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Introduction
Elucidation of the mechanisms controlling the shape of cells is 

an important cell-biological issue. In epithelial layers, cells are 

arranged in an orderly honeycomb-like pattern, in which cell–

cell boundaries exhibit a more or less stretched morphology that 

is similar to the interfaces of soap bubbles, implying that some 

physical tension is operating for the shaping of cell outlines 

(Thompson, 1917; Hayashi and Carthew, 2004). The molecular 

mechanisms that produce such tension, however, remain unre-

solved. In Drosophila melanogaster retinal cells, cadherin cell-

adhesion molecules were shown to be required for minimizing 

the surface areas of the cells in contact with each other (Hayashi 

and Carthew, 2004), suggesting that this molecular family con-

trols the tensile property of cell junctions. Cadherin organizes 

the complex machinery for cell adhesion by interacting with 

several cytoplasmic components, including catenins. This com-

plex is concentrated at the adherens junction (AJ), which is lo-

cated directly under the tight junction (TJ; Farquhar and Palade, 

1963), and these two types of junctional structures are posi-

tioned at the apical-most margin of the entire cell–cell junction, 

although the cadherin–catenin complex is also distributed 

throughout the lateral cell–cell contacts. The AJ is lined with 

actin fi bers, and cadherin requires α-catenin, which is one of the 

catenins that is known to interact with F-actin (Rimm et al., 

1995; Drees et al., 2005; Yamada et al., 2005), for its full adhe-

sive activity (Watabe-Uchida et al., 1998), suggesting that cad-

herin and F-actin cooperate in cell junction organization. In 

turn, regulators of cadherin or actin are assumed to be involved 

in the modulation of cell–cell boundary morphology.

Rho family small GTPases (Rho GTPases) are pivotal 

regulators of the actin cytoskeleton (Etienne-Manneville and 

Hall, 2002). In epithelial cells, these GTPases have also been 

implicated in cadherin activities (Fukata and Kaibuchi, 2001; 

Braga and Yap, 2005); conversely, the GTPase activities are 

modulated by cadherin-mediated adhesion (Kim et al., 2000; 

Noren et al., 2001; Braga and Yap, 2005), suggesting that these 

enzymes are important for cadherin–actin interplay. The activi-

ties of Rho GTPases are regulated by guanine nucleotide ex-

change factor (GEF), which exchanges GDP for GTP (Schmidt 

and Hall, 2002). Once activated, the small GTPases can interact 

with various downstream effectors, acting as a molecular switch 

(Etienne-Manneville and Hall, 2002). Among several classes of 

protein identifi ed as Rho GEFs, the Dbl family proteins are best 

characterized. The Dbl homology domain (DH domain) has 
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been shown to be necessary and suffi cient for the GEF activity 

of Dbl family Rho GEFs (Hart et al., 1994). It is thought that 

 localized activation of GEFs contributes to the spatiotemporal 

activation of Rho GTPases. Among the Rho GEFs identifi ed, 

Tiam1, which is a Rac-specifi c GEF, has been best character-

ized as a modulator of cell junctions, and its depletion impairs 

both AJ and TJ formation (Malliri et al., 2004; Chen and 

Macara, 2005; Mertens et al., 2005). GEF-H1/Lfc, which is a 

GEF for Rho, was also implicated in TJ functions (Benais-Pont 

et al., 2003). On the other hand, the role of Cdc42 and its GEFs 

in cell junction assembly is poorly understood, although the 

 activation of Cdc42 was shown to increase actin accumulation 

at cell junctions (Kodama et al., 1999). Also, nectin, which is an 

AJ component, could activate Cdc42 through FRG, which is a 

Cdc42 GEF (Fukuhara et al., 2004). We show that Tuba, which 

is a Cdc42-specifi c GEF that belongs to the Dbl family (Salazar 

et al., 2003), plays an important role in the regulation of cell 

junction confi guration by becoming localized at the apical junc-

tions of simple epithelia.

Results
Tuba localizes at the apical junction 
by interacting with ZO-1
We used Caco-2 cells throughout the present experiments, as 

they exhibited typical simple epithelial morphology. Immuno-

staining with a mAb specifi c for Tuba (Fig. 1 A) showed that this 

molecule was sharply concentrated at cell junctions (Fig. 1, C–E). 

When Tuba cDNA had been introduced into Caco-2 cells, the 

intensity of junctional Tuba signals increased (Fig. 1 B), justify-

ing the aforementioned observation on the endogenous Tuba 

 localization. A similar distribution was observed in other simple 

epithelial cells, such as DLD-1 and MTD-1A (unpublished 

data). Immunostaining of Caco-2 cells at high densities showed 

that Tuba was strictly localized at the apical-most margin of cell 

junctions, colocalizing with ZO-1, which is a TJ component 

(Fig. 1 C). Tuba also colocalized with l-afadin (Mandai et al., 

1997), which is an AJ component (Fig. 1 D). However, although 

the l-afadin was also detectable at basal regions of the cell–cell 

contacts, to some extent, Tuba did not follow this localization of 

l-afadin. Tuba also overlapped with the apical margin popula-

tion of αE-catenin, although the latter was distributed through-

out the cell–cell contacts (Fig. 1 E). Other populations of Tuba 

molecules were localized in the cytoplasm, which were most 

abundant at perinuclear regions.

Because Tuba closely colocalized with ZO-1, we investi-

gated their potential interactions. First, we observed the local-

ization of these molecules in low-calcium medium, in which 

cadherin molecules became dispersed but ZO-1 remained as 

clusters. Even under these conditions, Tuba maintained its colo-

calization with ZO-1 (Fig. 2 A). We then overexpressed Tuba 

and ZO-1 together in Caco-2 cells. Excessive Tuba molecules 

were localized not only along cell junctions, but also became 

clustered in the cytoplasm, and ZO-1 tightly associated with all 

these Tuba signals (Fig. 2 B). As a control, we coexpressed 

Tuba and β-catenin, but these two molecules did not colocalize 

(Fig. 2 C), indicating that the Tuba–ZO-1 colocalization was 

caused by their specifi c interactions.

We next performed immunoprecipitation using lysates of 

cells cotransfected with Tuba and ZO-1 cDNAs and found that 

Tuba coprecipitated with ZO-1 (Fig. 2 D). Tuba was also able to 

coprecipitate with ZO-2, but not with ZO-3 (Fig. S1, A and B, avail-

able at http://www.jcb.org/cgi/content/full/jcb.200605012/DC1). 

