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Introduction
Formation and extension of axons and dendrites, so-called neu-

rite outgrowth, is a crucial event in neuronal differentiation and 

maturation during development of the nervous system (Da Silva 

and Dotti, 2002; Horton and Ehlers, 2003). These morphological 

changes require reorganization of the cytoskeletal networks 

and its accompanying membrane expansion and contraction 

(Craig et al., 1995; Mitchison and Kirschner, 1998). Rap1 small 

G protein has been shown to be involved in neurite outgrowth 

and neuronal polarization through regulating the MAPK cas-

cade and the cytoskeletal network (York et al., 1998; Kao et al., 

2001; Wu et al., 2001; Schwamborn and Püschel, 2004). Rho 

small G protein has been shown to be involved in the morpho-

logical development of neurons through regulating actin dy-

namics (Jalink et al., 1993; Kozma et al., 1997; Bito et al., 2000; 

Da Silva et al., 2003). We previously showed that inactivation 

of Rho is required for the Rap1-induced neurite outgrowth 

(Yamada et al., 2005). Rap1-activated Rho GTPase-activating 

protein, RA-RhoGAP, transduces a signal from Rap1 to Rho and 

inactivates Rho. The precise temporary and spatially activation 

of Rap1 is important for regulating the activity of RA-RhoGAP 

to produce the neurite. However, the mechanism underlying 

how and where Rap1 is activated remains unclear.

Neurite outgrowth begins with the activation of membrane 

receptors of neurotrophins, such as nerve growth factor (NGF) 

and brain-derived neurotrophic factor (BDNF) (Huang and 

Reichardt, 2001; Sofroniew et al., 2001; Zweifel et al., 2005). 

NGF is the prototypic neurotrophin, a group of structurally re-

lated signaling proteins that are crucial for the survival, differen-

tiation, and maintenance of specifi c neuronal population (Snider, 

1994). First, NGF binds to TrkA receptor and induces its dimer-

ization, which then activates its own tyrosine kinase and gathers 

a signaling complex consisting of SOS, a GDP/GTP exchange 

factor (GEF) specifi c for Ras small G protein, Grb2, an adaptor 

protein for SOS, and Shc, a linker protein between Grb2 and 

TrkA receptor, on the plasma membrane (Kao et al., 2001; Wu 

et al., 2001). Ras is transiently activated on the plasma mem-

brane and induces activation of the c-Raf-MEK-ERK pathway. 

On the other hand, activated TrkA receptor gathers another sig-

naling complex consisting of C3G, a GEF specifi c for Rap1, 

CrkL, an adaptor protein for C3G, and FRS2, a linker protein 
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eurotrophins, such as NGF and BDNF, induce 

sustained activation of Rap1 small G protein and 

ERK, which are essential for neurite outgrowth. 

We show involvement of a GDP/GTP exchange factor (GEF) 

for Rap1, PDZ-GEF1, in these processes. PDZ-GEF1 is ac-

tivated by GTP-Rap1 via a positive feedback mechanism. 

Upon NGF binding, the TrkA neurotrophin receptor is 

internalized from the cell surface, passes through early 

endosomes, and arrives in late endosomes. A tetrameric 

complex forms between PDZ-GEF1, synaptic scaffolding 

molecule and ankyrin repeat-rich membrane spanning 

protein which interacts directly with the TrkA receptor. At 

late endosomes, the complex induces sustained activation 

of Rap1 and ERK, resulting in neurite outgrowth. In cul-

tured rat hippocampal neurons, PDZ-GEF1 is recruited to 

late endosomes in a BDNF-dependent manner involved in 

BDNF-induced neurite outgrowth. Thus, the interaction of 

PDZ-GEF1 with an internalized neurotrophin receptor 

transported to late endosomes induces sustained activa-

tion of both Rap1 and ERK and neurite outgrowth.
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between CrkL and TrkA receptor, on the plasma membrane 

(Kao et al., 2001; Wu et al., 2001). TrkA receptor and the FRS2-

Crk-C3G complex associating with the receptor are internalized 

into clathrin-coated vesicles and transported to early endosomes 

(Wu et al., 2001). Rap1 is activated at the early endosomes and 

induces activation of the B-Raf-MEK-ERK pathway. It has been 

believed that Rap1 is also activated on the cytoplasmic side 

of the plasma membrane, but the direct evidence has not been 

obtained. Then, TrkA receptor proceeds further along the degra-

dative pathway in a microtubule- and motor-dependent fashion, 

reaching late endosomes, followed by the physical destruction 

of TrkA receptor by proteolysis in lysosomes (Jullien et al., 

2002; Saxena et al., 2005a,b). Thus, transport of TrkA receptor 

to late endosomes has long been recognized as a means to termi-

nate the signaling via degradation of the activated TrkA receptor 

complex after their internalization from the cell surface.

Recent studies suggest that TrkA receptor, after binding 

NGF at the cell surface, passes through early endosomes and 

reaches to late endosomes within 30 min (Saxena et al., 2005a). 

However, there is still sustained activation of Rap1 after 30 min 

(Kao et al., 2001; Wu et al., 2001). Like the activated TrkA receptor 

complex at early endosomes, TrkA receptor at late endosomes 

might be competent in the sustained activation of Rap1, but it re-

mains unknown whether, or if so how, Rap1 is activated at late 

endosomes. Here, we addressed these issues and showed that ac-

tivated TrkA receptor, which was transported to late endosomes, 

recruited PDZ-GEF1, a GEF specifi c for Rap1, by forming a 

complex through Trk receptors associating ankyrin repeat-rich 

membrane spanning (ARMS) and synaptic scaffolding molecule 

(S-SCAM). This tetramer complex then induced the sustained 

activation of Rap1 and ERK, eventually causing neurite out-

growth. ARMS is a tetraspan transmembrane protein and directly 

interacts with Trk receptors through each transmembrane domain 

(Kong et al. 2001; Arevalo et al. 2004). S-SCAM is a synaptic 

scaffolding molecule with six PDZ domains (Hirao et al., 1998).

