

effector of Cdc42 and that the interactions between FRLα and 

Cdc42 may be similar to those between mDia1 and Rho. Cdc42 

relieves the autoinhibition of FRLα actin assembly activity in 

vitro and relieves the autoinhibition of FRLα membrane local-

ization in macrophages. The affi nity of Cdc42 for FRLα  appears 

to be weak, suggesting that Cdc42 may have to cooperate with 

other factors to regulate FRLα in vivo.

Figure 4. Active Cdc42 relieves the autoinhibition of FRL𝛂 localization. (A and B) Confocal images of RAW cells coexpressing mRFP, constitutively 
active Cdc42, and full-length FRLα-GFP (A) or mini-FRLα–GFP (B). (C–E) Confocal images of RAW cells expressing mRFP, full-length FRLα-GFP, and domi-
nant- negative Cdc42 (C), constitutively active Rac1 (D), or constitutively active RhoA (E). (F) Confocal images of a cell expressing mRFP and the FRLα 
N terminus T126D-GFP mutant. (G and H) Confocal images of cells coexpressing N terminus–GFP and an mRFP fusion of WASP-GBD (G) or a mutant 
WASP-GBD (H) that does not bind Cdc42. For each transfection, 1 μg FRL construct was cotransfected with 4 μg GBD construct. (I) Membrane enrich-
ment versus expression level for the indicated constructs. Each data point represents one transfected cell. (J) Coimmunoprecipitation experiments using 
lysates from 293T cells coexpressing myc-tagged Rho GTPase mutants and different FRLα-GFP constructs. Lysates were immunoprecipitated using anti-GFP 
or control IgG antibodies and blotted with anti-GFP or anti-myc antibodies. For each experiment (lanes a–c, d–f, g–i, j–l, m–o, and p–r), the lysate (starting 
 material) is shown in the fi rst lane followed by the material bound to control IgG beads or anti-GFP beads in the next two lanes. MW, molecular weight; 
SM, starting material.
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Autoinhibitory control of mDia1 
intracellular localization
As in FRLα, a GFP fusion of the N terminus of mDia1(residues 

1–570) is localized at the plasma membrane (Fig. 5, A and F). 

Both full-length mDia1-GFP and mini-mDia1–GFP, analogous 

to our mini-FRLα construct, are cytoplasmic and are excluded 

from the nucleus of RAW cells (Fig. 5, B, C, and F). Thus, 

autoinhibition controls the localization of mDia1 in a manner 

analogous to FRLα. Also, like FRLα, the membrane localiza-

tion activity in the mDia1 N terminus has GTPase-dependent 

and -independent components. The V161D mutant N-terminal 

fragment of mDia1 (analogous to the aforementioned FRLα 

T126D mutant) is strongly defective in Rho binding (Otomo 

et al., 2005). This protein localizes to the plasma membrane in 

macrophages but to a lesser degree than the wild-type N termi-

nus (Fig. 5, D and F). Interestingly, the degree of membrane en-

richment of this protein decreases as expression level increases 

(Fig. 5, D and F), suggesting that the GTPase- independent 

membrane interaction is saturable. A nearly identical behavior 

is also observed for a fragment of the mDia1 N terminus lack-

ing the G region entirely (Fig. 5, E and F; mDia1_∆G_N-term), 

which also is severely impaired in Rho binding (Otomo et al., 

2005; Rose et al., 2005). Analogous fragments of FRLα are 

not expressed in bacteria (in contrast to mDia1_∆G_N-term, 

which expresses well; unpublished data), are expressed only 

weakly and inconsistently in macrophages, and were not ana-

lyzed in detail. Together, our data suggest that for both FRLα 

and mDia1, plasma membrane localization of the N terminus is 

mediated by GTPase-dependent and -independent interactions 

and that these are controlled by autoinhibitory contacts within 

the formins.