To determine the sites on Tuba responsible for its interac-

tion with ZO-1, we coexpressed a series of deletion mutants of 

Tuba with ZO-1, tested their binding by immunoprecipitation, 

and found that their interaction required the C-terminal domain 

of Tuba (Fig. 2, E and F). However, the C-terminal fragment 

alone was unable to bind ZO-1 (unpublished data), suggesting 

that some cooperation of the C-terminus with other sites on 

Figure 1. Localization of Tuba at the apical 
cell–cell junctions in Caco-2 cells. (A) Immuno-
blot detection of Tuba from a Caco-2 cell lysate 
with anti-Tuba mAb. Two isoforms, of 190 and 
170 kD, are detected. (B) Cell junctional sig-
nals of Tuba are increased by its exogenous 
expression. Compare the immunofl uorescence 
signals along cell junctions between the cen-
trally located transfectants and surrounding 
nontransfectants. (C–E) Endogenous Tuba is 
concentrated at the apical region of cell junc-
tions. Cells were coimmunostained for Tuba 
and ZO-1 (C), l-afadin (D), or αE-catenin 
(α-catenin) (E). Tuba is colocalized with ZO-1, 
l-afadin, and the apical-most population of 
αE-catenin (α-catenin). Bars: (B) 20 μm; (C–E) 
10 μm.
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Tuba may be required for the Tuba–ZO-1 interaction. The im-

portance of the C-terminal domain was confi rmed by immuno-

staining of Tuba deletion-mutant transfectants (Fig. 2 G). 

Constructs in which the DH or N-terminal half region had 

been deleted, designated as ∆DH or ∆N, respectively, could 

become localized at cell junctions, although ∆N was largely 

cytoplasmic. In contrast, ∆C was completely cytoplasmic. 

 Finally, we depleted ZO-1 expression by using RNAi, and 

Figure 2. Tuba is recruited to cell–cell junctions with ZO-1. (A) Tuba and ZO-1 are colocalized with each other even after disorganization of cell–cell contacts. 
Caco-2 cells were cultured in low-calcium medium and coimmunostained for Tuba and ZO-1. (B and C) Clusters of overexpressed Tuba are colocalized 
with ZO-1 (B), but not with β-catenin (C). (D) Tuba coimmunoprecipitates with ZO-1. Tuba and ZO-1-HA were coexpressed in human embryonic kidney 
293 cells; and ZO-1 was immunoprecipitated from their lysates with anti-HA antibody, and then the coprecipitated molecules were identifi ed by immuno-
blotting. (E) Schematic diagram of deletion mutants of Tuba used in this study. From the N-terminus, Tuba consists of four Src homology 3 (SH3) domains, 
a DH domain, a Bin1/amphiphysin/Rvs (BAR) domain, and two SH3 domains. Flag tag was attached only to ∆C. For immunodetection of Tuba or its mutants, 
we generally used the anti-Tuba mAb, which had been generated against the C-terminal portion of Tuba. For detection of ∆C, we used anti-Flag antibodies. 
(F) Tuba C terminus is required for the interaction between Tuba and ZO-1. Deletion mutants of Tuba were coexpressed with ZO-1, and their coprecipitates 
were assayed as in D. Bands were detected by using a mixture of mAbs against Tuba and Flag tag. (G) Tuba C terminus is required for junctional localization. 
FL, ∆DH, and ∆N are localized at cell junctions (arrowheads), as well as in the cytoplasm, whereas ∆C is detected only in the cytoplasm. (H and I) Junction 
localization of Tuba is abolished in ZO-1 knockdown cells. Expression of ZO-1 was knocked down in Caco-2 cells by siRNA (H). ZO-1 RNAi cells were 
coimmunostained for Tuba and ZO-1 (I). Similar results were obtained by using three different siRNAs, siZO-1-1–3. Bars, 20 μm.
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found that Tuba could not become localized at the cell junc-

tions that had lost ZO-1 (Fig. 2, H and I), despite the normal 

appearance of the apical junctions in ZO-1–defi cient cells 

(McNeil et al., 2006; Umeda et al., 2004). These results con-

fi rmed that ZO-1 was required for the cell junction  localization 

of Tuba. On the other hand, ZO-2 depletion did not affect 

Tuba localization (Fig. S1 C), indicating that ZO-1 plays the 

predominant role in targeting Tuba to cell junctions. Whether 

Tuba directly binds ZO-1 or -2 or requires a mediator remains 

to be determined.

Figure 3. Tuba regulates the junctional confi guration. (A) Immunoblot detection of Tuba from control, pSUPER-Tuba–transfected, and Tuba siRNA–treated 
cells by use of anti-Tuba mAb. (B) Immunostaining of control and pSUPER-Tuba–transfected cells with anti-Tuba mAb. (C and D) Distorted apical junctions 
in Tuba-RNAi cells. Control and Tuba-RNAi cells were stained for ZO-1 (C) or l-afadin (D). In Tuba-RNAi cells, the apical junctions are more irregularly 
curved than in the controls. Some cells exhibit abnormally small apical surface areas, as outlined by these markers (arrows). (E) Quantifi cation of junction 
linearity. Junction length (blue) and the distance between vertices (red) were measured. Linearity index is defi ned by the ratio of junction length to the 
 distance between vertices. (right) This index increases in Tuba-RNAi cells. *, P < 0.05. n = 3 independent experiments, in each of which >150 junctions 
were measured; t test. (F) Apical area is more variable in Tuba-RNAi cells. The apical area of each cell was measured, and the ratio of the SD of apical 
area to mean apical area was quantifi ed. *, P < 0.05; n = 3 independent experiments, in each of which >100 cells were measured; t test. (G) Cell junc-
tion outlines are distorted in ∆DH- or ∆C-expressing cells, but not in FL- or ∆N-expressing ones. Stable transfectants were immunostained for ZO-1. (right) 
Quantifi cation confi rms these differences. Error bars represent the mean ± the SD. *, P < 0.05; **, P < 0.001. n = 4 independent experiments, in each 
of which >30 junctions were measured; t test. Bars, 20 μm.
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Tuba depletion perturbs junctional 
confi guration
To elucidate the function of Tuba in Caco-2 cells, we examined 

the effect of its RNAi-mediated depletion, either by isolating 

stable transfectants expressing small hairpin Tuba RNAs or by 

treating cells with a siRNA specifi c for Tuba, and the results 

consistently observed in these transfectants (Tuba-RNAi cells) 

are described in this study. Effi cient and specifi c knockdown 

of Tuba was confi rmed by Western blotting and immunofl uores-

cence (Fig. 3, A and B). Immunostaining for ZO-1 and l-afadin 

revealed that, in Tuba-RNAi cells, the overall outlines of TJ 

and AJ were distorted; their cell–cell boundaries were overly 

bent and less strained, compared with those in the controls 

(Fig. 3, C and D), suggesting that those junctions had acquired 

reduced tension. We quantifi ed this difference by measuring 

the ratio of junction length to the distance between vertices, 

defi ning a “linearity index,” and confi rmed that the junc-

tions of Tuba-RNAi cells were excessively curved (Fig. 3 E). 