Results
Activation of PDZ-GEF1 by GTP-Rap1
As PDZ-GEF1 has a Rap1-binding RA domain, we fi rst examined 

whether the binding of GTP-Rap1 to the RA domain affects the 

GEF activity of PDZ-GEF1. We generated recombinant proteins 

of FLAG-tagged full-length PDZ-GEF1 (FLAG-PDZ-GEF1) and 

its RA domain–defi cient mutant FLAG-PDZ-GEF1-∆RA and ex-

amined their GEF activity. FLAG-PDZ-GEF1 indeed showed GEF 

activity toward Rap1 as reported (de Rooij et al., 1999; Liao et al., 

1999, 2001; Ohtsuka et al., 1999), while FLAG-PDZ-GEF1-∆RA 

showed much less effect on Rap1 (Fig. 1 A). The constitutively 

active form of GST-Rap1A enhanced the PDZ-GEF1 activity two-

fold more than control GST did (Fig. 1 B), whereas it did not affect 

the GEF activity of FLAG-PDZ-GEF1-∆RA (Fig. S1, available at 

http://www.jcb.org/cgi/content/full/jcb.200610073/DC1). In addi-

tion, GST-Rap-binding domain (RBD) of RalGDS, a specifi c in-

hibitor of GTP-Rap1, inhibited the PDZ-GEF1 activity (Fig. 1 C). 

These results indicate that PDZ-GEF1 is activated by GTP-Rap1 

and suggests that once PDZ-GEF1 is activated, its activation is 

amplifi ed by GTP-Rap1 in a positive feedback mechanism.

Involvement of PDZ-GEF1 in the NGF-
induced sustained activation of Rap1 
at late endosomes
As PDZ-GEF1 has an auto-amplifi cation GEF activity toward 

Rap1, we examined whether PDZ-GEF1 is involved in the 

NGF-induced sustained activation of Rap1 and ERK. We fi rst 

performed loss-of-function experiments by use of the RNA inter-

ference (RNAi) method for PDZ-GEF1. Immunoblotting showed 

that the amount of PDZ-GEF1 was markedly reduced by the 

knockdown of PDZ-GEF1 (Fig. 2 A). The amounts of other pro-

teins, including TrkA receptor, another Rap1 GEF C3G, Rap1, 

Ras, and ERK remained unchanged (unpublished data). The 

knockdown of PDZ-GEF1 signifi cantly decreased the activation 

of Rap1, but not Ras, after NGF stimulation as estimated by the 

pull-down assay (Fig. 2 A and unpublished data). The knock-

down of PDZ-GEF1 did not inhibit the activation of ERK at 

5 min after NGF stimulation, but it signifi cantly decreased it at 

30 and 60 min. The reason why we measured the activation of 

Rap1 and ERK at 30 and 60 min was that (1) it was reported that 

activation of Rap1 at 5 min does not contribute to transient acti-

vation of ERK at 5 min (York et al., 1998; Kao et al., 2001; Wu 

et al., 2001; Sasagawa et al., 2005); (2) that a substantial portion 

of the transient activation of ERK at 5 min mainly depends on 

Ras, but not on Rap1, whereas the activation of Rap1 at later time 

points, such as 30 and 60 min, but not at 5 min, contributes to the 

sustained activation of ERK at 30 and 60 min; and (3) that this 

sustained activation of ERK is essential for neurite outgrowth.

Consistent with the results of the pull-down assay, the 

fl uorescence resonance energy transfer (FRET) imaging assay 

showed that the knockdown of PDZ-GEF1 reduced the activa-

tion of Rap1 at the perinuclear region of the cells after NGF 

stimulation (Fig. 2 Ba). To rescue the knockdown of PDZ-GEF1, 

we generated siRNA-resistant PDZ-GEF1 expression vector 

(Fig. 2 Bb). Expression of siRNA-resistant PDZ-GEF1 potently 

rescued the activation of Rap1 at the perinuclear region of the 

cells at 30 min after NGF stimulation (Fig. 2 Bc). Rap1 has 

been shown to localize at various intracellular organelles, such 

as the Golgi complex, early endosomes, and late endosomes, in 

cultured fi broblasts and epithelial cells (Beranger et al., 1991; 

Pizon et al., 1994). To examine the localization of endogenous 

Rap1 in PC12 cells, we performed subcellular fractionation 

from the post-nuclear supernatant (PNS) of PC12 cells. A sig-

nifi cant amount of Rap1 was recovered in the EEA1-positive 

early endosomal fraction and the Rab7-positive late endosomal 

fraction (Fig. 2 Ca). To examine the localization of GTP-Rap1 

in PC12 cells, we performed the subcellular fractionation in the 

presence of GST-RalGDS-3xRBD, which preferentially binds 

to GTP-Rap1 (Herrmann et al., 1996). GST-RalGDS-3xRBD 

was recovered in the late endosomal fraction at 30 min after 

NGF stimulation, indicating that Rap1 was activated at late en-

dosomes at 30 min after NGF stimulation (Fig. 2 Cb). The huge 

amount of GST- RalGDS-3xRBD, which did not bind to Rap1, 

remained in the bottom PNS and heavy membrane fractions.