FRL𝛂 is required for Fc-𝛄 receptor–
mediated phagocytosis and is recruited 
to the phagocytic cup by Cdc42
We next sought to determine whether FRLα is involved in 

Fc-γ receptor–mediated phagocytosis. This process is Cdc42 

dependent and requires extensive actin rearrangement at the 

cell surface of macrophages (Caron and Hall, 1998). Using two 

different sets of siRNAs directed against FRLα, we achieved 

signifi cant knockdown of endogenous FRLα in RAW macro-

phages (Fig. 6 A). These reduced Fc-γ receptor–mediated 

phagocytosis of IgG-opsonized RBCs by 45 ± 4 and 29 ± 2%, 

respectively, compared with cells expressing control siRNAs 

Figure 5. Autoinhibition controls localization of the Rho-regulated DRF mDia1. (A–D) Confocal images of RAW cells coexpressing mRFP and mDia1 
N terminus–GFP (A), full-length mDia1-GFP (B), mini-mDia1–GFP (C), or mDia1 V161D N terminus–GFP (D). Three different cells are shown to illustrate the 
 different patterns observed for this construct. The GFP fusion is localized at the plasma membrane in the fi rst cell (top) and in the cytosol of the third cell 
 (bottom). The second cell (middle) has an intermediate distribution between membrane and cytosol. (E) mDia1 ∆G–N terminus–GFP. Three different cells 
are shown to illustrate the different localization patterns observed with this construct. (F) Membrane enrichment versus expression level for the indicated 
constructs. Each data point represents one transfected cell.
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(Fig. 6 B). Overall cell appearance, adhesion, and fi lamentous 

actin content judged by phalloidin staining are all normal in 

the siRNA-treated cells (Fig. S3 A, available at http://www.jcb.

org/cgi/content/full/jcb.200605006/DC1). Moreover, comple-

ment receptor-mediated phagocytosis, a process that proceeds 

through a Rho–mDia1 pathway (Colucci-Guyon et al., 2005), 

is also unaffected by siRNA treatment (Fig. S3 B). These re-

sults demonstrate that the knockdown of FRLα does not lead to 

generalized cytoskeletal defects in RAW cells and establish an 

important role for FRLα specifi cally in Fc-γ receptor– mediated 

phagocytosis.

We used time-lapse microscopy to analyze phagocytic 

events in live RAW macrophages incubated with IgG-opsonized 

RBCs at 37°C. Under our assay conditions, macrophages read-

ily phagocytose the RBCs with a time course of �90 s from 

cell–cell contact to complete RBC internalization as judged by 

light microscopy. For RBCs that encounter macrophages from 

the side, the extension of macrophage pseudopods around the 

RBC is readily observable in fl uorescently labeled cells. The 

pseudopods eventually meet at the top of the RBC and fuse to 

close the phagosome, which is then internalized into the main 

cell body.

Figure 6. Cdc42 recruits FRL𝛂 to the phagocytic cup during Fc-𝛄 receptor–mediated phagocytosis. (A) Western blot of lysates prepared from cells trans-
fected with siRNAs directed against FRLα or GFP (control) and probed with anti-FRLα or anti–glyceraldehyde-3-phosphate dehydrogenase (GAPDH; loading 
control) antibodies. (B) Phagocytic index (number of RBCs/100 macrophages) of siRNA-transfected RAW macrophages. Experiments were performed in 
duplicate and repeated three times. Data are the means based on counting at least 300 macrophages per experiment. (C) FRLα-GFP–expressing cell under-
going Fc-γ receptor–mediated phagocytosis. The zero time point is a reference for when the phagosome closes around the RBC being engulfed. The top 
panels are pseudocolored to represent the GFP/mRFP ratio at each pixel in the cell. Low ratios are represented by blue or cool colors, whereas higher ratios 
are represented by increasingly red or warmer colors. Bottom panels are the corresponding DIC images for each time point. The ingested RBCs are indi-
cated by arrows. The insets depict additional magnifi cation of the phagocytic cup. (D) Time course of formin accumulation during Fc-γ receptor–mediated 
phagocytosis. n indicates the number of phagocytic events analyzed for each construct. For each time point, the GFP/mRFP ratio at the cell surface in 
 contact with the RBC (Rp) was divided by the ratio in the cell cytoplasm (Rc). Error bars represent SEM.
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In cells coexpressing FRLα-GFP and mRFP, we used 

ratiometric imaging to determine specifi c sites of FRLα 

 accumulation. During phagocytosis, FRLα-GFP accumulates in 

the developing phagocytic cup and appears to concentrate at the 

tips of the extending pseudopods (Fig. 6 C and Videos 1–3, avail-

able at http://www.jcb.org/cgi/content/full/jcb.200605006/DC1). 