Concomitantly, some of the Tuba-RNAi cells exhibited un-

usually small apical areas (Fig. 3 D, arrows). Quantifi cation 

showed that the variation in the apical surface area increased 

after Tuba depletion (Fig. 3 F).

We also tested the effects of overexpression of Tuba dele-

tion mutants in Caco-2 cells (Fig. 3 G). ∆DH lacking the cata-

lytic domain perturbed the junction linearity, as found in Tuba 

RNAi cells, and ∆C expression showed an effect similar to that 

of ∆DH, suggesting that these mutant molecules compete with 

endogenous Tuba for interactions with partners required for their 

functions. These results corroborated the observation that Tuba 

inactivation led to the distortion of junctional morphology.

Impaired distribution of E-cadherin 
and F-actin after Tuba depletion
Despite the deformed outlines of the apical cell–cell contacts, 

E-cadherin and F-actin appeared normally concentrated along 

the AJ in Tuba RNAi cells (Fig. 4 A). The expression levels of 

E-cadherin and other junctional proteins were also not changed 

(Fig. 3 A). However, their distributions in lower (lateral) por-

tions of cell–cell boundaries were affected. In normal Caco-2 

cells, E-cadherin was concentrated at these areas in a peculiar 

networklike pattern, overlapping with actin fi bers with a similar 

network (Fig. 4 A). Close-up views showed that the lateral pop-

ulations of E-cadherin or overlapping F-actin organized strands 

that were linked with their AJ components. In Tuba-RNAi cells, 

Figure 4. Disorganization of F-actin and 
E-cadherin networks by Tuba suppression. 
(A) Double-staining for F-actin (green) and 
E-cadherin (red). F-actin and E-cadherin form an 
AJ at the apical-most margin of the junction 
 (arrowheads), and the AJ is linked with the lat-
eral networks of these molecules in the case of 
control cells. In Tuba-RNAi cells, F-actin appears 
to have been dispersed at the  lateral portions, 
and the E-cadherin networks have become 
fragmented and discontinuous with the AJ; the 
colocalization of E-cadherin and F-actin is also 
reduced. (B) Quantifi cation of F-actin density 
at cell junctions. (left) F-actin density at apical 
and lateral cell junctions was measured as 
shown. (right) Quantifi cation shows that lateral 
F-actin density is reduced in Tuba-RNAi cells. 
Error bars represent the mean ± the SD. 
n > 40 junctions. (C) Triton X-100 solubility 
of E-cadherin is not altered in Tuba-RNAi 
cells. S, soluble fraction; I,  insoluble fraction. 
(D) Effects of Tuba deletion mutants on E-cadherin 
distribution. Immuno staining for E-cadherin shows 
that, in ∆DH- or ∆C-expressing cells, E-cadherin 
localization at lateral cell–cell contacts is more 
diffuse compared with that in FL-expressing cells. 
In ∆N-expressing cells, E-cadherin was most 
highly concentrated at lateral cell–cell  contacts. 
Bars, 10 μm.
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E-cadherin strands became fragmented and discontinuous with 

the AJ, with a concomitant disturbance of actin fi laments, which 

appeared less polymerized than in the controls. Quantifi cation 

of F-actin density at cell junctions confi rmed that the lateral 

 actin fi bers less densely distributed in the RNAi cells, although 

the apical actin fi laments were only slightly affected (Fig. 4 B). 

In addition, Tuba depletion reduced the colocalization of 

E- cadherin and actin fi bers, although the Triton X-100 solubility 

of E-cadherin was not particularly different between control- 

and Tuba-RNAi cells (Fig. 4 C).

We also generated stable transfectants expressing Tuba 

deletion mutants, and examined E-cadherin distribution in them 

(Fig. 4 D). In ∆DH- and ∆C-expressing cells, E-cadherin at the 

lateral membranes appeared more diffuse or fragmentary, as 

compared with that of FL-expressing cells. Thus, these two con-

structs not only impaired apical junctional linearity (see above) 

but also perturbed the lateral distribution of E-cadherin, as in 

the case of Tuba-depleted cells. On the other hand, in ∆N-

 expressing cells, E-cadherin became more highly concentrated 

at the cell–cell contacts. This implies that the N-terminal half 

region has an inhibitory activity for Tuba.

To see the effects of Tuba depletion on more dynamic 

phases of cell contact, we observed the behavior of E-cadherin 

and F-actin during the recovery process of cell–cell adhesion by 

conducting a “calcium-switch” experiment (Fig. 5 A). In low-

calcium medium, E-cadherin disappeared from cell–cell bound-

aries, and actin fi bers irregularly ran along cell peripheries in 

both control and Tuba-RNAi cells. By 1 h after calcium restora-

tion, E-cadherin and actin became sharply colocalized at cell–

cell boundaries. In Tuba-RNAi cells, however, this E-cadherin 

accumulation was retarded. At 1 h, although we could detect 

junctional E-cadherin, its signals were fragmented, and actin 

 fi bers did not sharply delineate cell–cell boundaries. Further-

more, E-cadherin signals did not fully colocalize with F-actin 

ones. The retardation of E-cadherin accumulation was con-

fi rmed by quantifying the junctional fl uorescence intensity of 

E-cadherin at 5 min after calcium switch (Fig. 5 B). In contrast 

to E-cadherin, ZO-1 recruitment to cell junctions was not se-

verely affected in Tuba-RNAi cells (Fig. 5 C), although the out-

lines of these cells appeared to be less tense compared with 

those of control cells. These results suggest that the junctional 

recruitment of ZO-1 occurs independently of the Tuba signal-

ing, whereas the organization of E-cadherin and actin at cell 

junctions is under the control of Tuba. Meanwhile, we found no 

difference in the composition of catenins coprecipitating with 

E-cadherin between the control and Tuba-RNAi cell lysates 

(unpublished data), indicating that Tuba defi ciency did not 

 affect cadherin–catenin complex formation.

