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Introduction
Polycomb group (PcG) proteins are conserved transcriptional 

regulators with roles in cell identity, lineage specifi cation, cell 

cycle control, and X inactivation (Rice et al., 2002; Ringrose and 

Paro, 2004; Lucchesi et al., 2005; Heard and Disteche, 2006). Their 

function in regulating homeotic genes has been established in 

many organisms, including fl ies and mammals. Several PcG genes 

are essential for development. PcG proteins exert their function, 

in part, via histone-modifying activities. Two biochemically dis-

tinct complexes have been isolated and possess catalytic activity. 

Polycomb repressive complex 1 (PRC1) contains the RING fi n-

ger domain proteins Ring1A and Ring1B, which mediate the 

monoubiquitination of histone H2A lysine 119 (H2AK119ub1) 

via an E3 ubiquitin ligase activity. PRC2 consists of the PcG pro-

teins Eed, Suz12, and Ezh2 and catalyzes histone H3 lysine 27 di- 

and trimethylation (H3K27me3; Cao et al., 2002; Czermin et al., 

2002; Kuzmichev et al., 2002; Muller et al., 2002) as well as the 

methylation of histone H1 lysine 26 (Kuzmichev et al., 2004). 

PcG complex–mediated histone modifi cations have been asso-

ciated with silent chromatin. H3K27me3 has been shown to 

 increase the affi nity for binding of chromodomain-containing 

Polycomb proteins such as Cbx7, which are also components of 

PRC1 (Fischle et al., 2003; Bernstein et al., 2006). Based on this, 

PRC2-mediated H3K27me3 has been proposed to act as a re-

cruitment signal for PRC1, which, in turn, would catalyze 

H2AK119ub1. Consistently, Ring1B binding is compromised in 

embryonic stem (ES) cells carrying a mutation in the PRC2 

gene Eed, which causes a loss of H3K27me3 (Boyer et al., 2006). 

Furthermore, loss of PRC1 components results in the disruption 

of PRC1 binding at Hox genes (Cao et al., 2002, 2005).

Mammals achieve dosage compensation between XX fe-

males and XY males by the inactivation of one of the two X 

chromosomes in female cells. X inactivation is initiated by Xist 
RNA, which associates with the inactive X chromosome (Xi) 

and initiates chromosome-wide silencing. Xist is crucial for the 

initiation of X inactivation but is dispensable for maintaining 

the Xi at later stages of differentiation, when other epigenetic 

mechanisms, including DNA methylation, ensure stable silenc-

ing (Brown and Willard, 1994; Csankovszki et al., 1999; Wutz 

and Jaenisch, 2000). PcG proteins are recruited by Xist and con-

tribute to the establishment of histone modifi cations along the 

Xi (Plath et al., 2004). The initiation of X inactivation is charac-

terized by chromosome-wide histone modifi cations, including 

H3K27me3, H2AK119ub1, and monomethylation of histone H4 

lysine 20 (H4K20me1; Plath et al., 2003; de Napoles et al., 2004; 

Ring1B is crucial for the regulation of 
developmental control genes and PRC1 proteins 
but not X inactivation in embryonic cells

Martin Leeb and Anton Wutz

Research Institute of Molecular Pathology, 1030 Vienna, Austria

T
he Polycomb group (PcG) gene Ring1B has been 

implicated in the repression of developmental con-

trol genes and X inactivation and is essential for 

embryogenesis. Ring1B protein contains a RING fi nger 

domain and functions as an E3 ubiquitin ligase that 

is crucial for the monoubiquitination of histone H2A 

(H2AK119ub1). Here, we study the function of Ring1B in 

mouse embryonic stem (ES) cells. The deletion of Ring1B 

causes the loss of several PcG proteins, showing an un-

anticipated function in the regulation of PcG protein levels. 

Derepression of lineage genes and an aberrant differenti-

ation potential is observed in Ring1B-defi cient ES cells. 

Despite a crucial function of Ring1B in establishing the 

chromosome-wide ubiquitination of histone H2A lysine 

119 (H2AK119ub1) upon Xist expression in ES cells, the 

initiation of silencing by Xist is independent of Ring1B. 

Other chromatin marks associated with the initiation of 

X inactivation are not affected in Ring1B-defi cient cells, 

suggesting compensation for the loss of Ring1B in X inacti-

vation in contrast to the repression of lineage genes.

Correspondence to Anton Wutz: wutz@imp.univie.ac.at

Abbreviations used in this paper: EB, embryoid body; ES, embryonic stem; PcG, 
Polycomb group; PRC, Polycomb repressive complex; RYBP, Ring1 and YY1-
binding protein.

The online version of this article contains supplemental material.



JCB • VOLUME 178 • NUMBER 2 • 2007 220

Fang et al., 2004; Kohlmaier et al., 2004). A mutant Xist RNA, 

which lacks the Xist repeat A sequence and, thus, cannot cause 

transcriptional repression, is still able to recruit PcG proteins 

and establish chromosome-wide histone modifi cations. This in-

dicates that PcG recruitment occurs independently of the initia-

tion of silencing (Plath et al., 2003; Kohlmaier et al., 2004; 

Schoeftner et al., 2006) and that PcG recruitment is not suffi -

cient for the initiation of chromosome-wide silencing.

An involvement of PcG proteins in the maintenance of X 

inactivation has been proposed based on their function in main-

taining the repression of homeotic genes. However, Xist is 

required for the recruitment of PcG proteins and histone 

modifi cations throughout ES cell differentiation and in differen-

tiated cell types. This suggests that in X chromosome inactiva-

tion, PcG complexes have a function in the establishment of the 

maintenance of stable silencing rather than being silencing factors 

themselves. Thus, recruitment of PcG complexes in X in activation 

might differ from recruitment to developmental control genes. 

Consistent with an involvement in the maintenance of X inacti-

vation, the PRC2 gene Eed is required for maintenance of the Xi 

in differentiating trophoblast stem cells (Kalantry et al., 2006). 

In contrast, PRC2 function is dispensable for X inactivation in 

embryonic cells (Kalantry and Magnuson, 2006; Schoeftner et al., 

2006), and Ring1B and H2AK119ub1 can be recruited to the 

Xist-expressing chromosome in cells lacking PRC2 function 

caused by disruption of the Eed gene (Schoeftner et al., 2006). 