FRLα-GFP accumulation is maximal immediately before pseu-

dopod fusion, which we set as a reference time point to compare 

multiple phagocytic events, and rapidly dissipates as the RBC is 

internalized (Fig. 6, C and D). This spatial and temporal pattern 

is reproducibly observed in different transfected cells; additional 

phagocytic events are shown in Fig. S4. A control GFP construct 

fused to the C-terminal 101 residues of FRLα does not accu-

mulate at the phagocytic cup (Fig. 6 D). Consistent with previ-

ous fi ndings that Rho is not involved in Fc-γ  receptor– mediated 

phagocytosis (Caron and Hall, 1998), mDia1-GFP does not 

localize to the cup during this process (Fig. 6 D). The T126D 

mutant of FRLα shows a consistent modest increase in local-

ization at the cup relative to mDia1 and the FRL C terminus, 

but its enrichment does not change appreciably over the course 

of internalization (Fig. 6 D). This enrichment is likely caused 

by the ability of the T126D mutant N terminus to interact with 

membranes (Fig. 4, F and I), which accumulate at the cup as a 

result of its topology. Importantly, the wild-type protein shows 

much different behavior, with a greater degree of accumulation 

and substantial changes over the course of the process, suggest-

ing recruitment to the cup by an active mechanism.

Active Cdc42 has also been shown to accumulate tran-

siently at the extending pseudopod tips of the phagocytic cup 

(Hoppe and Swanson, 2004). We monitored the localization of 

active Cdc42 during phagocytosis using the WASP-GBD fused 

to GFP, a reagent with high (19 nM) affi nity for active Cdc42 

(Kim et al., 2000b; Cannon et al., 2001; Labno et al., 2003; Seth 

et al., 2003). We note that at high levels of expression, this re-

agent blocked phagocytosis (unpublished data), but, at lower 

levels, it had no effect on phagocytic effi ciency, and we could 

use it to visualize active Cdc42 during this process. As a con-

trol, we used a mutant GBD-GFP construct that is unable to 

bind Cdc42. We fi nd that Cdc42, like FRLα, is recruited tran-

siently to the phagocytic cup and that its accumulation peaks 

immediately before pseudopod fusion (Fig. 7, A and B; and 

Videos 4 and 5, available at http://www.jcb.org/cgi/content/full/

jcb.200605006/DC1). The similarities in timing and localiza-

tion of active Cdc42 and FRLα support the idea that FRLα 

function during phagocytosis is linked to Cdc42 signaling.

Discussion
Autoinhibition of DRF actin 
assembly activity
We have generated N-terminal fragments of FRLα based on 

 recent crystal structures of the mDia1 N terminus (Otomo et al., 

2005; Rose et al., 2005) to investigate the mechanisms of auto-

inhibition and activation in FRLα. Based on fragmented DID 

constructs, earlier work suggested that FRLα may bind Rac 

(Yayoshi-Yamamoto et al., 2000). However, using constructs 

containing intact structural domains that are biochemically well 

behaved, we now show that FRLα is a Cdc42-specifi c  effector. 