The NGF-induced neurite outgrowth was reduced in the 

PDZ-GEF1-knockdown PC12 cells (Fig. 2 D). This knockdown 

effect was rescued by expression of siRNA-resistant PDZ-GEF1 

(Fig. 2 E). Moreover, PC12 cells overexpressing PDZ-GEF1 or 
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PDZ-GEF1-∆RA displayed marked neurite outgrowth at 12 h after 

NGF stimulation as compared with control cells (Fig. S2, avail-

able at http://www.jcb.org/cgi/content/full/jcb.200610073/DC1). 

Consistent with the difference in the GEF activities between 

PDZ-GEF1 and PDZ-GEF1-∆RA shown in Fig. 1 Ab, the effect 

of PDZ-GEF1-∆RA on neurite outgrowth was less effective than 

that of PDZ-GEF1. Collectively, these results indicate that PDZ-

GEF1 is involved in the NGF-induced sustained activation of 

Rap1 and ERK, which eventually causes neurite outgrowth.

Before NGF stimulation, FLAG-PDZ-GEF1 diffusely lo-

calized at the cytoplasm, but it was recruited to LBPA-positive 

late endosomes at 30 min after NGF stimulation (Fig. 3). FLAG-

PDZ-GEF1 was not recruited to EEA1-positive early endosomes at 

either 5 or 30 min. In contrast to PDZ-GEF1, C3G was recruited 

to EEA1-positive early endosomes at 5 min after NGF stimu lation 

(Fig. S3, available at http://www.jcb.org/cgi/content/full/jcb

.200610073/DC1). C3G was not recruited to LBPA- positive late 

endosomes at either 5 or 30 min. These results indicate that 

PDZ-GEF1 is recruited to late endosomes in response to NGF 

and suggest that this Rap1 GEF is involved in the NGF-induced 

sustained activation of Rap1 at late endosomes.

Involvement of transport of TrkA receptor 
to late endosomes in the NGF-induced 
recruitment of PDZ-GEF1
We next examined whether transport of TrkA receptor to late 

endosomes recruits PDZ-GEF1 there. Bafi lomycin is known to 

be an inhibitor of V-ATPase-regulating protein traffi cking from 

Figure 1. Activation of PDZ-GEF1 by GTP-Rap1. (A) Requirement of the RA domain for full activation of PDZ-GEF1. (Aa) Schematic structures of PDZ-GEF1 
and its RA domain–defi cient mutant (PDZ-GEF1-∆RA). (Ab) GEF activities of PDZ-GEF1 and PDZ-GEF1-∆RA. GDP-Rap1A was incubated with FLAG-PDZ-
GEF1, FLAG-PDZ-GEF1-∆RA, or buffer (Control) in the presence of [35S]GTPγS for indicated periods of time. (B) Enhancement of the GEF activity of 
PDZ-GEF1 by Rap1A. GDP-Rap1A was incubated with both FLAG-PDZ-GEF1 and GST-V12Rap1A (GST-Rap1A-CA), both FLAG-PDZ-GEF1 and GST, 
GST-Rap1A-CA alone, or GST alone, in the presence of [35S]GTPγS for indicated periods of time. (C) Inhibition of the GEF activity of PDZ-GEF1 by the 
Rap1-binding domain of RalGDS (RalGDS-RBD). GDP-Rap1A was incubated with both FLAG-PDZ-GEF1 and GST-RalGDS-RBD, both FLAG-PDZ-GEF1 and 
GST, GST-RalGDS-RBD alone, or GST alone, in the presence of [35S]GTPγS for indicated periods of time. The radioactivity of [35S]GTPγS bound to Rap1A 
was scintillation-counted and plotted. The results shown are representative of three independent experiments. 
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Figure 2. Involvement of PDZ-GEF1 in the NGF-induced sustained activation of Rap1 and neurite outgrowth in PC12 cells. (A) The activation level of Rap1 
and the phosphorylation level of ERK in PC12 cells. (Aa) Effects of the knockdown of PDZ-GEF1 on the activation of Rap1 and ERK after NGF stimulation 
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early to late endosomes (Hurtado-Lorenzo et al., 2006). The 

immunofl uorescence signal for TrkA receptor became concentrated 

at EEA1-positive early endosomes at 5 min and at LBPA-positive 

late endosomes at 30 min after NGF stimulation (Fig. S4, avail-

able at http://www.jcb.org/cgi/content/full/jcb.200610073/DC1). 

Bafi lomycin did not inhibit the NGF-induced transport of TrkA 

receptor to EEA1-positive early endosomes at 5 min, but it 

signifi cantly decreased the transport of TrkA receptor to LBPA-

positive late endosomes at 30 min (Fig. 4 A and Fig. S4). Bafi lo-

mycin inhibited the recruitment of PDZ-GEF1 to LBPA-positive 

late endosomes at 30 min after NGF stimulation (Fig. 4 B). These 

results indicate that transport of TrkA receptor to late endosomes 

is required for the recruitment of PDZ-GEF1 to late endosomes.