This suggests a PRC2-independent mode of Ring1B recruitment 

in X inactivation. The ability of Eed-defi cient ES cells to initiate 

chromosome-wide silencing could either be explained by a 

potential redundancy of PRC1 and PRC2 or, alternatively, Ring1B 

could be of primary functional importance for X inactivation in 

embryonic cells. Previously, it has been shown that both Ring1A 

and Ring1B mediate H2AK119ub1 on the Xi in mouse embry-

onic fi broblasts (de Napoles et al., 2004).

Ring1B is an essential gene in the mouse, and its mu-

tation leads to gastrulation arrest and cell cycle inhibition 

Figure 1. Generation of Ring1B-defi cient ES cells. (A) Schematic representation of the Ring1B locus and the minus targeting vector replacing the start 
codon and the RING fi nger domain with a stop cassette. (B) Ring1B conditional targeting vector allowing for deletion of the Ring1B locus after Cre-mediated 
excision. (C–E) Southern analyses of 36Ring1B−/+ (C), 36Ring1B−/cond (D), and 36Ring1B−/− (E) ES cells. Lanes were grouped where necessary. The white line in-
dicates that intervening lanes have been spliced out. wt, wild type.
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(Voncken et al., 2003). An involvement in embryonic axis speci-

fi cation and regulation of homeotic genes has also been demon-

strated (Suzuki et al., 2002). Ring1B appears to be associated with 

several distinct complexes. Apart from its function as a catalytic 

E3 ubiquitin ligase in the PRC1 complex, recruitment of Ring1 

proteins by the transcriptional repressor E2F6 (Trimarchi et al., 

2001) and the spliceosomal component Sf3b1 (Isono et al., 2005) 

has been observed. It is conceivable that histones are not the only 

targets to be modifi ed by PcG proteins. Recent results indicate a 

function for Ring1B in ubiquitination of the PcG-associated pro-

tein Ring1 and YY1-binding protein (RYBP; Arrigoni et al., 

2006). In the present study, we address the function of Ring1B in 

the regulation of developmental control genes, PRC1 protein 

levels, and the initiation of X inactivation in mouse ES cells.

Results
Loss of PRC1 proteins in Ring1B-defi cient 
ES cells
To investigate the function of Ring1B in clone 36 ES cells (Wutz 

and Jaenisch, 2000), we generated a targeting vector that re-

placed the start codon and the catalytically active RING fi nger 

domain with a fl oxed hygromycin selection marker (Fig. 1 A). 

A splice acceptor site and an SV40 polyA sequence fl anking the 

selection marker were inserted to avoid production of truncated 

protein products. Targeting of the fi rst allele was effi cient with a 

frequency of 15% and was confi rmed by Southern analysis (Fig. 

1 C). The second allele could only be targeted with an effi ciency 

of 0.3%, and Ring1B−/− clones could not be isolated as a result 

of a strong tendency to differentiate. Following a conditional 

targeting strategy (Fig. 1 B), Ring1B−/cond ES cells were obtained 

with a frequency of 5% (Fig. 1 D). Cre-mediated recombination 

established 36Ring1B−/− clones with a frequency of 43% as con-

fi rmed by Southern analysis (Fig. 1 E). About half of these 

clones were lost as a result of spontaneous differentiation, but 

the other half could be recovered and cultured for >20 passages. 

However, 36Ring1B−/− ES cells appeared to have a strong propen-

sity to differentiate, were extremely sensitive to stress, espe-

cially upon freezing and thawing, and could only be maintained 

under pristine culture conditions.

The absence of Ring1B protein was confi rmed by Western 

analysis in two independently derived 36Ring1B−/− ES clones (Fig. 

2 A). In 36Ring1B−/cond ES cells, Ring1B protein levels were re-

duced, indicating that the conditional targeting vector yielded a 

hypomorphic Ring1B allele before Cre-mediated recombination 

(Fig. 2, A and E), which is similar to a hypomorphic Ring1B 

allele reported previously (Suzuki et al., 2002). Notably, the abun-

dance of the PRC1 proteins Mph1, Mel18, and Rybp was 

 reduced to undetectable levels in Ring1B-defi cient 36Ring1B−/− 

ES cells (Fig. 2 A). The levels of Mph2 and Mpc2 were strongly 

Figure 2. Analysis of PcG expression in clone 36Ring1B−/− 
cells. (A) Western analysis of PcG proteins in nuclear extracts 
from control clone 36, 36Ring1B−/cond, and 36Ring1B−/− ES cells. 
A representative lamin B1 loading control is shown. (B) West-
ern analysis of Bmi1 and Mpc2 in nuclear extracts of 
clone 36, 36Ring1B−/cond, 36Eed−/−, and 36Ring1B−/− ES cells. 
(C) Western analysis of global levels of histone modifi cations 
 associated with the initiation of X inactivation in clone 36, 
36Ring1B−/cond, 36Eed−/−, and 36Ring1B−/− ES cells. Ponceau-
stained histone H1 bands show loading. (D) Expression 
analysis of PcG trancription by semiquantitative RT-PCR. 
(E) Northern analysis of Ring1B and Mph1 expression in 
ES cells. Glyceraldehyde-3-phosphate dehydrogenase (Gapdh) 
was used as a loading control.
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reduced (Fig. 2, A and B). All PRC1 proteins were abundantly 

detected in control clone 36 ES cells. We conclude that disrup-

tion of Ring1B leads to the reduction of several PRC1 proteins in 

Ring1B-defi cient ES cells.

Ring1B is required for the repression 
of developmental control genes
PcG proteins have been implicated in the repression of develop-

mental control genes in ES cells (Boyer et al., 2006). To investigate 

whether the derepression of such genes occurs in Ring1B-

defi cient ES cells and could contribute to the instability of stem 

cell identity, we performed an expression analysis of lineage-

specifi c genes, including the trophoblast stem cell markers Cdx2 

and Eomes and the markers for extraembryonic endoderm Foxa2, 

Hand1, and Hnf4, which are normally not expressed during ES 

cell differentiation. All trophoblast stem cell and extraembry-

onic endoderm markers were repressed in control clone 36 ES 

cells but were up-regulated in 36Ring1B−/− ES cells (Fig. 3 A). 

In 36Eed−/− ES cells, which are defi cient for PRC2 function as 

a result of a null mutation in Eed (Schoeftner et al., 2006), a 

substantial up-regulation of Cdx2, Eomes, and Hand1 but only a 

weak derepression of Foxa2 and Hnf4 was observed (Fig. 3 A). 