The effects of ZO-1 knockdown 
on junctional confi guration
As ZO-1 knockdown depleted Tuba from cell junctions, we 

 expected that ZO-1–RNAi and Tuba-RNAi cells would display 

similar phenotypes. However, this was not the case. The outlines 

of apical junctions appeared rather straighter in ZO-1–RNAi 

cells than in the controls (Fig. S2 A, available at http://www.jcb.

org/cgi/content/full/jcb.200605012/DC1), which is opposite to 

what we had anticipated. We noticed that myosin IIA or IIB be-

came strongly up-regulated along the apical junctions of ZO-1–

depleted cells (Fig. S2 B); furthermore, phosphorylation of 

serine 19 of myosin light chain (MLC), which refl ects its activa-

tion, was also up-regulated at ZO-1–depleted cell junctions 

(Fig. S2 C). In Tuba-RNAi cells, on the other hand, neither 

 myosin localization nor MLC phosphorylation was up-regulated 

Figure 5. Junctional recruitment of F-actin 
and E-cadherin after calcium switch. (A) Cells 
were cultured in low-calcium medium over-
night, and then cadherin-mediated junction as-
sembly was initiated by the addition of calcium. 
In Tuba-RNAi cells, the relocation of E-cadherin 
to cell junctions was retarded, and F-actin 
could not be reorganized into sharp lines at 
cell–cell boundaries by 1 h. (B) Immunofl uores-
cence intensity of E-cadherin at cell junctions 
was quantifi ed for the samples incubated for 
5 min with calcium. Error bars represent the 
mean ± the SD. n = 60 junctions. (C) ZO-1 
 relocation to cell junctions was not severely 
 effected in Tuba-RNAi cells. Bars, 10 μm.
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at cell junctions (Fig. S2, E and F). From these observations, we 

reasoned that ZO-1 depletion up-regulated myosin II activities 

via unknown mechanisms, and enhanced the contractility of junc-

tional actin fi bers, hiding the opposite effect of Tuba depletion. 

To test this possibility, we examined the effect of Y-27632, 

which is an inhibitor of Rho kinase (Uehata et al., 1997) that 

can suppress MLC activation (Amano et al., 1996), and found 

that this reagent abolished the up-regulation of myosin II in 

ZO-1–RNAi cells (Fig. S2 D). Importantly, in the presence of 

Y-27632, the cell junctions now became more severely distorted 

in ZO-1–RNAi cells than in the controls (Fig. S2 A), indicating 

that, provided myosin II is inactive, ZO-1 and Tuba depletions 

exhibit similar junctional phenotypes. These fi ndings suggest 

that there are at least two pathways downstream of ZO-1, a 

Rho–Rho kinase–myosin pathway and a Tuba pathway, and that 

ZO-1 depletion affected both pathways. As Y-27632 alone can 

distort cell junctions to some extent (Fig. S2 A), a balance 

 between these pathways may determine the overall junction 

morphology. Collectively, we can conclude that the phenotypes 

observed in ZO-1–depleted cells do not contradict with the pro-

posed role of the interaction between ZO-1 and Tuba in cell 

junction confi guration. It is of note that cell junction formation 

is delayed in ZO-1–depleted cells (McNeil et al., 2006; Umeda 

et al., 2004), which is similar to the properties of Tuba-RNAi 

cells, supporting the idea that ZO-1–dependent localization of 

Tuba at cell junctions is required for its functions.

Tuba signals through Cdc42
Next, we studied the functions of Tuba as a Cdc42 GEF. We fi rst 

confi rmed that Tuba preferentially activated Cdc42 by conduct-

ing an in vitro guanine nucleotide exchange assay (Fig. S3, avail-

able at http://www.jcb.org/cgi/content/full/jcb.200605012/DC1). 

Figure 6. Role of Cdc42 in junction assembly. 
(A) Cdc42 is localized at cell–cell boundaries, 
and this localization is diminished in Tuba-
RNAi cells. (B and C) Delayed redistribution of 
Cdc42 to Tuba-RNAi cell junctions in  calcium-
switch experiments. Cdc42 was immuno-
stained at the indicated times after calcium 
restoration (B). Immunofl uorescence intensity 
of Cdc42 at cell junctions was quantifi ed for 
the samples incubated for 30 min (C), in 
which the intensity of control-RNAi cells was 
adjusted to 100. Error bars represent the mean 
± the SD. *, P < 0.05. n = 3 independent ex-
periments, in each of which >10 junctions 
were measured; paired t test. (D) Delayed acti-
vation of Cdc42 in Tuba-RNAi cells. After 
Cdc42 pull-down assays using GST-PAK-CRIB, 
the intensity of electrophoretic bands of Cdc42 
was quantifi ed. In brief, each band was encir-
cled by a box, and the signal density of the 
band was measured. The ratio of the Cdc42 
signals in GST-PAK-CRIB pull-down samples to 
those in the total lysates was defi ned as “active 
Cdc42/total Cdc42.” The ratio in control-
RNAi cells at 0 min was adjusted to 1. Error 
bars represent the mean ± the SEM. *, P < 
0.05; n = 3 independent experiments; one-
tailed t test. (E and F) Effects of Cdc42 mutants 
on junction assembly in calcium-switch assays. 
Dominant-negative (N17-Cdc42) or constitutive-
active (V12-Cdc42) Cdc42 was expressed in 
control or in Tuba-RNAi cells. In N17-Cdc42–
transfected control cells (E), the junctional re-
cruitment of F-actin and E-cadherin was delayed 
(compare with Fig. 5). (F) In contrast, V12-
Cdc42 strongly promoted the junctional accu-
mulation of these molecules in Tuba-RNAi cells. 
(G) Linearity index in  control or Tuba-RNAi 
cells, expressing either GFP (control) or dominant-
negative or constitutive-active Cdc42, measured 
at 1 h. Error bars represent the mean ± the SD. 
*, P < 0.005; **, P < 0.0005. n = 3 inde-
pendent experiments, in each of which >40 
junctions were measured; t test. Bars: (A) 10 μm; 
(B, E, and F) 20 μm.
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As the activation of Rho GTPases has been correlated with its 

membrane association (Bokoch et al., 1994), we examined the 

subcellular localization of Cdc42 in Caco-2 cells by immuno-

staining. In confl uent Caco-2 cells, immunostaining signals for 

Cdc42 were weakly, but consistently, detected at the apical cell–

cell junctions, and this localization of Cdc42 became less visi-

ble in Tuba-RNAi cells (Fig. 6 A). When cells had been subjected 

to calcium-switch experiments, Cdc42 was rapidly recruited to 

cell–cell contact sites upon the restoration of normal calcium 

concentration in the control cells, and this redistribution of 

Cdc42 was retarded in the Tuba-RNAi cells (Fig. 6 B). The 

Cdc42 immunofl uorescence signal per cell junction was re-

duced by �30% in the Tuba-RNAi cells, when measured at the 

30 min incubation point (Fig. 6 C). These observations suggest 

that Tuba has the ability to facilitate the recruitment of Cdc42 to 

cell junctions. Because Cdc42 was shown to be activated during 

cell junction assembly (Kim et al., 2000; Noren et al., 2001), we 

measured its activity by pull-down assays. The results showed 

that Cdc42 was transiently activated at 5 min after calcium 

switch, but this activation did not occur in Tuba-RNAi cells 

(Fig. 6 D). We could not detect any other differences in the 

overall activity of Cdc42 between control and Tuba-RNAi cells 

by this biochemical method; the Tuba-mediated Cdc42 regula-

tion might represent only a small portion of the entire regulatory 

systems for this small GTPase.