Bafi lomycin inhibited the activation of Rap1 at 5 min and 

more potently at 30 and 60 min as estimated by the pull-down 

assay (Fig. 4 Ca). In contrast, bafi lomycin did not inhibit the ac-

tivation of Ras at 5 min (Fig. 4 Cb). Bafi lomycin did not inhibit 

the activation of ERK at 5 min, but signifi cantly decreased it at 

30 and 60 min. Bafi lomycin reduced the NGF-induced activa-

tion of Rap1 at the perinuclear region of the cells as estimated 

Figure 3. Recruitment of PDZ-GEF1 to late endosomes in a NGF-dependent manner. PC12 cells were transfected with pFLAG-CMV2-PDZ-GEF1. PC12 cells 
were double-stained with the anti-PDZ-GEF pAb and the anti-EEA1 mAb (left panels) or with the anti-PDZ-GEF pAb and the anti-LBPA mAb (right panels). 
Insets are enlarged images of boxed areas. The area of colocalization was quantifi ed in the right panel. Bars, 10 μm. The results shown are representative 
of three independent experiments.

in PC12 cells. PC12 cells were transfected with control RNA (C) or PDZ-GEF1 siRNA #1 (KD). The amount of GTP-Rap1 was measured by the pull-down as-
say using GST-RalGDS. The amount of phospho-ERK was measured by immunoblotting with the anti-phospho-ERK mAb. The immunoblot bands were quanti-
fi ed in the right panel. (Ab) Effects of three PDZ-GEF1 siRNAs and scramble RNA on the activation of Rap1 and ERK. The immunoblot bands were quantifi ed 
in the right panel. (B) FRET analysis on the localization of the activation of Rap1 in PC12 cells. (Ba) FRET analysis in PDZ-GEF1-knockdown PC12 cells. 
PC12 cells were transfected with an empty pSUPER-retro vector (Control) or pSUPER-retro-PDZ-GEF1 (PDZ-GEF1-KD). In the top panel, representative ratio 
images of YFP/CFP at indicated time points after NGF stimulation are shown. In the intensity-modulated display mode, eight colors from red to blue were 
used to represent the YFP/CFP ratio, with the intensity of each color indicating the mean intensity of YFP and CFP. The upper and lower limits of the ratio 
range are shown in the right panel. Bars, 10 μm. In the bottom panel, YFP/CFP ratios of three representative datasets were expressed by measuring the in-
crease over the reference value used in the top panel. (Bb) Expression of FLAG-siRNA-resistant PDZ-GEF1 in PDZ-GEF1-knockdown PC12 cells. PC12 cells 
were fi rst transfected with PDZ-GEF1 siRNA #1 (KD) or scramble RNA (C) and cultured for a day. Then cells were transfected with pERed NLS-FLAG vector 
or pERed NLS-FLAG-siRNA resistant PDZ-GEF1 and cultured for a day. The total cell lysates were subjected to SDS-PAGE, followed by immunoblotting with 
the anti-PDZ-GEF1 pAb. (Bc) FRET analysis in rescued PDZ-GEF1-knockdown PC12 cells. Representative ratio images of YFP/CFP at 30 min after NGF stimu-
lation are shown. In the right panel, YFP/CFP ratios of three representative datasets were expressed by measuring the increase over the reference value ob-
tained from the cells before NGF stimulation. (C) Localization of endogenous Rap1 and GTP-Rap1 in PC12 cells. (Ca) Localization of endogenous Rap1 in 
PC12 cells. The PNS fraction from PC12 cells was subjected to sucrose gradient centrifugation. Equal amounts of proteins from different fractions were sub-
jected to immunoblotting with indicated Abs. PNS; post-nuclear supernatant fraction, HM; heavy membrane fraction, EE; early endosomal fraction, LE; late 
endosomal fraction. (Cb) Localization of GTP-Rap1 in PC12 cells. The PNS fraction from PC12 cells stimulated with or without NGF for 30 min was incu-
bated with GST-RalGDS-3xRBD and subjected to sucrose gradient centrifugation. Equal amounts of proteins from different fractions were subjected to immuno-
blotting with indicated Abs. The immunoblot bands were quantifi ed in the right panel. (D) Neurite outgrowth in the NGF-treated PC12 cells. PC12 cells 
were transfected with control scramble siRNA (Control) or PDZ-GEF1 siRNA#1-3 (PDZ-GEF1-KD). Left panel: representative DIC images. Right panel: 
percentage of cells with neurites. (E) Rescue of the inhibitory effect of the knockdown of PDZ-GEF1 on the neurite outgrowth. PC12 cells were transfected 
with pSUPER-retro-PDZ-GEF1 and pERed NLS-FLAG vector (PDZ-GEF1-KD) or pSUPER-retro-PDZ-GEF1 and pERed NLS-FLAG siRNA-resistant PDZ-GEF1 
(PDZ-GEF1-rescue). Left panel: representative DIC images. Right panel: percentage of cells with neurites. Asterisks indicate statistical signifi cance (t test; 
*, P < 0.01). Bars, 10 μm. The results shown are representative of three independent experiments.
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Figure 4. Involvement of the transport of TrkA receptor to late endosomes in the NGF-induced recruitment of PDZ-GEF1. (A) Inhibition of the transport of TrkA 
receptor from early endosomes to late endosomes by bafi lomycin. Serum-starved PC12 cells were treated with bafi lomycin for 2 h and stimulated by NGF 
for 30 min. PC12 cells were double-stained with the anti-TrkA receptor pAb and the anti-LBPA mAb. Insets are enlarged images of boxed areas. The area of 
colocalization was quantifi ed in the right panel. Bars, 10 μm. (B) Inhibition of the recruitment of PDZ-GEF1 to late endosomes by bafi lomycin. PC12 cells were 
transfected with pFLAG-CMV2-PDZ-GEF1. PC12 cells were double-stained with the anti-PDZ-GEF1 pAb and the anti-LBPA mAb. The area of colocalization 
was quantifi ed in the right panel. (C) Effect of bafi lomycin on the NGF-induced activation of Ras, Rap1, and ERK. (Ca) Inhibitory effect of bafi lomycin on the 
NGF-induced activation of Rap1. Serum-starved PC12 cells were treated with DMSO (C) or bafi lomycin (Baf) and stimulated by NGF for indicated periods of 
time. The immunoblot bands were quantifi ed in the right panel. (Cb) No effect of bafi lomycin on the NGF-induced activation of Ras. The immunoblot bands 
were quantifi ed in the right panel. (D) The localization of the activation of Rap1 in PC12 cells by FRET analysis. In the left panel, representative ratio images 
of YFP/CFP at indicated time points after NGF stimulation are shown as described in Fig. 2 Ba. In the right panel, YFP/CFP ratios of three representative 
datasets were expressed by measuring the increase over the reference value obtained from the cells before NGF stimulation. Bars, 10 μm. (E) Inhibition of 
neurite outgrowth by bafi lomycin. Left panel: representative DIC images. Right panel: percentage of cells with neurites. Asterisks indicate statistical signifi cance 
(t test; *, P < 0.01). Bars, 10 μm. The results shown are representative of three independent experiments.