The pattern of derepression of lineage-specifi c genes in Ring1B- 

and Eed-defi cient ES cells is largely consistent with the previ-

ously reported binding of Eed and Ring1B to the respective 

chromosomal loci in mouse ES cells (Boyer et al., 2006). Hnf4 

has not been reported as a PcG target, and derepression could be 

an indirect effect of the loss of Ring1B. Deregulation of develop-

mental control genes is not limited to markers for extraembry-

onic development, as Nestin, a marker for neuronal differentiation, 

is slightly up-regulated in Ring1B- and Eed-defi cient ES cells. 

Expression of the pluripotency-associated gene Oct4 was ob-

served in Ring1B-defi cient, Eed-defi cient, and control ES cell 

lines at comparable levels (Fig. 3 A and Fig. S1 A, available 

at http://www.jcb.org/cgi/content/full/jcb.200612127/DC1). We 

conclude that Ring1B-defi cient ES cells can be isolated and 

maintained but show the derepression of lineage genes, which 

contributes to a predisposition to differentiation and compro-

mises stem cell maintenance.

To analyze the differentiation potential of Ring1B-defi cient 

ES cells, we investigated their ability to form embryoid bodies 

(EBs; Fig. 3, B and C). After 7 d in suspension culture, a portion 

of 36Ring1B−/− EBs formed large, hollow spheres. In contrast, EBs 

derived from control clone 36 ES cells formed compact aggre-

gates (Fig. 3 C). When these EBs were plated on gelatine-coated 

dishes, they attached and formed beating structures indicative 

of the development of contractile cardiomyocytes. EBs derived 

from 36Ring1B−/− ES cells neither attached nor formed contractile 

cardiomyocytes after 7 d in suspension culture but continued to 

grow in suspension as hollow spheres, reaching a diameter of up to 

5 mm after 3 wk (Fig. 3 B). 36Ring1B−/cond EBs, which have reduced 

Ring1B protein levels, did not attach effi ciently but formed con-

tractile structures in suspension culture after 1 wk (Video 1, avail-

able at http://www.jcb.org/cgi/content/full/jcb.200612127/DC1). 

These peculiar beating spheres were not observed in control 

clone 36 EBs and could indicate cardiomyocyte development at 

reduced Ring1B protein levels.

A deregulation of lineage gene expression was observed in 

36Ring1B−/− EBs after 2 wk of differentiation, which is consistent 

with the aberrant differentiation potential (Fig. S1 D). When 

Figure 3. Deregulation of developmental control genes upon the loss of 
Ring1B. (A) Expression analysis of Cdx2, Eomes, Pl-1, Hand1, Foxa2, 
Hnf4, Oct4, Hoxa1, Nestin, and the loading control β-actin using RNA 
from ES cells as indicated by RT-PCR. (B and C) EBs derived from clone 36 
and 36Ring1B−/− ES cells after 3 wk of suspension culture. Images were 
obtained at 20× magnifi cation. (D) Northern analysis of Pl-1 and Mph1 
expression in clone 36 and 36Ring1B−/− EBs. Bars, 1 mm.
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36Ring1B−/− EBs were plated on gelatine after 48 h, some  attached, 

and, after 3 wk, cells with a morphology reminiscent of tropho-

blast giant cells developed (unpublished data). Consistent with 

this, we observed the expression of Pl-1, which is normally ex-

clusively expressed in trophoblast giant cells (Fig. 3 D).

Ring1B is critical for the regulation 
of PRC1 protein abundance
To investigate whether Ring1B controls the expression of other 

PcG genes, we performed expression analysis of the PRC1 

genes Ring1B, Ring1A, Mph1, Mph2, Mel18, Mpc2, Bmi1, 

Rybp, and the PRC2 member Suz12 (Fig. 2 D). As expected, we 

observed a loss of Ring1B expression in 36Ring1B−/− ES cells 

(Fig. 2, D and E). Transcription of the PcG genes Ring1A, 

Mph1, Mph2, Mel18, and Suz12 was unaffected by the loss of 

either Ring1B or Eed (Fig. 2, D and E). However, the levels of 

Bmi1 and Mpc2 transcript were up-regulated in 36Ring1B−/− and 

36Eed−/− ES cells (Fig. 2 D), which is consistent with the re-

ported binding of Ring1B and Eed to the Bmi1 and Mpc2 pro-

moters in mouse ES cells (Boyer et al., 2006). Transcription of 

Rybp was found to be slightly up-regulated in Ring1B- but not 

Eed-defi cient ES cells. We conclude that in general, PcG genes 

are not regulated by Ring1B at the transcriptional level, but we 

fi nd that Bmi1, Mpc2, and Rybp transcription is negatively regu-

lated by Ring1B.

This showed that the loss of PRC1 proteins in Ring1B-

 defi cient ES cells was not mediated by transcriptional repression 

but occurred at the level of protein stability or translation. Com-

pared with clone 36 ES cells, Bmi1 protein levels were reduced 

to undetectable levels in 36Ring1B−/− ES cells but were more 

abundant in 36Eed−/− ES cells (Fig. 2 B). Thus, the up-regulation 

of Bmi1 transcription in 36Ring1B−/− and 36Eed−/− ES cells re-

sulted in an accumulation of Bmi1 protein in Eed-defi cient but 

not Ring1B-defi cient ES cells. This could be explained by a 

critical role of Ring1B in stabilization of the PRC1 complex. 

Consistent with this, several PRC1 proteins could not be de-

tected in Ring1B-defi cient ES cells (Fig. 2, A and B) despite 

unaffected transcription (Fig. 2, D and E). The PRC2 protein 

Suz12 was unaffected by the loss of Ring1B in 36Ring1B−/− ES 

cells (Fig. 2 A). We conclude that Ring1B is critical for PRC1 

but not PRC2 protein levels in ES cells, possibly by the regula-

tion of translation or protein stabilization.

Ring1B is essential for Xist-mediated 
H2AK119ub1 in ES cells but not in 
differentiated cells
To characterize the effect of PRC1 disruption on histone modi-

fi cations associated with X inactivation, we performed Western 

analysis of ES cells lacking Ring1B. H2AK119ub1 was absent 

in 36Ring1B−/− ES cells compared with clone 36 and 36Eed−/− ES 

cells (Fig. 2 C), which is consistent with a previous report of 

a crucial function of Ring1B in the ubiquitination of histone 

H2A (de Napoles et al., 2004). H3K27me3 was unaffected in 

36Ring1B−/− ES cells but was absent in 36Eed−/− ES cells, which 

lack PRC2 (Schoeftner et al., 2006). Global levels of H4K20me1 as 

well as macroH2A were unchanged in Ring1B- and Eed-defi cient 

ES cells compared with control clone 36 ES cells (Fig. 2 C).