Figure 7. Recruitment of active Cdc42 to the phagocytic 
cup during Fc-𝛄 receptor–mediated phagocytosis. (A) GBD-
GFP–expressing cell undergoing Fc-γ receptor–mediated 
phagocytosis. Cells were transfected with plasmids encoding 
mRFP and the indicated GBD-GFP construct. 2.5 μg of each 
plasmid (5 μg of total DNA) was used for each transfection. 
As in Fig. 6 C, the GFP/mRFP ratio is pseudocolored in the 
top panel to refl ect the relative accumulation of GBD-GFP 
over mRFP. Localization of the GBD-GFP protein refl ects the 
distribution of Cdc42-GTP during phagocytosis. Arrows in 
the bottom panels of DIC images indicate the ingested RBCs. 
 Insets depict additional magnifi cations of the phagocytic cup. 
(B) Time course of active Cdc42 accumulation during Fc-γ 
receptor–mediated phagocytosis. Multiple phagocytic events 
were analyzed as in Fig. 6 B in cells expressing mRFP and 
GBD-GFP or the mutant GBD-GFP (as a negative control). 
 Error bars represent SEM.
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Several lines of evidence support this assertion. Cdc42 is able 

to relieve the autoinhibition of FH2-mediated actin assembly 

by the wild-type N terminus but not by the T126D mutant 

N  terminus. Mutation of the analogous residue in mDia1 pre-

vents direct Rho binding and Rho-mediated activation (Otomo 

et al., 2005). Furthermore, the wild-type FRLα N terminus co-

immunoprecipitates with active Cdc42 from cell lysates, but the 

point mutant does not. In addition, the timing and localization 

of Cdc42 and wild-type FRLα are largely coincident during 

phagocytosis, and the recruitment of FRLα to the phagocytic 

cup is blocked by the T126D mutation. Similar biochemical, 

coimmunoprecipitation, and localization assays fail to show a 

link between Rac1 activity and FRLα function. However, the 

interaction between Cdc42 and FRLα appears to be of low af-

fi nity, and the interaction between them may be modulated by 

cellular factors.

Autoinhibition of DRF localization: 
a membrane factor X?
The functional signifi cance of the N terminus of DRFs has 

been thought to be limited to mediating the autoinhibition of the 

C terminus (Evangelista et al., 2003; Wallar and Alberts, 2003; 

Higgs, 2005). We now show for the DRFs FRLα and mDia1 that 

interactions between the N and C termini mediate the mutual 

autoinhibition of DRF localization and biochemical  activity. 

The membrane localization activity of the DRF N termini de-

rives, in part, from interactions with Rho GTPases. However, 

our results suggest that the N termini can also bind an additional 

membrane-associated factor. This factor binds the N termini 

competitively with the DAD and, thus, should contribute to 

DRF activation. Depending on the structural details of the inter-

action, the factor may act cooperatively with GTPases to drive 

DRF membrane localization and activation.

Coordinated cytoskeletal remodeling during 
Fc-𝛄 receptor–mediated phagocytosis
Cdc42 plays an essential role in Fc-γ receptor–mediated phago-

cytosis (Caron and Hall, 1998). Formins have not previously 

been implicated in this process, although mDia1 has recently 

been shown to be involved in complement-mediated phago-

cytosis, a Rho-mediated process (Colucci-Guyon et al., 2005). Our 

identifi cation of FRLα as a Cdc42 effector led us to test whether 

this macrophage-enriched DRF is involved in Fc-γ receptor–

mediated phagocytosis. Two previous studies on Fc receptor–

mediated phagocytosis reported that dominant- negative Cdc42 

inhibits phagocytosis by �40–70% (Caron and Hall, 1998; 

Massol et al., 1998), which is similar to what we observe for our 

strongest FRLα knockdown (45%). The consistent degree of in-

hibition by dominant-negative Cdc42 and FRLα RNAi suggests 

that FRLα is an important effector of Cdc42-mediated signaling 

during Fc-γ receptor–mediated phagocytosis.

It is useful to distinguish three phases of Fc-γ receptor–

mediated phagocytosis: pseudopod extension, pseudopod fu-

sion, and particle internalization (Castellano et al., 2001; May 

and Machesky, 2001; Swanson and Hoppe, 2004). Time-lapse 

imaging shows that fl uorescently labeled actin accumulates 

at the base and extending pseudopods of the phagocytic cup 

(Araki et al., 2003; Scott et al., 2005). At closure, actin forms a 

sphere around the phagosome (Scott et al., 2005). After closure, 

actin dissipates from the phagosome starting at the base, result-

ing in a short-lived actin cap structure at the top of the phago-

some (Scott et al., 2005). The actin architectures at each phase 

of phagocytosis and the signaling pathways that control their 

formation have yet to be determined.