by the FRET assay (Fig. 4 D). Bafi lomycin reduced the NGF-

induced neurite outgrowth (Fig. 4 E). Collectively, these results 

indicate that the NGF-induced internalization and transport 

of TrkA receptor to late endosomes is involved in the NGF-

 induced sustained activation of Rap1 and ERK and neurite out-

growth by recruiting PDZ-GEF1 to late endosomes.

NGF-induced formation of a tetramer 
complex of PDZ-GEF1, S-SCAM, ARMS, 
and TrkA receptor
We next attempted to understand the molecular mechanism how 

PDZ-GEF1 induces the activation of Rap1 at late endosomes 

in response to NGF. We previously showed that PDZ-GEF1 di-

rectly binds S-SCAM (Ohtsuka et al., 1999), whereas it was 

shown that TrkA receptor directly binds an endosomal protein 

ARMS (Yano and Chao, 2005; Arevalo et al. 2006). Consistent 

with our earlier observation, S-SCAM was coimmunoprecipi-

tated with PDZ-GEF1 before or after NGF stimulation (Fig. 5 A). 

ARMS and TrkA receptor were also coimmunoprecipitated 

with PDZ-GEF1, but this coimmunoprecipitation was strength-

ened after NGF stimulation. However, presumably due to the 

reconstitution of the complex during the procedure of cell lysis, 

we did not get the strong difference in the amount of the com-

plex between 5 min and 60 min after NGF stimulation. These 

results suggest that PDZ-GEF1 forms a tetramer complex with 

S-SCAM, ARMS, and TrkA receptor after NGF stimulation.

As ARMS has a PDZ-binding motif, RESIL, at the cyto-

plasmic tail, we examined by the pull-down assay whether ARMS 

directly binds to S-SCAM or PDZ-GEF1. The GST fusion pro-

tein containing the C-terminal region of ARMS (GST-ARMS-

C-terminal) bound to S-SCAM, but not to PDZ-GEF1 (Fig. 5 B 

and unpublished data). GST-ARMS-C-terminal lacking the last three 

amino acids in the RESIL motif (GST-ARMS-C-terminal-∆SIL) 

did not bind to S-SCAM. The PDZ4 domain of S-SCAM bound to 

GST-ARMS-C-terminal (Fig. 5 C, a and b). Under the conditions 

where Myc-S-SCAM was coimmunoprecipitated with FLAG-

ARMS, Myc-S-SCAM lacking the PDZ4 domain (S-SCAM-

∆PDZ4) was not coimmunoprecipitated (Fig. 5 Cc). These results 

indicate that S-SCAM directly binds ARMS and that this bind-

ing is mediated by the PDZ4 domain of S-SCAM and the PDZ-

binding motif of ARMS. Collectively with the earlier observations 

that PDZ-GEF1 binds to the PDZ1 domain of S-SCAM and 

that ARMS directly binds to TrkA receptor in a NGF-dependent 

manner, these results indicate that PDZ-GEF1 binds to S-SCAM 

to form a binary complex in a NGF-independent manner, which 

binds to TrkA receptor through ARMS to form a tetramer com-

plex in a NGF-dependent manner.

Formation of the tetramer complex 
at late endosomes
We then examined whether this tetramer complex of PDZ-

GEF1, S-SCAM, ARMS, and TrkA receptor is formed at late 

endosomes in intact PC12 cells. The immunofl uorescence sig-

nal for ARMS was mainly concentrated at LBPA-positive late 

endosomes, not at early endosomes, before and after NGF stim-

ulation, indicating that ARMS is an intrinsic late endosomal 

protein (Fig. 6 A). The signals for PDZ-GEF1 and S-SCAM 

localized diffusely at the cytoplasm before NGF stimulation 

(Fig. 6 B, a and c). The signal for TrkA receptor localized at 

the cell surface plasma membrane and a vesicular-like structure, 

presumably, early endosomes, before NGF stimulation (Fig. 6 Bb). 