To analyze the recruitment of PcG proteins by Xist and the 

establishment of histone marks, we performed immunofl uores-

cence analysis combined with Xist RNA FISH. In clone 36 and 

36Ring1B−/− ES cells, Xist expression can be induced from a trans-

gene inserted into chromosome 11 by the addition of doxycy-

cline (Fig. 4 A). Upon the addition of doxycycline for 3 d, Xist 
was induced effi ciently in 36Ring1B−/− ES cells, and a focal Xist 
cluster was observed in 57 ± 5% of the nuclei compared with 

62 ± 5% in control clone 36 ES cells. In 36Ring1B−/− ES cells, co-

localization of focal H2AK119ub1 staining with Xist was reduced 

and observed in 7 ± 4% of the nuclei compared with 90 ± 6% 

in control clone 36 ES cells after 3 d of induction with doxycy-

cline (Fig. 4, B and D). Colocalization of H3K27me3 with Xist 
was unaffected by the loss of Ring1B with 92 ± 5% and 95 ± 

3% of the nuclei showing focal staining in wild-type and 

36Ring1B−/− ES cells, respectively (Fig. 4 D and Fig. S2 A, avail-

able at http://www.jcb.org/cgi/content/full/jcb.200612127/DC1). 

Similarly, the establishment of H4K20me1 on the Xist-expressing 

chromosome was not impaired by the loss of Ring1B, and focal 

staining was observed in 51 ± 5% and 46 ± 6% of wild-type 

and 36Ring1B−/− ES cells, respectively (Fig. 4 F).

We next characterized the recruitment of PcG proteins by 

Xist (Fig. 4 D). Mph1 was recruited in 30% of control 36 but 

not in 36Ring1B−/− ES cells. In addition, the immunofl uorescence 

signal for Mph1 was weaker in 36Ring1B−/− ES cells compared 

with wild-type ES cells (not depicted), which is consistent with 

our observation that the levels of several PRC1 proteins were 

strongly reduced in Ring1B-defi cient ES cells (Fig. 2, A and B). 

In contrast, recruitment of the PRC2 members Ezh2 and Suz12 

was not affected by the loss of Ring1B in ES cells (Fig. 4 D). 

Colocalization of Ezh2 with Xist was observed in 96 ± 1% and 

91 ± 2% in wild-type and Ring1B-defi cient ES cells, respec-

tively. Similarly, Suz12 colocalized with Xist in 89 ± 4% of 

wild-type clone 36 and 90 ± 6% of 36Ring1B−/− ES cells. To dem-

onstrate the specifi city of the effect of the Ring1B deletion on 

H2AK119ub1 and PcG recruitment in 36Ring1B−/− ES cells, a 

knockin strategy was used to rescue the Ring1B disruption after 

attempts to transiently or stably express Ring1B transgenes 

were unsuccessful. For this, we used the conditional vector to 

establish 36Ring1B−/knockin ES cells. In 36Ring1B−/knockin ES cells, 

H2AK119ub1 is observed on the Xist-expressing chromosome 

in 75% of analyzed nuclei (Fig. 4 D). Furthermore, Mph1 pro-

tein levels and recruitment by Xist in 36Ring1B−/knockin ES cells 

were comparable to clone 36 ES cells (unpublished data). This 

demonstrated that the loss of Ring1B specifi cally disrupts PRC1 

function and H2AK119ub1 in ES cells. However, PRC2 func-

tion as well as H4K20me1 is recruited by Xist independent of 

PRC1 in 36Ring1B−/− ES cells.

After 3 d of retinoic acid–induced differentiation in the 

presence of doxycycline, the colocalization of H2AK119ub1 

with Xist became evident in 36Ring1B−/− ES cells, and, after 8 d, 

72 ± 6% of the cells showed the colocalization of focal 

H2AK119ub1 staining with Xist compared with 90 ± 2% of 

control clone 36 cells. We found that Ring1A protein levels were 

strongly up-regulated upon the differentiation of 36Ring1B−/− and 

control ES cells (Fig. S1, A and B), and we observed Ring1A 

colocalization with Xist on day 8 of differentiation (Fig. S2 C). 
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This suggested that Ring1A could possibly contribute to 

H2AK119ub1 in differentiated Ring1B-defi cient cells, which 

is consistent with a previous report that Ring1A can compensate 

for the disruption of Ring1B in embryonic fi broblasts (de Napoles 

et al., 2004). Furthermore, the establishment of H2AK119ub1 

early in the differentiation of 36Ring1B−/− cells could explain the 

small proportion of Ring1B-defi cient ES cells showing the co-

localization of H2AK119ub1 and Xist. Nonetheless, Western 

analysis demonstrated that global H2AK119ub1 levels were 

not restored upon differentiation in 36Ring1B−/− cells (Fig. 4 G). 

In addition, Xist was unable to recruit Mph2 ef fi ciently in 

Ring1B-defi cient cells despite the recovery of H2AK119ub1. 

On day 8 of differentiation, 30% of control clone 36 but only 

2 ± 2% of 36Ring1B−/− cells showed the colocalization of Mph2 

with Xist (Fig. 4 E). This could be explained by reduced Mph2, 

Bmi1, and Mel18 protein levels in differentiated 36Ring1B−/− 

cells compared with controls (Fig. S1 E).