Recent studies have started to defi ne the spatio-temporal 

patterns and functional roles of different actin regulatory pro-

teins during Fc-γ receptor–mediated phagocytosis, focusing 

mostly on Cdc42 and Rac (Caron and Hall, 1998; Massol et al., 

1998; Castellano et al., 1999; Castellano and Chavrier, 2000; 

Hoppe and Swanson, 2004). The model that has emerged from 

these studies suggests that active Cdc42 localizes primarily at 

the tips of the extending pseudopods, mediating their extension 

and dissipating rapidly after their fusion. In contrast, active 

Rac1 is localized at the base and throughout the pseudopods 

during extension and then concentrates at the base to control 

 fusion and internalization. Thus, Cdc42 and Rac likely play 

 different roles during Fc-γ receptor–mediated phagocytosis.

In contrast to the Rho GTPases, the actions of downstream 

signaling molecules during phagocytosis have been studied less 

extensively. WASP family proteins are important for Arp2/3 com-

plex activation during cell migration (Pollard and Borisy, 2003), 

and static images reveal that the WASP and Arp2/3 complex are 

recruited to the phagocytic cup (May et al., 2000;  Coppolino 

et al., 2001). However, the detailed spatio-temporal patterns of 

these molecules during phagocytosis have not been reported.

Fc-γ receptor–mediated phagocytosis represents one of the 

fi rst isolated cytoskeletal systems in higher eukaryotes in which 

both Arp2/3 (May et al., 2000) and formins (this study) have 

essential functions. Why might two different actin nucleation 

machines be required for Fc-γ phagocytosis? Although both the 

Arp2/3 complex and FRLα can nucleate actin fi laments, there 

are important differences in their resulting actin networks. 

Arp2/3 networks are branched and sensitive to capping proteins, 

and, therefore, the behavior of the Arp2/3 network depends on 

the balance of capping and nucleation. FRLα-generated fi la-

ments are unbranched and resistant to capping proteins. Based 

on its linkage to Cdc42, FRLα function may be important pri-

marily for pseudopod extension, whereas the Arp2/3 complex 

may be required for the other phases of phagocytosis. In addi-

tion to nucleating new fi laments, the FRLα FH2 domain can 

also sever actin fi laments (Harris et al., 2004). This activity 

could lead to an increase in ATP-capped fi lament ends, which 

appear to be preferential sites of Arp2/3-mediated branching 

(Ichetovkin et al., 2002). Indeed, FRLα may not serve a nucle-

ation function during phagocytosis at all but rather may facilitate 

pseudopod extension by functioning as an anticapping or sever-

ing protein to modify the Arp2/3 actin network. Currently, the 

specifi c biochemical and biological roles of FRLα and Arp2/3 

complex during Fc-γ receptor–mediated phagocytosis remain 

elusive. Understanding the detailed molecular mechanisms of 

phagocytosis will shed light on this essential function of the im-

mune system and will help determine the relative contributions 

of different actin regulatory elements to cytoskeletal dynamics 

in higher eukaryotes.
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Materials and methods
Constructs
Full-length FRLα (residues 1–1,094), the FRLα N terminus (residues 1–450), 
the FRLα C terminus (residues 612–1,094), and the FRLα ∆FH2–C terminus 
(residues 994–1,094) were cloned into pET vectors containing N-terminal 
tobacco etch virus protease-cleavable GST or MBP affi nity tags. FRLα 
cDNA was provided by T. Watanabe (Kyushu University, Fukuoka, Japan). 
Full-length mDia1 (resides 1–1,255), the mDia1 N terminus (residues 
1–570), and the mDia1 ∆G–N terminus (residues 131–570) were cloned 
by PCR. All FRLα and mDia1 constructs were cloned into a modifi ed pCMV-
Script vector containing C-terminal EGFP or mRFP. Template cDNA for 
mRFP was provided by R.Y. Tsien (University of California, San Diego, San 
Diego, CA). Mini-FRLα (residues 1–536 and 994–1,094 tethered by a 
GGSGGS linker) and mini-mDia1 (residues 1–457 and 1,168–1,255 teth-
ered by a GGSGGS linker) were generated using overlap extension PCR. 
Myc-tagged GTPase constructs were provided by M.H. Cobb (University of 
Texas Southwestern, Dallas, TX). The WASP-GBD comprises residues 230–
288 of the human protein. The WASP-GBD mutant was generated by 
scrambling the amino acid sequence of the internal Cdc42/Rac interactive 
binding motif (I G A P S G F K H V S H V G W D  mutated to K W D V P I H H G G F G A S V S ), 
which is necessary for high affi nity interactions with Cdc42 (Rudolph 
et al., 1998).