To test if the cellular phenotypes observed in Tuba-RNAi 

cells were caused by reduced Cdc42 activities, we examined if 

dominant-negative Cdc42 expression could mimic Tuba  depletion. 

Caco-2 cells transfected with Cdc42 mutants were unable to 

grow to form cell colonies, and for this reason, we observed only 

early cell–cell contact events by using calcium-switch assays. 

In the cells transfected transiently with dominant-negative N17-

Cdc42, E-cadherin and actin accumulation were perturbed in a 

fashion similar to those found in Tuba-RNAi cells. E-cadherin 

 remained punctate and F-actin irregularly delineated cell junctions 

at 1 h after the calcium restoration (Fig. 6 E). Conversely, when 

dominant-active V12-Cdc42 had been expressed in Tuba-RNAi 

cells, the E-cadherin and actin reassembly was dramatically 

 facilitated, resulting in the formation of junctions with a tightened 

appearance (Fig. 6 F). Measurement of the junction linearity con-

fi rmed that dominant-negative N17-Cdc42 was able to loosen the 

cell boundaries of the control cells, but could not signifi cantly 

 enhance the phenotype of Tuba-RNAi cells, and dominant-active 

V12-Cdc42 enhanced the rectilinear organization of cell junc-

tions in both control and Tuba-RNAi cells (Fig. 6 G). Thus, Cdc42 

inactivation mimicked that of Tuba, and activation of Cdc42 

could rescue the Tuba RNAi phenotypes. The effect of V12-

Cdc42 appeared excessive, as it facilitated even the control cell 

junction formation, refl ecting its dominant-active nature.

Previous studies showed that Tuba interacted with neural 

Wiskott-Aldrich syndrome protein (N-WASP; Salazar et al., 

2003). As N-WASP is an effector of Cdc42 (Rohatgi et al., 1999), 

we studied its potential role in the Tuba–Cdc42 signaling system. 

We fi rst confi rmed that Tuba could coprecipitate with N-WASP 

(Fig. 7 A). Next, we knocked down N-WASP by using RNAi 

(Fig. 7 B). In N-WASP–RNAi cells, the outlines of cell junctions 

became distorted in a pattern comparable to that in Tuba-RNAi 

cells (Fig. 7 C). For comparison, we also knocked down the ex-

pression of IQGAP1, which is another Cdc42 effector implicated 

in cell junctions (Kuroda et al., 1998; Noritake et al., 2004), and 

found that IQGAP1 depletion had no effects on the junction lin-

earity (Fig. 7, B and C), suggesting that these effectors have dis-

tinct roles. Tuba and Cdc42 were able to localize normally to 

cell–cell junctions in the N-WASP–depleted cells (Fig. 7 D), sug-

gesting that these molecules function upstream of N-WASP.

We also examined E-cadherin and actin organization in 

N-WASP–RNAi cells. In them, E-cadherin strands became frag-

mented at the lateral cell–cell contacts, as seen in Tuba-RNAi 

Figure 7. Role of N-WASP in junctional  confi gur ation. 
(A) Tuba interacts with N-WASP. Tuba and myc-N-WASP 
were coexpressed in human embryonic kidney 293 
cells, N-WASP was immunoprecipitated from their 
lysates with anti-myc antibody, and the coprecipitated 
molecules were identifi ed by immunoblotting. (B, left) 
Immunoblot detection of N-WASP from control and 
N-WASP–RNAi cells with anti –N-WASP antibody. 
(right) Immunoblot detection of IQGAP1 from control 
and IQGAP1-RNAi cells with anti-IQGAP1 antibody. 
(C) Distortion of cell–cell boundaries in N-WASP–RNAi 
cells, detected by ZO-1 immuno staining. (right) Linearity 
index. Error bars represent the mean ± the SD. 
*,P < 0.005. **, P < 0.0005. n = 3 independent 
 experiments, in each of which >100 junctions were 
measured; t test. (D) Localization of Tuba and Cdc42 
is not altered in N-WASP–RNAi cells. (left) Tuba locali-
zation in confl uent N-WASP–RNAi cells. (right) Cdc42 
localization in N-WASP–RNAi cells at 30 min after 
calcium restoration. Bars, 20 μm.
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cells, and their colocalization with F-actin was dramatically re-

duced (Fig. 8 A). The fi brous organization of actin itself ap-

peared to have been suppressed at the lateral cell–cell contact 

regions, although the apical AJ-associated bundles were not 

 affected. In calcium-switch assays, N-WASP depletion perturbed 

the organization of E-cadherin and F-actin at early cell–cell 

contacts (Fig. 8 B), which is a phenocopy of the effects of Tuba 

depletion. Finally, by using the calcium-switch assay, we ex-

amined whether N-WASP overexpression could rescue the de-

fects of junction assembly that are induced by Tuba depletion. 

The results showed that overexpression of full-length N-WASP 

facilitated the accumulation of E-cadherin and F-actin at cell–

cell contacts in Tuba RNAi cells (Fig. S4, A and C, available 

at http://www.jcb.org/cgi/content/full/jcb.200605012/DC1), 

 although this effect was most evident at 5 min after calcium 

 restoration, and became less clear at 1 h. In contrast, overex-

pression of ∆cof-N-WASP, which cannot activate Arp2/3 com-

plex–dependent actin nucleation in vitro (Rohatgi et al., 1999), 

did not facilitate E-cadherin or F-actin accumulation at cell–cell 

contacts (Fig. S4, B and D).

Discussion
We have demonstrated that Tuba is concentrated at the apical-

most margin of the epithelial cell junctions by binding to the TJ 

protein ZO-1 (or its associated proteins), suggesting that this 

molecule is localized around the TJ. Depletion of Tuba distorted 

the outlines of the apical TJ–AJ complex. Closer observations 

of F-actin and E-cadherin revealed that although the AJ struc-

ture itself appeared normal, the distributions of these molecules 

located lower than the AJ were disorganized. In normal Caco-2 

cells, F-actin organized a fi brous network at the lateral portions 

of the cell junction, and this actin network was linked with the 

apical actin fi bers forming the AJ, and E-cadherin showed 

an overlapping distribution. As a result of Tuba depletion, the 

E-cadherin networks became fragmented, with a concomitant 

reduction of thick, lateral actin fi laments. These observations 

suggest a scenario in which Tuba functions at the level of the 

TJ, but its effects spread to the lower portions of the junction. 