The signals for PDZ-GEF1, S-SCAM, and TrkA receptor 

became concentrated at ARMS-positive late endosomes after 

NGF stimulation. As the signals for PDZ-GEF1 and S-SCAM 

colocalized well before and after NGF stimulation, these two 

molecules seem to form a binary complex, consistent with the 

above coimmunoprecipitation results (Fig. S5A, available at 

http://www.jcb.org/cgi/content/full/jcb.200610073/DC1). Col-

lectively, these results suggest that upon binding of NGF, TrkA 

receptor is internalized and transported to ARMS-positive late 

endosomes, interacts with ARMS, and then recruits the PDZ-

GEF1-S-SCAM complex mainly to ARMS-positive late endo-

somes, resulting in the tetramer complex formation.

To further examine the recruitment of PDZ-GEF1 to late en-

dosomes biochemically, we performed immunoisolation of PDZ-

GEF1-containing vesicles using PDZ-GEF1 pAb-coated magnetic 

beads from the PNS fraction from NGF- nonstimulated and 

- stimulated PC12 cells. Rab7 was recovered in the immunoisolated 

PDZ-GEF1-containing vesicles, whereas EEA1 was not recovered 

in the immunoisolated vesicles (Fig. 6 Bd). Rab7 and ARMS were 

more predominantly recovered after NGF stimulation. These 

 results have provided another line of evidence that the tetramer 

complex of TrkA receptor, ARMS, S-SCAM, and PDZ-GEF1 is 

formed mainly at late endosomes in a NGF-dependent manner.

Necessity of ARMS and S-SCAM for 
the NGF-induced recruitment of PDZ-GEF1 
to late endosomes and neurite outgrowth
To confi rm that ARMS and S-SCAM are required for the 

recruitment of PDZ-GEF1 to late endosomes, we performed 
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loss-of-function experiments by use of the RNAi method for ARMS 

or by use of a dominant negative mutant for S-SCAM. The re-

cruitment of FLAG-PDZ-GEF1 to late endosomes was reduced 

in the ARMS-knockdown PC12 cells (Fig. 7, A and B, and 

Fig. S5 B). Expression of Myc-S-SCAM did not inhibit the recruit-

ment of FLAG-PDZ-GEF1 to late endosomes, but expression of 

Figure 5. Formation of the ARMS-S-SCAM-PDZ-GEF1 complex in a NGF-dependent manner. (A) Co-immunoprecipitation of PDZ-GEF1 with S-SCAM, 
ARMS, and Trk receptor from PC12 cells. PC12 cells were stimulated by NGF for indicated periods of time. The extract of PC12 cells was immunoprecipi-
tated with the anti-PDZ-GEF1 pAb and immunoblotted with indicated Abs. The immunoblot bands were quantifi ed in the right panel. (B) Binding of ARMS 
to S-SCAM through its C-terminal tail SIL. (Ba) Schematic depiction of C-terminal of ARMS (ARMS-Ct) and its SIL-deletion mutant (ARMS-Ct-∆SIL). (Bb) Pull-
down assay. The extract of HEK293 cells expressing Myc-S-SCAM was incubated with GST-ARMS-Ct or GST-ARMS-Ct-∆SIL immobilized on glutathione-
Sepharose beads. The bound proteins were analyzed by immunoblotting with the anti-Myc mAb. GST fusion proteins were immobilized in comparable 
quantities (bottom; Coomassie brilliant blue [CBB] staining). (C) Binding of S-SCAM to ARMS through its PDZ4 domain. (Ca) Schematic depiction of various 
truncated forms of S-SCAM. (Cb) Pull-down assay. The extract of HEK293 cells expressing various truncated forms of Myc-S-SCAM was incubated with 
GST-ARMS-Ct immobilized on glutathione-Sepharose beads. The bound proteins were analyzed by immunoblotting with the anti-Myc mAb. O, original cell 
extract; B, bound proteins. (Cc) Co-immunoprecipitation assay. HEK293 cells were cotransfected with both FLAG-ARMS and Myc-S-SCAM or both FLAG-
ARMS and Myc-S-SCAM-∆PDZ4. The extract of HEK293 cells was incubated with the anti-FLAG mAb. The immunoprecipitates were analyzed by immuno-
blotting with the anti-Myc pAb and anti-FLAG pAb. The results shown are representative of three independent experiments. 
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Myc-S-SCAM-∆PDZ4 reduced the recruitment of FLAG-PDZ-

GEF1 to late endosomes (Fig. 7 C). Expression of Myc-S-SCAM, 

but not Myc-S-SCAM-∆PDZ4, slightly induced the recruitment 

of FLAG-PDZ-GEF1 to late endosomes even in the absence of 

NGF (Fig. S5A).

 We next examined whether ARMS and S-SCAM are indeed 

involved in the NGF-induced neurite outgrowth. The NGF-

induced neurite outgrowth was reduced in the ARMS-knock-

down PC12 cells (Fig. 7 D). The NGF-induced neurite outgrowth 

was reduced in the PC12 cells expressing Myc-S-SCAM-∆PDZ4 

(Fig. 7 E). Collectively, these results indicate that ARMS and 

S-SCAM are essential for the NGF-induced recruitment of 

PDZ-GEF1 to late endosomes and neurite outgrowth.