The following siRNA oligonucleotides were used for RNAi experi-
ments: FRL2614 sense (C A G A C G U U G U U G C A C U A C U T T ), FRL2614 
 antisense (A G U A G U G C A A C A A C G U C U G T T ), GFP sense (G C A G A A G A A-
C G G C A U C A A G T T ), and GFP antisense (C U U G A U G C C G U U C U U C U G C T T ). 
The second set of FRL siRNAs, which was purchased from Dharmacon, was 
a pool of four duplexes that did not overlap with the sequence targeted by 
the fi rst siRNA duplex.

Bacterial expression and protein purifi cation
All proteins were expressed in the Escherichia coli strain BL21(DE3). FRLα 
N-terminal constructs were expressed as GST fusion proteins, whereas 
C-terminal constructs were expressed as MBP fusions. N-terminal constructs 
were purifi ed using glutathione–Sepharose beads (GE Healthcare), anion 
exchange chromatography, and gel fi ltration. C-terminal constructs were 
purifi ed by cation exchange chromatography and gel fi ltration. Before 
some assays, the affi nity tags were cleaved using tobacco etch virus prote-
ase, and the tag-free proteins were purifi ed either with anion or cation ex-
change chromatography. Cdc42 (residues 1–179) was prepared and 
loaded with GMPPNP as previously described (Abdul-Manan et al., 1999; 
Kim et al., 2000a). Actin was purifi ed from rabbit skeletal muscle and 
 labeled with pyrene as described previously (Pollard and Cooper, 1984).

Biochemical assays
Pull-down experiments. 600 pmol GST-FRLα N terminus was loaded onto 
glutathione–Sepharose beads (GE Healthcare) and incubated with 600 
pmol FRLα C terminus in 200 μl of binding buffer (20 mM Tris, pH 8.0, 
100 mM NaCl, and 1 mM DTT). Beads were washed three times with 
200 μl of the binding buffer containing 0.1% Triton X-100, washed twice 
with 200 μl of the binding buffer without detergent, and analyzed by SDS-
PAGE and Coomassie blue staining. The same protocol was also per-
formed with 600 pmol MBP–C terminus on amylose resin (New England 
Biolabs, Inc.) incubated with 600 pmol of GST–N terminus.

Actin assembly assays. Experiments were performed as described 
previously (Higgs et al., 1999). Reactions contained 4 μM actin (5% 
 pyrene labeled), 10 mM imidazole, pH 7.0, 50 mM KCl, 1 mM EGTA, 
and 1 mM MgCl2. Pyrene fl uorescence (λex = 365 nm and λem = 407 nm) 
was recorded over time to monitor actin assembly.

Cell culture and transfection
RAW 264.7 cells were purchased from the American Type Culture Collec-
tion and maintained in DME with 10% FBS and 1 mM sodium pyruvate 
( Invitrogen). 106 cells were transfected with 5 μg DNA using LipofectAMINE 
2000 (Invitrogen). For siRNA transfection, 2 × 105 cells were transfected 
with siRNAs using 1.5 μl siQuest reagent (Mirus Bio Corporation) and 
250 nM siRNAs. Under these conditions, nearly 100% of RAW cells were 
transfected by siRNAs as judged by experiments using LabelIT Fluorescent 
RNA delivery controls (Mirus Bio Corporation). To determine the effi ciency 
of FRLα knockdown, cell lysates were prepared 48 h after transfection. 
Western blots were performed using anti-FRLα antibodies provided by 
H.N. Higgs (Dartmouth College, Hanover, NH).