H3K27me3 colocalization with Xist was unaffected and was 

observed in 63 ± 16% of differentiated 36Ring1B−/− cells compara-

ble with 61 ± 1% in controls (Fig. 4 E). Furthermore, macroH2A 

Figure 4. Recruitment of histone modifi cations and PcG proteins by Xist in Ring1B-defi cient cells. (A) Scheme showing the inducible Xist expression system 
in clone 36 ES cells. In the presence of the inducer doxycycline, the tetracycline-regulated transactivator (nls-rtTA) binds to the inducible promoter (tetOP) and 
activates Xist, which then causes the repression of a puromycine selection marker gene (puro). (B and C) H2AK119ub1 immunofl uorescence analysis com-
bined with Xist RNA FISH of clone 36 and 36Ring1B−/− ES (B) and differentiated cells (C). Bars, 5 μm. (D) Statistical analysis of the recruitment of PcG proteins 
and histone modifi cations by Xist in clone 36 and 36Ring1B−/− ES cells. Error bars represent SD (n > 100). Results for Ring1B, Mph1, and H2AK119ub1 in 
36Ring1B−/knockin were counted once (n > 100). (E) Analysis of PcG protein recruitment and histone modifi cations by Xist in differentiated clone 36 and 
36Ring1B−/− cells as in D. (F) Percentage of nuclei showing focal H4K20me1 staining in undifferentiated clone 36 and 36Ring1B−/− ES cells (n > 100). 
(G) Western analysis of global H3K27me3 and H2AK119ub1 in ES cells differentiated for 8 d as indicated. (H) Western analysis of the PRC2 proteins Suz12 
and Ezh2 in nuclear extracts from clone 36, 36Eed−/−, and 36Ring1B−/− cells that were differentiated for 8 d. Lamin B1 was used as a loading control.
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recruitment by Xist was not affected in Ring1B-defi cient cells 

after 8 d of differentiation, and 78 ± 5% of H3K27me3-positive 

cells showed colocalizing macroH2A signals compared with 

76% of control clone 36 cells (Fig. S3 A, available at http://

www.jcb.org/cgi/content/full/jcb.200612127/DC1). Control 

36 cells showed a 34 ± 6% colocalization of Ezh2 and a 44 ± 

2% colocalization of Suz12 with Xist. In 36Ring1B−/− cells, the 

percentages decreased to 12 ± 4% and 16 ± 7% for Ezh2 

and Suz12, respectively, after 8 d of differentiation (Fig. 4 E). 

This is consistent with Western analysis showing a reduction of 

the PRC2 protein levels of Suz12 and Ezh2 (Fig. 4 H), possibly 

as a result of the heterogeneous expression of PRC2 proteins 

in a subset of cells (not depicted). However, the reduction in 

the abundance of PRC2 proteins in 36Ring1B−/− was not as se-

vere as in Eed-defi cient cells (Fig. 4 H) and did not lead to 

a measurable difference in H3K27me3; thus, this might not be 

of functional relevance. We conclude that despite a recovery of 

H2AK119ub1 colocalization with Xist upon the differentiation 

of Ring1B-defi cient ES cells, the stability of the PcG system 

critically depends on the presence of Ring1B. A redundant E3 

ligase activity can remedy defects in ubiquitination in X inacti-

vation but not in global histone H2A ubiquitination.

Ring1B is dispensable for the initiation 
and maintenance of X inactivation
We next assessed the ability of Xist to initiate gene silencing in 

the absence of Ring1B and PRC1. The induction of Xist expres-

sion in clone 36 ES cells causes repression of a puromycin 

marker gene (puro), which is cointegrated with the Xist trans-

gene. Thus, Xist-mediated silencing can be analyzed by North-

ern analysis of puro expression. After the induction of Xist for 

3 d, repression of the puro marker in 36Ring1B−/− ES cells was 

comparable with control 36 ES cells (Fig. 5 A). We further con-

fi rmed this result by analysis of cell growth under puromycin 

selection. Ring1B-defi cient as well as control 36 ES cells be-

came puromycin sensitive upon the addition of doxycycline 

to the medium (Fig. S3 B). A control heterozygous 36Ring1B+/− 

ES cell clone that had lost the ability to express Xist remained 

puromycin resistant upon exposure to doxycycline. We conclude 

that initiation of silencing by Xist is independent of Ring1B 

and H2AK119ub1.

To investigate whether Ring1B is essential for the mainte-

nance of silencing, ES cell differentiation was induced with all-

trans–retinoic acid. Xist was either turned on from the beginning 

of differentiation, for 4 d followed by 4 d without induction or 

cells were differentiated without doxycycline for 8 d in parallel 

cultures (Fig. 5, B and C). Expression of the puro marker gene 

was quantifi ed on day 8 of differentiation by Northern analysis. 

Repression of the puro marker was observed in Ring1B-defi cient 

36Ring1B−/− cells comparable with control 36 ES cells after 8 d of 

differentiation in the presence of doxycycline (Fig. 5 B). Fur-

thermore, silencing was effi ciently maintained independent of 

Xist expression in Ring1B-defi cient cells, which were differenti-

ated in the presence of doxycycline for 4 d followed by 4 d with-

out. To confi rm that the maintenance of Xist-mediated silencing 

is not limited to the cointegrated puro marker, we performed 

Northern analysis of the imprinted Meg1 gene that is expressed 

from the maternal chromosome 11, into which the Xist transgene 

was integrated (Fig. 5 E; Wutz and Jaenisch, 2000). We found 

that Meg1 is repressed by Xist expression in clone 36 control and 

36Ring1B−/− cells after day 8 of differentiation in the presence of 

doxycycline. Repression was further stably maintained if Xist 
was turned off after 4 d of differentiation (Fig. 5 D). We further 

confi rmed these results by real-time PCR analysis of Cct4 ex-

pression, a nonimprinted gene on chromosome 11 (Fig. S3 C). 

This demonstrated that Ring1B is dispensable for the chromosome-

wide maintenance of silencing in differentiated cells.

Figure 5. Initiation and maintenance of Xist-mediated silencing in Ring1B-
defi cient cells. (A) Quantifi cation of puro repression upon Xist induction with 
doxycycline (dox) in clone 36, 36Ring1B−/cond, 36Eed−/−, and 36Ring1B−/− ES 
cells by Northern analysis. (B) Maintenance of puro repression in differenti-
ated ES cells of indicated genotypes quantifi ed by Northern analysis. Error 
bars represent SD. (C) Schematic representation of the doxycycline induc-
tion scheme (light gray, no dox; dark gray, +dox) used for the experiment 
in B. The phases of X inactivation are indicated below. (D) Stable mainte-
nance of chromosome-wide silencing in the absence of Xist expression as 
shown for Meg1 and Puro by Northern analysis. (E) Scheme showing the 
location of Meg1, Cct4, and the Xist transgene on chromosome 11.
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We next assessed the ability of Ring1B-defi cient cells to 

establish a chromosomal memory that is set up by the expres-

sion of Xist early in differentiation and allows for the effi cient re-

cruitment of H3K27me3 by Xist in differentiated cells (Kohlmaier 

et al., 2004). We found that the establishment of memory is in-

dependent of Ring1B (Fig. S3 D). After 15 d of doxycycline 

treatment, 58% of clone 36 and 71% of 36Ring1B−/− cells with a 

Xist focus also showed colocalizing H3K27me3. The delayed 

induction of Xist after 4 d of differentiation without doxycycline 

resulted in reduced H3K27me3 recruitment, with 37% of clone 

36 and 35% of 36Ring1B−/− cells showing focal H3K27me3 co-

localizing with Xist. When Xist was turned on for the fi rst 4 d 

of differentiation followed by 4 d without doxycycline and re-

induction for 7 d more, H3K27me3 recruitment was observed in 

58% of control clone 36 and 65% of 36Ring1B−/− cells compara-

ble with differentiation in the continuous presence of doxy-

cycline. This shows that a chromosomal memory regulating 

H3K27me3 in differentiated cells can be established by Xist in-

dependent of Ring1B.