As such apical-specifi c localization has never been reported for 

other Cdc42 or Rac GEFs, Tuba may play a unique, position-

specifi c role in junctional organization.

Our results suggest that Tuba is required for the regulation 

of geometrical confi guration of the apical junctions. Although 

the mechanism that generates the linear morphology of the 

 apical junctions is poorly understood, we can speculate that the 

surface tension supported by the cortical actin cytoskeleton is 

important, as the actin cytoskeleton is a critical regulator of the 

viscoelasticity of the cell cortex (Petersen et al., 1982). The role 

of Tuba is likely to regulate actin polymerization via Cdc42 

and its effectors, and E-cadherin follows the actin distribution, 

as suggested by their colocalization. The lateral networks of 

F-actin and E-cadherin strands, thus formed, may increase the 

surface tension for minimizing the surface area of cell  junctions, 

Figure 8. Role of N-WASP in cadherin or actin 
 distribution. (A) Double-staining for F-actin (green) and 
E-cadherin (red) in N-WASP–RNAi cells. Arrowheads 
indicate the AJ. Note the diffuse actin signals at the 
lateral cell junctions, and reduced colocalization of 
F-actin and E-cadherin, in N-WASP–RNAi cells. Actin 
fi bers along the AJ appear normal. (B) Control and 
N-WASP–RNAi cells were subjected to calcium-switch 
assays and stained for F-actin or E-cadherin. N-WASP de-
pletion delayed cell junction assembly. Linear re organi-
zation of actin fi laments was impaired, and E-cadherin 
accumulation was  irregular at 1 h. Bars, 10 μm.



JCB • VOLUME 175 • NUMBER 1 • 2006 144

or stabilize the linear morphology of cell junctions, and this 

 molecular status is disrupted by the loss of Tuba. On the other 

hand, through the experiments of ZO-1 knockdown, we found 

that ZO-1 functioned not only as a partner for Tuba but also as 

a regulator of myosin activity, and the latter activity infl uenced 

the morphology of cell junctions. In contrast to the case of ZO-1 

depletion, Tuba-depletion did not affect myosin distribution or 

activity, suggesting that actomyosin contractility may not pri-

marily be involved in the loosened appearance of Tuba-depleted 

cell junctions. It is likely that cooperations of the myosin-

 dependent contractility and Tuba-mediated actin organization 

determine the overall shape of cell junctions. As an alternative 

role of Tuba, it may regulate the dynamics of cadherin molecules, 

such as their traffi cking and endocytosis, thus affecting junction 

morphology; this possibility remains to be tested in the future.

Supporting the hypothesis that Tuba functions via Cdc42, 

Tuba promoted recruitment of Cdc42 to cell junctions, tran-

siently activating it during cell junction recovery processes. 

Dominant-negative and -active Cdc42 mimicked the Tuba de-

pletion and rescued the Tuba RNAi phenotypes, respectively, 

which is consistent with the idea that Cdc42 acts downstream of 

Tuba signaling. Furthermore, Tuba was shown to interact with 

proteins to regulate the actin cytoskeleton, including N-WASP, 

which is a well-known effector of Cdc42 (Salazar et al., 2003). 

We demonstrated that N-WASP depletion induced distorted 

 apical junctions, just like Tuba depletion, and also that N-WASP 

was required for normal accumulation of E-cadherin and 

F- actin at cell junctions, confi rming earlier observations (Ivanov 

et al., 2005). In addition, N-WASP overexpression restored rapid 

recruitment of E-cadherin and F-actin to the junctions in Tuba 

RNAi cells. These results suggest that N-WASP may be one of 

the components working downstream of the Tuba–Cdc42 path-

way; this idea is also supported by a recent study with mela-

noma cells (Kovacs et al., 2006). N-WASP activates the Arp2/3 

complex, which creates branched actin fi laments (Blanchoin 

et al., 2000; Rohatgi et al., 1999); and the Arp2/3 complex was 

shown to be necessary for cells to assemble cadherin-based cell 

contacts (Kovacs et al., 2002; Verma et al., 2004). When consid-

ering all of the data together, we can imagine a scheme in which 

N-WASP, activated by Tuba–Cdc42, enhances actin polymer-

ization at the level of the apical junctions. This process then 

leads to the delivery of polymerized actin fi laments to the lower 

portions of cell junctions, and these actin fi laments may serve 

as a scaffold on which the E-cadherin–catenin complex may be 

anchored. Although other mechanisms, such as traffi cking of 

E-cadherin might also be involved, this scheme accounts for the 

putative mechanism as to how Tuba, which is confi ned to the 

apical region, can organize F-actin and E-cadherin throughout 

the lateral cell–cell contacts. Meanwhile, the rescuing effect of 

N-WASP overexpression on Tuba-depleted cells appeared to have 

been transient, indicating that other factors are also involved 

in the Tuba–Cdc42 signaling system.

Calcium-switch experiments showed that Tuba was also 

required for the initial processes of junction formation. Both 

E-cadherin and F-actin assemblies were impaired during the rees-

tablishment process of cell–cell contacts. ZO-1 has been shown 

to form a complex with the cadherin–catenin complex at the 

early stages of cell junction assembly (Rajasekaran et al., 1996; 

Ando-Akatsuka et al., 1999), implying that, in nascent cell–cell 

contacts, Tuba may be in closer proximity to cadherins than 

in mature junctions, and thus could directly control cadherin-

 mediated adhesion. Even at early cell–cell contacts, however, cell 

boundaries always displayed a less-tensed appearance, not only 

in Tuba-RNAi cells but also in N-WASP–RNAi cells or those 

expressing dominant-negative Cdc42. These observations sug-

gest that a common function of Tuba governs the initial, as well 

as the mature, phases of cell–cell contact.

Several GEFs other than Tuba have been implicated in 

cell–cell adhesion, including Tiam1, which is a Rac-specifi c 

GEF (Chen and Macara, 2005; Hordijk et al., 1997), and Asef, 

which is also a Rac GEF (Kawasaki et al., 2003). FRG partici-

pates in nectin-induced activation of Cdc42 (Fukuhara et al., 

2004), and GEF-H1 regulates TJ permeability (Benais-Pont 

et al., 2003). It is likely that many GEFs are sequentially in-

volved in cell junction assembly in a redundant or independent 

manner. Tiam1 defi ciency was reported to disrupt epithelial 

junctions (Malliri et al., 2004; Mertens et al., 2005). Not only 

Tuba depletion, but also Tiam1 depletion impairs both AJ and 

TJ organization. In future studies, it is therefore important to 

defi ne how Rac and Cdc42 GEFs share their roles in the regula-

tion of cell assembly.