HEK293T cells were maintained in 10% calf serum (American 
Type Culture Collection) and 1 mM penicillin/streptomycin (Invitrogen). 

For coimmunoprecipitation, 106 cells plated in 10-cm dishes were trans-
fected with 10 μg DNA using the calcium phosphate precipitation method.

Coimmunoprecipitation
HEK293T cells were cotransfected with expression vectors for each formin-
GFP and myc-GTPase construct. 36 h after transfection, cell lysates were 
prepared in lysis buffer (20 mM Tris, pH 7.4, 100 mM NaCl, 1 mM DTT, 
1 mM MgCl2, 0.2% NP-40, 1 mM PMSF, 1 mM benzamidine, 1 μg/ml leu-
peptin, 1 μg/ml antipain, 0.5 μg/ml pepstatin, 20 mM NaF, and 0.5 mM 
NaVO3). The cleared lysate was incubated with anti-GFP antibody (Invit-
rogen) for 1 h at 4°C. Immune complexes were precipitated with UltraLink 
immobilized  protein A/G beads (Pierce Chemical Co.) and analyzed by 
Western blotting.

Confocal microscopy
24 h after transfection, cells were replated onto 12-mm glass coverslips 
(Fisher Scientifi c), allowed to adhere for 6–8 h, and were fi xed. Imaging 
was performed on a laser scanning microscope (LSM510 META; Carl 
Zeiss MicroImaging, Inc.) using a 63× oil immersion objective (Carl Zeiss 
MicroImaging, Inc.). Images were analyzed using Slidebook software 
 (Intelligent Imaging Innovations). Membrane and cytosolic intensities were 
determined by calculating the mean fl uorescence in masks placed either at 
the membrane or in the cytoplasm. The expression level was expressed as 
the sum of the fl uorescence intensity across a given confocal plane divided 
by the cross-sectional area.

Phagocytosis assays for live cell imaging
Image acquisition. 24 h after transfection, cells were replated onto 35-mm 
glass-bottom dishes and allowed to adhere for 6–8 h. For imaging, cells 
were incubated at 37°C on a heated stage connected to a humidifi er 
 module and covered with an optically clear foil cover (Carl Zeiss Micro-
Imaging, Inc.). To start phagocytosis, 1 ml of 50-fold diluted opsonized 
RBCs prepared as described previously (Greenberg et al., 1990) was 
added dropwise to the macrophages. For each imaging run, 61 time 
points were collected. For each time point, a four-plane z stack of GFP and 
mRFP fl uorescent images spaced 1.5 μm apart was acquired along with 
one differential interference contrast (DIC) image (50-ms exposure). A total 
of nine images per time point was collected at maximum speed, which, on 
our  system, resulted in one time point per 13.7 s.

Imaging was performed using a 63× oil immersion objective (Carl 
Zeiss MicroImaging, Inc.) on an inverted microscope (Axiovert 200M; Carl 
Zeiss MicroImaging, Inc.) equipped with a 75-W Xenon lamp and CCD 
camera (Sensicam; PCO Computer Optics). Fluorescence images were 
 acquired using FITC and Cy3 fi lter sets (Chroma Technology Corp.), 
200-ms exposure times, 2 × 2 binning, and a 10% neural density fi lter.

Image analysis. For each phagocytic event, the optimal plane 
(where the phagoyctic cup was in best focus) was determined at each time 
point. These planes were stitched together to create a 2D time-lapse series. 
For each event, the time point at which pseudopod fusion occurred, as 
seen in the fl uorescent images, was set as the zero time reference. Only 
events in which the macrophage and RBC could be observed 8 time points 
before fusion and 23 time points after were further analyzed. Thus, for 
each event we have analyzed 32 time points, which is suffi cient for com-
plete analysis of the dynamics that we observe.