Discussion
A dual role for Ring1B in the regulation 
of lineage genes and PRC1 proteins
We fi nd that a null mutation in Ring1B leads to a reduction of 

PRC1 proteins, including Mph1, Bmi1, and Mel18, and a loss 

of H2AK119ub1 in ES cells. Consequently, the loss of PRC1 

causes the derepression of lineage-restricted genes in ES cells 

and leads to aberrant differentiation. The genes Cdx2, Eomes, 

Hand1, and Foxa2 are derepressed in Ring1B-defi cient ES cells, 

which is consistent with a previous report of Ring1B binding to 

their promoters (Boyer et al., 2006). Moreover, Eomes, Hand1, 

and Cdx2, which are bound by Ring1B and PRC2, are de-

repressed in either Ring1B-defi cient or Eed-defi cient ES cells. 

This demonstrates that both Ring1B and PRC2 are essential for 

the repression of developmental genes, which is consistent with 

reports that PRC2 is required for PRC1 recruitment to the 

Ultrabithorax locus in Drosophila melanogaster cells (Cao et al., 

2002; Muller et al., 2002). Notably, Foxa2, a target of PRC1 but 

not PRC2, is derepressed strongly in Ring1B-defi cient but only 

weakly in Eed-defi cient ES cells. This indicates that PRC2-

dependent and independent modes of PRC1 recruitment to 

developmental control genes exist, similar to our previous ob-

servation in X inactivation (Schoeftner et al., 2006).

Loss of the repression of lineage-specifi c genes in Ring1B-

defi cient ES cells contributes to a marked predisposition to 

differentiation. Nonetheless, if Ring1B-defi cient ES cells are 

cultured under optimal conditions, they proliferate normally 

and express the pluripotency-associated marker Oct4 compara-

ble with wild-type ES cells. Differentiation of Ring1B-defi cient 

ES cells leads to abnormal EB formation, which is possibly the 

result of a failure to generate the normal spectrum of cell types. 

This results in the inability of the EB to form contractile cardio-

myocytes but does not impair the proliferation of differentiating 

cells. Aberrant differentiation is consistent with the observation 

that disruption of the Ring1B gene in mice results in gastrula-

tion arrest (Voncken et al., 2003). Notably, we fi nd the expres-

sion of Pl-1, a gene that is specifi c for terminally differentiated 

trophoblast cells, upon the differentiation of Ring1B-defi cient 

ES cells. This could indicate an aberrant differentiation poten-

tial toward extraembryonic lineages, which is not observed in 

normal mouse ES cells. The effect of Ring1B on lineage speci-

fi cation is dosage sensitive, as we observe a partial phenotype in 

36Ring1B−/cond ES cells, which show reduced levels of Ring1B 

protein as a result of a hypomorphic Ring1B allele. These cells 

can form contractile cell types but attach to culture plates only 

ineffi ciently, resulting in the formation of peculiar contracting 

spherical structures.

Several PcG proteins were present in reduced amounts in 

Ring1B-defi cient cells. By Western and immunofl uorescence 

analyses, we found that Rybp, Mel18, Mpc2, and Mph1 are vir-

tually absent in Ring1B-defi cient ES cells. The fi nding that 

these PRC1 transcripts were detected in 36Ring1B−/− ES cells 

suggests regulation at the protein level. The Bmi1 promoter has 

been reported as a target of both PRC1 and PRC2 (Boyer et al., 

2006). Consistent with this, we found elevated Bmi1 transcript 

levels in Ring1B- and Eed-defi cient cells. However, Bmi1 pro-

tein accumulates in Eed-defi cient but is virtually absent in 

Ring1B-defi cient ES cells despite elevated mRNA levels. This 

suggests that Ring1B is needed for Bmi1 protein translation or 

stabilization, possibly by complex formation. This is in line 

with a recent report that Ring1B and Bmi1 are required for 

 mutual stabilization (Ben-Saadon et al., 2006). Notably, Ring1B 

and PRC2 regulate Bmi1 expression at the transcriptional and 

protein levels. The requirement of Ring1B for the regulation of 

protein levels of other PRC1 members is somewhat reminiscent 

of the situation in PRC2, in which Eed controls the abundance 

of Ezh2 protein but Ezh2 transcription is unaltered in Eed-

defi cient cells (Schoeftner et al., 2006). This suggests that PcG 

proteins in general might be regulated at the protein level to 

achieve proper complex composition. We conclude that Ring1B 

has a dual function in the regulation of PRC1 protein levels and 

in the maintenance of transcriptional repression of developmental 

control genes in ES cells.

Ring1B is crucial for the recruitment 
of H2AK119ub1 by Xist in ES cells
Xist expression cannot establish chromosome-wide H2AK119ub1 

in Ring1B-defi cient ES cells. This is in contrast to the situation in 

mouse embryonic fi broblasts, in which the disruption of Ring1B 

has no effect on H2AK119ub1 on the Xi, but only the double de-

fi ciency of Ring1A and Ring1B leads to a loss of H2AK119ub1 

(de Napoles et al., 2004). Likewise, we fi nd that H2AK119ub1 

colocalization with Xist is restored upon the differentiation of 

Ring1B-defi cient ES cells. This indicates the presence of a re-

dundantly acting E3 ligase activity similar to that of Ring1A in 

embryonic fi broblasts. Consistent with this, we observe Ring1A 

colocalization with Xist in differentiated ES cells. We conclude 

that in ES cells, the establishment of H2AK119ub1 on the Xist-
expressing chromosome as well as on developmental control 

genes requires the specifi c recruitment of Ring1B.