Materials and methods
Plasmid construction
A partial cDNA clone of human Tuba (KIAA1010) was obtained from the 
Kazusa DNA Institute (Chiba, Japan). The 5′ sequence was determined by 
5′-RACE, using a SMART RACE cDNA amplifi cation kit (CLONTECH Labo-
ratories, Inc.), with cDNA from Colo205 cells used as the template. The 5′ 
fragment was subsequently cloned by RT-PCR. The 40–amino acid deletion 
in the original KIAA1010 cDNA clone (Salazar et al., 2003) was also am-
plifi ed by RT-PCR. pSUPER vectors were generated as previously described 
(Brummelkamp et al., 2002). pGK-neo was further inserted at the EcoRI–
NotI site of pSUPER to obtain stable transfectants. The RNAi target se-
quence of Tuba was designed and inserted into the BglII–HindIII site of 
pSUPER, as previously described (Brummelkamp et al., 2002). The target 
sequences were as follows: Tuba-RNAi-1, 5′-A G T C A A G A C C T C G T C A A-
A G -3′; Tuba-RNAi-2, 5′-A C C T T G A T G C T C A C T A G A A -3′; and cytokeratin 
19 (as a specifi city control), 5′-G C T A A C C A T G C A G A A C C T C -3′. Stealth 
siRNAs with the following target sequences were synthesized by Invitro-
gen: siZO1-1, 5′-G C A G C T C C A A G A G A A A T C T T C G A A A -3′; siZO1-2, 
5′-G G C A A G A G A A G A A C C A G A T A T T T A T -3′; siZO1-3, 5′-C C C T G G A T T-
T A A G C C A G C C T C T C A A  -3′; siZO2-1, 5′- C C C T A A A G G T G A A A T G G-
T G A C C A T T -3′; siZO2-2, 5′-C C C A T A G C T G A T A T A G C A A T G G A A A -3′; 
siZO2-3, 5′-G G C T A A T G A G T T A C C T G A C T G G T T T  -3′; siTuba, 5′-G A G C T T-
G A G G G A A C A T A C A A G A T T T  -3′; siNWASP-1, 5′-T C A A A T T A G A G A G G G T-
G C T C A G C T A -3′: siNWASP-2, 5′-T C T G T G G C T G A T G G C C A A G A G T C T A -3′; 
siNWASP-3, 5′-C C C T C T T C A C T T T C C T C G G C A A G A A -3′; siIQGAP1-1, 
5′-G G C C C T A C A G A T T C C T G C A G C T A A A  -3′; siIQGAP1-2, 5′-G A C A G G-
A A A T C C T A C G G T T A T T A A A  -3′; and siIQGAP1-3, 5′-C C A A T A A G A T G T T T-
C T G G G A G A T A A  -3′. Negative-control stealth siRNAs were also obtained 
from Invitrogen. ∆DH (amino acids 1–734 and 993–1,577), ∆N (amino 
acids 747–1,577), and ∆C (amino acids 1–1,276) with or without stop 
codons were generated by PCR and, subsequently, subcloned into the 
pCA-Sal-Flag-IRES-hygromycin vector to obtain stable transfectants. Mouse 
ZO-1 cDNA (a gift from S. Tsukita, Kyoto University, Kyoto, Japan) was 
subcloned in a pCA-Sal-HA vector. The ZO-2 expression vector CAG-NHA-
ZO2-Ipuro and ZO-3 expression vector pME18S-ZO3-7myc were also gifts 
from S. Tsukita. pCA-β-catenin-HA was constructed by K. Tanabe in our 
laboratory. The N-WASP expression vectors pEF-BOS-myc-N-WASP and 
pEF-BOS-myc-∆cof-N-WASP were donated by T. Takenawa (University of 
Tokyo, Tokyo, Japan). Recombinant adenoviruses expressing myc-N17-
Cdc42 and myc-V12-Cdc42 were provided by H. Bito and S. Narumiya 
(Kyoto University, Kyoto, Japan).
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Cell culture and transfection
Caco-2 cells were obtained from the American Type Culture Collection. All 
cell lines were cultured in a 1:1 mixture of DME and Ham’s F12 supple-
mented with 10% FCS. To enhance cell spreading, we cultured the cells on 
collagen-coated dishes. Cells at 70% confl uence were transfected by use 
of Effectene (QIAGEN), according to the manufacturer’s protocol. For 
siRNA treatments, cells were transfected by the use of Lipofectamine 2000 
(Invitrogen), according to the manufacturer’s protocol. We obtained >90% 
reduction in the protein level for all siRNAs at 3–4 d after transfection, and 
all experiments were performed during this period. Adenovirus infection 
was performed by incubating cells with a viral solution for 3–6 h. More 
than 80% of the cells were infected, and the maximal expression of the 
transgene was observed at 24–48 h after infection, the timeframe in which 
all experiments were conducted. For isolating stable transfectants, trans-
fected cells were selected by exposure to 400 μg/ml G418 or 100 μg/ml 
hygromycin. In the case of RNAi-stable lines, the surviving colonies were 
picked up and cloned, and then examined for the expression of targeted 
proteins by Western blotting. Multiple clones were isolated for each target 
sequence, in which >90% knockdown of protein expression was achieved. 
For the stable transfectants of deletion mutants, the cells were maintained 
as uncloned populations. For calcium-switch experiments, cells were cul-
tured overnight in calcium-free DME (Invitrogen) supplemented with 10% 
dialyzed FCS. Cell adhesion was initiated by adding 1.8 mM CaCl2 to the 
medium. Y-27632 (Calbiochem) was added to cultures at a fi nal concen-
tration of 10 μM, and the cells were fi xed after 30 min.

Antibodies
Mouse mAb 5G6 against Tuba was raised by the standard procedure 
 described in this section. The C-terminus of human Tuba (amino acids 
1,288–1,552) was amplifi ed by PCR and subcloned in the pGEX4T-2 
vector (GE Healthcare). The fusion protein was purifi ed by using a GSTrap 
column (GE Healthcare) according to the manufacturer’s protocol. BDF-1 
mice (CLEA Japan) were immunized at 4-wk intervals by the i.p. injection 
of 15 μg per mouse of GST–human Tuba C terminus emulsifi ed with RIBI 
adjuvant. 5 d after the fi nal immunization, the splenocytes were recov-
ered and fused with P3-X63-Ag-U1 myeloma cells. Culture supernatants 
were screened by immunofl uorescence and Western blotting for their re-
activity to Tuba-GFP–stable transfectants, and positive wells were cloned 
by limited dilution.