To analyze fusion protein accumulation during phagocytosis, we av-
eraged the GFP/mRFP ratio at the site of phagocytosis (Rp) and normalized 
it to the GFP/mRFP ratio in the cytoplasm (Rc) in a manner similar to previ-
ously described methods (Hoppe and Swanson, 2004). Rp was calculated 
by creating a mask around the region of contact between the macrophage 
and the RBC. An Rc mask, which was placed in the cytoplasm, was also 
created. For each pixel in each mask at each time point, we calculated the 
ratio of GFP intensity to mRFP intensity. We then averaged the ratios for 
each mask to generate the GFP/mRFP ratio at the site of phagocytosis or 
in the cytoplasm.

Phagocytosis assays for siRNA-transfected cells
24 h after transfection, RAW cells were replated onto 12-mm glass cover-
slips. 48 h after transfection, cells were washed and returned to the 37°C 
incubator in 0.2 ml of buffer with divalents (20 mM Hepes, pH 7.4, 125 
mM NaCl, 5 mM KCl, 5 mM glucose, 10 mM NaHCO3, 1 mM KH2PO4, 
1 mM MgCl2, and 1 mM CaCl2). After 1 h, 20 μl of 10-fold diluted 
 opsonized RBCs were added. For complement phagocytosis, cells were 
treated with 100 nM PMA 30 min before the addition of RBCs. After 1 h, 
cells were washed, incubated in distilled water to lyse extracellular RBCs, 
and fi xed. Cells were permeabilized with PSG buffer (PBS, 0.01%  saponin, 
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0.25% gelatin, and 0.02% NaN3). Intracellular RBCs were stained with 
1:200 diluted FITC-conjugated anti–rabbit antibodies (Jackson Immuno-
Research Laboratories). Imaging was performed on an inverted micro-
scope (Axiovert 200M; Carl Zeiss MicroImaging, Inc.) using a 63× oil 
immersion objective (Carl Zeiss MicroImaging, Inc.). The number of inter-
nalized RBCs was counted using the FITC fl uorescence signal, and the 
number of macrophages was counted using cellular autofl uorescence. For 
complement phagocytosis, internalized RBCs were counted using DIC. 
Each experiment was performed in duplicate, and a minimum of 300 macro-
phages was counted for every condition.

Online supplemental material
Table S1 provides the mean GFPm/GFPc ratios for all constructs and condi-
tions tested. Fig. S1 shows that membrane localization of the FRLα N terminus 
is inhibited by DAD binding in trans. Fig. S2 shows the localization of en-
dogenous FRLα and expression of myc-tagged Rho GTPase mutants in RAW 
cells. Fig. S3 shows the characterization of cells treated with FRLα siRNA, 
and Fig. S4 shows additional images of FRLα recruitment to the phagocytic 
cup. Videos 1 and 2 are DIC and fl uorescence time lapses, respectively, 
of FRLα-GFP–expressing macrophages undergoing Fc-γ  receptor–mediated 
phagocytosis. Video 3 shows a magnifi ed phagocytic cup from Video 2. 
Videos 4 and 5 are DIC and fl uorescence time lapses, respectively, of 
GBD-GFP–expressing macrophages undergoing Fc-γ  receptor–mediated 
phagocytosis. Online supplemental material is available at http://www.
jcb.org/cgi/content/full/jcb.200605006/DC1.
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assays; Rashu B. Seth for discussions about RNAi and coimmunoprecipitation; 
Song Huang for preparation of the initial mDia1 constructs and for assisting 
with the preliminary characterization of mDia1 localization; Neeta Mistry for 
technical support; Dr. Gaya K. Amarasinghe, Dr. Sanjay C. Panchal, Daisy 
W. Leung, and Hui-Chun Cheng for sharing reagents for the actin assembly 
assay; and Dr. Takeshi Watanabe, Dr. Henry N. Higgs, Dr. Roger Y. Tsien, 
and Dr.  Melanie H. Cobb for providing reagents described in the Materials 
and methods  section. Confocal microscopy was performed in the University of 
Texas Southwestern Live Cell Imaging Core Facility.
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