In differentiated 36Ring1B−/− ES cells, H2AK119ub1 is ob-

served on the Xist-expressing chromosome despite the absence 

of Ring1B and several PRC1 proteins. H2A ubiquitination 
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 activity is specifi cally recruited by Xist, but global levels of 

H2AK119ub1 are not restored upon the differentiation of 

36Ring1B−/− cells. Similar results were reported in mouse embry-

onic fi broblasts, in which global H2AK119ub1 was lost, but 

H2AK119ub1 on the Xi was unaffected upon the deletion of 

Ring1B (de Napoles et al., 2004). Ring1A E3 ligase activity in 

the absence of Mph2 has been shown in vitro (Buchwald et al., 

2006; Li et al., 2006). Additionally, our previous observation 

that Ring1B can catalyze H2AK119ub1 without Mph1 recruit-

ment in Eed-defi cient ES cells (Schoeftner et al., 2006) supports 

the idea of the PRC1-independent recruitment of Ring1A to the 

Xist-expressing chromosome in differentiating 36Ring1B−/− cells. 

Bmi1 is suffi cient for the H2A ubiquitination activity of Ring1A 

when a Ring1A–Bmi1 complex is reconstituted in vitro (Buchwald 

et al., 2006). In contrast, our data suggest that Bmi1 and Mel18 

are not essential for the recruitment of E3 ligase activity by Xist. 
Our fi ndings indicate that H2A ubiquitination in X inactivation 

depends on a special mode of PcG recruitment by Xist, and 

Ring1B appears to be critical for global H2AK119ub1 in ES 

cells and differentiated cells.

H2AK119ub1 is not required for the 
initiation of Xist-mediated silencing
We have previously shown that H2AK119ub1 can be recruited 

by a mutant Xist RNA, which lacks the 5′ repeat A and does not 

initiate gene silencing in ES cells (Schoeftner et al., 2006). 

Thus, H2AK119ub1 is not suffi cient for gene silencing in X in-

activation. However, it remained conceivable that H2AK119ub1 

could be a prerequisite for silencing. In this study, we fi nd 

that Xist initiates silencing in the absence of H2AK119ub1 in 

Ring1B-defi cient ES cells. From this and from our previous data 

(Schoeftner et al., 2006), we conclude that neither H2AK119ub1 

nor H3K27me3 are essential for silencing in X inactivation. 

This is in contrast to the fi nding that developmentally regulated 

genes are derepressed in Ring1B-defi cient ES cells. Thus, we 

conclude that the requirement for PcG recruitment differs be-

tween the silencing of developmental genes and X inactivation. 

The reason for this discrepancy could be that PRC1 and PRC2 

are recruited in parallel by Xist RNA and, thus, could compen-

sate for each other’s loss of function. Consistent with this 

notion, the other initiation marks of X inactivation, namely 

H3K27me3 and H4K20me1, are effi ciently recruited by Xist in 

Ring1B-defi cient cells.

Maintenance of X inactivation 
in Ring1B-defi cient cells
Xist expression in ES cells initiates reversible chromosome-

wide gene repression. Therefore, a potential repressive activity 

of Ring1B might be masked by active repression by Xist. Upon 

differentiation, Xist loses its ability to initiate silencing, and re-

pression is maintained independently of Xist. The PcG system 

appears severely compromised in differentiating 36Ring1B−/− 

cells, as the abundance of several PRC1 and PRC2 proteins is 

strongly reduced. However, we observe that chromosome-wide 

histone modifi cations characteristic of the Xi are not affected by 

the absence of Ring1B in differentiated cells. Moreover, chro-

mosomal silencing is stably maintained independently of Xist in 

differentiated Ring1B-defi cient cells. This is in stark contrast to 

the regulation of developmental control genes, which are de-

repressed in ES cells carrying mutations in either Eed or Ring1B. 

We note that the chromosome-wide silencing of X inactivation 

is more robust in the face of a loss of PcG proteins than the re-

pression of developmental regulators. This might suggest that in 

X inactivation, several levels of control act synergistically, and 

the loss of Ring1B causes only a minor destabilization, which 

we could not detect by our assays. In the future, it will be 

imperative to study the simultaneous loss of PRC1 and PRC2 

function and examine whether such a mutant background is 

compatible with stem cell maintenance. Thus, X inactivation 

can provide a sophisticated model system for studying aspects 

of PcG protein recruitment and to dissect their effect on chro-

matin and gene expression.

Materials and methods
Cell culture and generation of ES cell lines
ES cell culture was described previously (Wutz and Jaenisch, 2000). Xist 
expression was induced with 1 μg/ml doxycycline. Differentiation medium 
contained 100 nM of all-trans–retinoic acid and no Leukemia inhibitory 
factor (LIF). EBs were generated by the hanging drop method in medium 
without LIF for 2 d. Then, aggregates were cultured in suspension and sub-
sequently plated on gelatin-coated dishes for up to 3 wk. Cells were 
counted with a Casy 1 cell counter (Schaerfe System GmbH). For Ring1B 
targeting, a 10-kb HindIII–BamHI genomic fragment was isolated from a 
bacterial artifi cial chromosome clone (RP22-287N19) from the RPCI22 
129 mouse bacterial artifi cial chromosome library (Children’s Hospital 
Oakland Research Institute). For the minus targeting vector, a 3-kb AvrII–
SphI fragment containing three exons, including the start codon and RING 
domain, was replaced by a stop cassette containing the adenoviral splice 
acceptor, a loxP-fl anked hygromycin-thymidine kinase cassette, and a poly-
adenylation signal. For counter selection, a diphtheria toxin A chain cas-
sette was added (Fig. 1 A). Clone 36 ES cells (Wutz and Jaenisch, 2000) 
were electroporated with 50 μg of linearized targeting vector. After selection 
with 130 μg/ml hygromycin B, targeted clones were identifi ed by South-
ern analysis of BamHI-digested DNA by a 5-kb band (wild type at 12 kb). 
The targeting frequency was 15%. The selection cassette was removed by 
electroporation of 30 μg Cre recombinase expression vector followed by 
2 μM gancyclovir selection. For the conditional targeting vector, a loxP-
fl anked hygromycin-thymidine kinase cassette was integrated into the SphI 
restriction site in intron 4. A loxP and a BamHI site were inserted into an 
AvrII site in intron 1 (Fig. 1 B). 36Ring1B−/cond ES cells were obtained with a 
frequency of 5%, and, after Cre-mediated recombination, 36Ring1B−/− ES 
cells were established with a frequency of 43%.