The following primary antibodies were used: rabbit polyclonal anti-
body against α-catenin (C-2081; Sigma-Aldrich), rabbit polyclonal anti-
body against ZO-1 (61–7,300; Invitrogen), mouse mAb T8-754 specifi c 
for ZO-1 (a gift from S. Tsukita; Itoh et al., 1991), rabbit polyclonal anti-
body against ZO-2 (H-110; Santa Cruz Biotechnology, Inc.), rabbit poly-
clonal antibody against l-afadin (Sigma-Aldrich), mouse mAb 5H10 
against β-catenin (a gift from M.J. Wheelock, University of Nebraska, 
Omaha, NE; Johnson et al., 1993), mouse mAb HECD-1 specifi c for 
 human E-cadherin (Shimoyama et al., 1989), mouse mAb against p120-
catenin (BD Biosciences), mouse mAb against Cdc42 (BD Biosciences), 
rabbit polyclonal antibody against N-WASP (H-100; Santa Cruz Biotech-
nology, Inc.), mouse mAb against MLCs (Sigma-Aldrich), mouse mAb 
 specifi c for phospho-MLC 2 (Ser19; Cell Signaling Technology), rabbit 
polyclonal antibody against IQGAP1 (H-109; Santa Cruz Biotechnology, 
Inc.), mouse mAb DM1A against α-tubulin (Sigma-Aldrich), mouse mAb 
AC-15 against β-actin (Sigma-Aldrich), rabbit polyclonal antibody reactive 
with myosin IIA (Sigma-Aldrich), rabbit polyclonal antibody against myosin 
IIB (Sigma-Aldrich), mouse mAb M2 against Flag (Sigma-Aldrich), rabbit 
polyclonal antibody specifi c for Flag (Sigma-Aldrich), rabbit polyclonal 
 antibody against myc (for immunofl uorescence; Santa Cruz Biotechnology, 
Inc.), rabbit polyclonal antibody against myc (for immunoprecipitation; 
Sigma-Aldrich), mouse mAb 16B12 reactive with HA (CRP), and rabbit 
polyclonal antibody against HA (Millipore). The following secondary anti-
bodies were used: goat Alexa Fluor 488/594–conjugated anti–mouse or 
anti–rabbit IgG (Invitrogen) and sheep HRP-conjugated anti–mouse or 
anti–rabbit IgG (GE Healthcare). F-actin was visualized by using Alexa 
Fluor 488–conjugated phalloidin (Invitrogen).

Immunofl uorescence staining
For staining Tuba, ZO-1, ZO-2, and l-afadin, cells were fi xed with 100% 
methanol at −20°C for 20 min. For staining Cdc42, cells were fi xed in 
10% TCA at 4°C for 15 min, and permeabilized with 0.2% Triton X-100 
for 15 min at RT (Hayashi et al., 1999). Otherwise, cells were fi xed with 
4% PFA for 20 min or 1.25% PFA for 5 min (for phospho-S19-MLC) by di-
rectly adding a 1/4 or 1/16 volume of prewarmed 20% PFA/HBSS to the 
medium, and permeabilized with 0.1% Triton X-100 for 15 min. Blocking 
was done by incubating the fi xed cells with 5% skim milk in TBS for 10 min 

at RT. After the antibodies had been diluted with the blocking solution, the 
cells were incubated at RT for 1 h with the primary antibody, and then for 
30 min with the secondary antibody. Samples were mounted in FluorSave 
(Calbiochem), and imaged by use of a laser scanning confocal microscope 
(LSM510) mounted on an inverted microscope (Axiovert 100M), using 
Plan-Neofl uar 40×/1.30 NA and Plan-Apochromat 63×/1.40 NA objec-
tives (all Carl Zeiss MicroImaging, Inc.). All images were processed by use 
of Photoshop (Adobe) software.

Quantifi cation of immunofl uorescent signal intensity was done by 
Scion Image (Scion Corp.). In brief, the junctional regions were manually 
encircled (see Fig. 4 B for example), and the signal density of each region 
was measured. The measurement of linearity index was done by LSM 5 
 Image Browser (Carl Zeiss MicroImaging, Inc.). All statistical analysis was 
performed by using Excel (Microsoft).

Biochemical assays
For immunoprecipitation, the cells were lysed in lysis buffer (50 mM Tris-
HCl, pH 7.5, containing 150 mM NaCl, 0.5% NP-40 or Triton X-100, 1 mM 
EDTA, and 10% glycerol); NP-40 was used in the myc-N-WASP immuno-
precipitation experiments. Lysates were precleared with protein G–Sepharose 
4FF beads (GE Healthcare) and incubated with anti-myc polyclonal antibody 
or anti-HA mAb for 1 h, followed by incubation with protein G–Sepharose 
beads for 1 h. The beads were subsequently washed three times in the 
lysis buffer.

For Cdc42 pull-down assays, cells were lysed in HS-buffer (20 mM 
Tris-HCl, pH 7.4, containing 500 mM NaCl, 5 mM MgCl2, and 1% Triton 
X-100). 10 μg of GST-PAK CRIB domain (a gift from S. Narumiya) was 
added to the lysate. After 1 h incubation, the lysate was incubated for 
 another 1 h with glutathione–Sepharose 4B beads (GE Healthcare). The 
beads were subsequently washed three times in HS buffer.

For the Triton X-100 solubility experiments, cells were lysed in lysis 
buffer (50 mM Tris-HCl, pH 7.5, containing 150 mM NaCl, and 0.5% 
Triton X-100), and incubated for 30 min on ice. Lysates were centrifuged 
at 17,000 g for 10 min, and the supernatants were recovered (soluble 
fraction). The remaining pellet was resuspended to Laemmli sample buffer 
(insoluble fraction).

All samples were eluted by boiling them in the Laemmli sample 
 buffer, resolved by SDS-PAGE using 10–20% gradient gels (Daiichi Pure 
Chemicals) for MLC, phospho-S19-MLC, and Cdc42, and using 7.5% gel 
for others, and transferred to nitrocellulose membrane. Blocking was done 
using 5% skim milk in TBS. Primary and secondary antibodies were diluted 
in either the blocking solution or Can Get Signal (TOYOBO), and the mem-
branes were incubated for 1 h with each. Membranes were washed with 
0.05% Tween-20 in TBS three times after each antibody incubation, and 
signals were detected by use of the ECL-plus system (GE Healthcare).

Online supplemental material
Fig. S1 shows that Tuba interacts with ZO-2, but not with ZO-3. Fig. S2 
shows the effects of ZO-1 knockdown on junction morphology and myosin 
localization in comparison with Tuba depletion. Fig. S3 shows that the DH 
domain of Tuba preferentially activates Cdc42 in vitro. Fig. S4 shows the 
effects of N-WASP expression on Tuba-RNAi cells. Online supplemental 
material is available at http://www.jcb.org/cgi/content/full/jcb.
200605012/DC1.
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