Involvement of C3G and PDZ-GEF1 
in the NGF-induced neurite outgrowth
To understand the relationship between C3G and PDZ-GEF1 in 

the NGF-induced neurite outgrowth, we fi rst performed loss-of-

function experiments by use of the RNAi method for C3G 

(Fig. 8 A). The inhibitory effect of the knockdown of C3G on 

Figure 6. Localization of the ARMS-S-SCAM-PDZ-GEF1 complex at late endosomes in a NGF-dependent manner. (A) Localization of ARMS at the late 
endosomes. PC12 cells were stimulated by NGF for 30 min and double-stained with the anti-ARMS pAb and the anti-EEA1 mAb or with the anti-ARMS pAb 
and the anti-LBPA mAb. Insets are enlarged images of boxed areas. The area of colocalization was quantifi ed in the right panel. Bars, 10 μm. (B) Recruit-
ment of PDZ-GEF1, S-SCAM, and TrkA receptor to ARMS-positive late endosomes. (Ba) Recruitment of PDZ-GEF1 to ARMS-positive late endosomes. PC12 
cells were transfected with pFLAG-CMV2-PDZ-GEF1. PC12 cells were double-stained with the anti-PDZ-GEF pAb and the anti-ARMS mAb. The area of co-
localization was quantifi ed in the right panel. (Bb) Recruitment of TrkA receptor to ARMS-positive late endosomes. PC12 cells were double-stained with the 
anti-TrkA receptor pAb and the anti-ARMS mAb. The area of colocalization was quantifi ed in the right panel. (Bc) Recruitment of S-SCAM to ARMS-positive 
late endosomes. PC12 cells were double-stained with the anti-S-SCAM pAb and the anti-ARMS mAb. The area of colocalization was quantifi ed in the right 
panel. (Bd) Immunoisolation of PDZ-GEF1-containing vesicles. PDZ-GEF1-containing vesicles were immunoisolated with the anti-PDZ-GEF1 pAb or the anti–
rabbit IgG (control IgG)-coated magnetic beads from the PNS fraction of PC12 cells. The bound proteins were analyzed by immunoblotting with indicated 
Abs. Arrowhead indicates a light chain of rabbit IgG. Arrow indicates Rab7. The PDZ-GEF1-pAb immunoreactive nonspecifi c bands were observed in the 
control IgG coated-magnetic beads presumably due to the nonspecifi c reaction of the secondary Ab against the contaminating proteins interacted with the 
magnetic beads. The immunoblot bands were quantifi ed in the right panel. The results were obtained from the same experiments and the same gels. The re-
sults shown are representative of three independent experiments. 



JCB • VOLUME 178 • NUMBER 5 • 2007 852

neurite outgrowth was less effective than that of the knockdown 

of PDZ-GEF1 (Fig. 8 B). Consistently, overexpression of C3G 

enhanced the NGF-induced neurite outgrowth less effectively than 

that of PDZ-GEF1 (Fig. S2). The effect of the knockdown of C3G 

was rescued by expression of siRNA-resistant C3G (Fig. 8 C). 

The double knockdown of C3G and PDZ-GEF1 reduced neurite 

outgrowth more potently than the knockdown of PDZ-GEF1 or 

C3G alone (Fig. 8 D). In addition, the inhibitory effect of the 

double knockdown of C3G and PDZ-GEF1 on neurite outgrowth 

was similar to that of the knockdown of Rap1 (Fig. 8, E and F). 

These results indicate C3G and PDZ-GEF1 are main Rap1GEFs 

in the NGF-induced neurite outgrowth in PC12 cells.

Figure 7. Requirement of ARMS and S-SCAM for recruiting PDZ-GEF1 to late endosomes. (A) Effi ciency of the knockdown of ARMS by three different 
siRNAs. PC12 cells were transfected with control siRNA (Cont), ARMS siRNAs #1-3, or scramble RNA (Scr). The immunoblot bands were quantifi ed in the 
right panel. (B) Requirement of ARMS for recruiting PDZ-GEF1 to late endosomes. PC12 cells were cotransfected with both pFLAG-CMV2-PDZ-GEF1 and 
scramble control siRNA (Control) or with both pFLAG-CMV2-PDZ-GEF1 and ARMS siRNA (ARMS-KD). Cells were stimulated by NGF for 30 min and 
double-stained with the anti-PDZ-GEF1 pAb and the anti-LBPA mAb. Insets are enlarged images of boxed areas. The area of colocalization was quantifi ed 
in the right panel. (C) Requirement of PDZ4 domain of S-SCAM for recruiting PDZ-GEF1 to late endosomes. PC12 cells were cotransfected with both pFLAG-
CMV2-PDZ-GEF1 and pCIneo-Myc-S-SCAM or with pFLAG-CMV2-PDZ-GEF1 and pCIneo-Myc-S-SCAM-∆PDZ4. Transfected PC12 cells were stimulated 
by NGF for 30 min and double-stained with the anti-PDZ-GEF1 pAb and the anti-LBPA mAb. The area of colocalization was quantifi ed in the right panel. 
(D) Inhibition of neurite outgrowth in the AMRS-knockdown PC12 cells. PC12 cells were transfected with scramble control siRNA (Control) or ARMS siRNA 
#1-3 (ARMS-KD). Left panel: representative DIC images. Right panel: percentage of cells with neurites. (E) Inhibition of neurite outgrowth in PC12 cells 
 expressing S-SCAM-∆PDZ4. PC12 cells were transfected with GFP (Control) or cotransfected with GFP as a morphological marker along with pCIneo-Myc-
S-SCAM or pCIneo-Myc-S-SCAM-∆PDZ4. Left panel: representative DIC images. Right panel: percentage of cells with neurites. Asterisks indicate statistical 
signifi cance (t test; *, P < 0.05). Bars, 10 μm. The results shown are representative of three independent experiments.
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Figure 8. Involvement of C3G and PDZ-GEF1 in the NGF-
induced neurite outgrowth. (A) Effi ciency of the knock-
down of C3G by three different siRNAs. PC12 cells were 
transfected with control siRNA (Cont), C3G siRNAs #1-3, 
or scramble RNA (Scr). The immunoblot bands were quan-
tifi ed in the right panel. (B) Inhibition of neurite outgrowth 
in the C3G-knockdown PC12 cells. PC12 cells were trans-
fected with scramble RNA (Control) or C3G siRNA #1-3 
(C3G-KD). Left panel: representative DIC images. Right 
panel: percentage of cells with neurites. (C) Rescue of the 
inhibitory effect of the knockdown of C3G on neurite out-
growth. (Ca) Expression of FLAG-siRNA-resistant C3G in 
the C3G-knockdown PC12 cells. PC12 cells were fi rst 
transfected with C3G siRNA #2 or control RNA and cul-
tured for 2 d. Then cells were transfected with FLAG-siRNA-
resistant C3G. The total cell lysates were subjected to 
SDS-PAGE, followed by immunoblotting with the anti-C3G 
pAb. (Cb) Neurite outgrowth in rescued PC12 cells. PC12 
cells were cotransfected with pSUPER-retro-C3G and 
pERed NLS-FLAG vector (C3G-KD) or pERed NLS-FLAG 
siRNA-resistant C3G (C3G-rescue). Left panel: representa-
tive DIC images. Right panel: percentage of cells with 
neurites. (D) Effect of the double knockdown of C3G and 
PDZ-GEF1 on neurite outgrowth. PC12 cells were trans-
fected with control siRNA (Control), PDZ-GEF1 siRNA #1 
(PDZ-GEF-KD), C3G siRNA #1(C3G-KD), or PDZ-GEF1 
siRNA #1 and C3G siRNA #1 (PDZ-GEF-KD, C3G-KD). 
Top panels: representative DIC images. Bottom panels: per-
centage of cells with neurites and the length of neurite. 
(E) Effi ciency of the knockdown of Rap1 by three different 
siRNAs. PC12 cells were transfected with control siRNA 
(Cont) or Rap1 siRNAs #1-3. The immunoblot bands were 
quantifi ed in the right panel. (F) Inhibition of neurite out-
growth in the Rap1-knockdown PC12 cells. PC12 cells 
were transfected with control siRNA (Control) or Rap1 
siRNA #1-3 (Rap1-KD). Left panels: representative DIC 
 images. Right panels: percentage of cells with neurites 
and the length of neurite. Asterisks indicate statistical sig-
nifi cance (t test; *, P < 0.01). Bars, 10 μm. 
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The inhibitory effect of the knockdown of C3G on the 