Immunostaining and RNA FISH
ES cells were preplated twice for 30 min to remove feeder cells and were 
spun onto poly-L-lysine–coated slides (Sigma-Aldrich) using a centrifuge 
(Cytospin 3; Thermo Shandon). Differentiated cells were grown on Roboz 
slides (CellPoint Scientifi c). Immunostaining was performed as described pre-
viously (Kohlmaier et al., 2004). In brief, cells were fi xed for 10 min in 4% 
PFA in PBS, permeabilized for 5 min in 0.1% Na citrate/0.5% Triton X-100, 
and blocked for 30 min in PBS containing 5% BSA and 0.1% Tween 20. For 
H2AK119ub1 immunostaining, cells were preextracted in 100 mM NaCl, 
300 mM sucrose, 3 mM MgCl2, 10 mM Pipes, pH 6.8, and 0.5% Triton 
X-100 for 2 min before fi xation, and washes after incubation with primary 
and secondary antibody were performed in KCM buffer (120 mM KCl, 
20 mM NaCl, 10 mM Tris, pH 8.0, and 0.5 mM EDTA)/0.1% Tween 20.

RNA FISH probes were generated by random priming (Stratagene) 
using Cy3-dCTP (GE Healthcare). After immunostaining, cells were fi xed in 
4% PFA in PBS for 10 min, dehydrated, hybridized, and washed as de-
scribed previously (Wutz and Jaenisch, 2000). Vectashield (Vector Labora-
tories) was used as imaging medium. Images were obtained at room 
temperature with a fl uorescence microscope (Axioplan; Carl Zeiss Micro-
Imaging, Inc.) at a magnifi cation of 100× using a plan Neofl uar NA 1.3 
objective, a CCD camera (CoolSNAP fx; Photometrics), and MetaMorph 
image analysis software (Universal Imaging Corp.). Color levels were ad-
justed in Photoshop 7.0 (Adobe). For colocalization analysis, at least two 
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independently derived Ring1B−/− ES cell lines were analyzed, and the 
means and SDs of at least two experiments were calculated and normal-
ized to the number of Xist-expressing cells unless stated differently.

RNA and protein analysis
Northern analysis was performed using 15 μg RNA (TRIzol; Invitrogen) as 
described previously (Wutz and Jaenisch, 2000). Quantifi cation was per-
formed using a scanner (STORM 860; Molecular Dynamics) and Im-
ageQuant TL software v2003.03 (GE Healthcare). Mean and SD was 
calculated from at least two 36Ring1B−/− cell lines and from at least two 
independent experiments. Histones were acid extracted in 0.2 N HCl. 
Nuclear proteins were extracted in 10 mM Hepes, pH 7.9, 1.5 mM MgCl2, 
0.1 mM EDTA, 25% glycerol, and 0.4 M NaCl after the cytoplasm had 
been separated. Protein concentration was measured by the Bradford as-
say. Loading was controlled by Ponceau S staining and lamin B1.

The following antibodies were used for immunofl uorescence/West-
ern analysis (Antisera dilutions are given in immunofl uorescence/Western 
blot pairs. “−/…” identifi es that the antisera was not used for immunofl uor-
escence; “…/−” was not used in Western blot): α-Ring1B (1:100/1:100; 
Atsuta et al., 2001), α-Ring1A (1:100/1:100; Schoorlemmer et al., 1997), 
α-MPc2 (−/1:300; Santa Cruz Biotechnology, Inc.), α-Bmi1 (−/1:500; 
Abcam), α-Mph1 (1:5/1:2; Isono et al., 2005), α-Mph2 (1:100/1:50; 
Isono et al., 2005), α-Mel18 (1:300/1:500; Santa Cruz Biotechnol-
ogy, Inc.), α-Suz12 (1:1,000/1:1,000; Upstate Biotechnology), α-Ezh2 
(1:500/1:500; Schoeftner et al., 2006), α-H3K27me3 (1:1,000/1:1,000; 
Kohlmaier et al., 2004), α-H4K20me1 (1:1,000/1:1,000; Kohlmaier 
et al., 2004), α-H2AK119ub1 (1:50/1:500; Upstate Biotechnology), 
α-RYBP (−/1:1,000; Chemicon), α-histone macroH2A–containing antiserum 
(1:500/−), α-histone macroH2A (−/1:500; Upstate Biotechnology), 
and α-lamin B1 (−/1:5,000; Abcam). Secondary antibodies used are as 
follows: AlexaFluor488 goat anti–rabbit IgG (1:500/−), AlexaFluor488 
goat anti–mouse IgG (1:500/−), and AlexaFluor568 rabbit anti–goat IgG 
(1:500/−); and HRP-conjugated Affi nipure goat α-rabbit IgG (−/1:10,000), 
HRP-conjugated Affi nipure goat α-mouse IgG (−/1:5,000), HRP-conjugated 
donkey α-goat IgG (−/1:2,000), and HRP-conjugated donkey α-human 
IgG (−/1:2,000) from Jackson ImmunoResearch Laboratories.

Semiquantitative and quantitative PCR expression analysis
cDNA was generated from 400 ng of total RNA from clone 36, 36Ring1B−/cond, 
36Ring1B−/−, 36Eed−/− ES cells, and female trophoblast stem cells using 
the Superscript II Reverse transcription kit (Invitrogen) and dT12–18 primers. 
Expression of the genes Cdx2, Eomes, Pl-1, Hand1, Foxa2, Hnf4, Oct4, 
Hoxa1, Ring1A, Ring1B, Bmi1, Mph1, Mph2, Mpc2, Mel18, Rybp, 
Suz12, and β-actin was analyzed by PCR (for primer sequences and con-
ditions, see Table S1, available at http://www.jcb.org/cgi/content/full/
jcb.200612127/DC1). Real-time PCR analysis was performed as de-
scribed previously (Schoeftner et al., 2006).

Online supplemental material
Fig. S1 describes the expression analysis of differentiated Ring1B-defi cient 
ES cells. Fig. S2 presents immunofl uorescence analysis of H3K27me3 and 
Ring1A recruitment in clone 36 and 36Ring1B−/− cells. In Fig. S3, we present 
the analysis of chromosome-wide silencing in clone 36 and 36Ring1B−/− 
cells. Video 1 shows contractile spheres formed by differentiating Ring1B−/cond 
ES cells. Table S1 provides PCR primer sequences for semiquantitative ex-
pression analysis. Online supplemental material is available at http://www
.jcb.org/cgi/content/full/jcb.200612127/DC1.
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