NGF-induced sustained activation of Rap1 was less effective 

than that of the knockdown of PDZ-GEF1 (Fig. 9 A). The 

knockdown of PDZ-GEF1 alone did not completely abolish 

the NGF-induced sustained activation of Rap1. The double 

knockdown of C3G and PDZ-GEF1 more potently abolished 

the NGF-induced sustained activation of Rap1 and ERK. The 

inhibitory effect of the double knockdown of C3G and PDZ-

GEF1 on the sustained activation of ERK was similar to that of 

the knockdown of Rap1 (Fig. 9, A and B). These results indi-

cate that C3G and PDZ-GEF1 work cooperatively in the NGF-

induced sustained activation of Rap1.

Involvement of PDZ-GEF1 
in the BDNF-induced neurite 
outgrowth of hippocampal neurons
To validate the role of PDZ-GEF1 in PC12 cells, we fi nally exam-

ined whether PDZ-GEF1 is involved in the BDNF-induced neurite 

outgrowth in rat primary cultured hippocampal neurons. It has 

been reported that BDNF, but not NGF, enhances axon elongation 

in hippocampal neurons (Ip et al., 1993; Morfi ni et al., 1994; 

Labelle and Leclerc, 2000; Yoshimura et al., 2005). BDNF binds 

to its receptor, TrkB receptor,  in hippocampal neurons (Huang 

and Reichardt 2001; Sofroniew et al., 2001). Retrograde transport 

of BDNF-TrkB and the signaling complex associating with it is 

Figure 9 . Involvement of C3G and PDZ-GEF1 in the NGF-induced activation of Rap1 and ERK. (A) Effects of the double knockdown of C3G and PDZ-GEF1 
on the activation of Rap1 and ERK at 30 min after NGF stimulation in PC12 cells. PC12 cells were transfected with control RNA (Cont), PDZ-GEF1 siRNA #1 
(PDZ-KD), C3G siRNA #1 (C3G-KD), or PDZ-GEF1 siRNA #1 and C3G siRNA #1 (PDZ-KD, C3G-KD). The pull-down assay was performed as described in 
Fig. 2 A. The immunoblot bands were quantifi ed in the right and bottom panels. (B) The level of the activation of ERK in Rap1-knockdown PC12 cells. PC12 
cells were transfected with control RNA (C) or Rap1 siRNA #1 (KD). The level of the activation of ERK was measured as described in Fig. 2 A. The immuno-
blot bands were quantifi ed in the right panel.
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involved in the axon elongation and cell survival signal (Howe and 

Mobley, 2004; Zweifel et al., 2005). Hippocampal neurons at 

2.0 days in vitro were stimulated by BDNF for indicated periods of 

time. PDZ-GEF1 was recruited to LBPA-positive late endosomes 

at 30 min after BDNF stimulation (Fig. 10 A). PDZ-GEF1 was not 

recruited to EEA1-positive early endosomes. Hippocampal neu-

rons were cotransfected with an expression vector for GFP as 

a morphological marker along with the PDZ-GEF1 siRNA ex-

pression vector. At 1.5 days in vitro after plating, BDNF-induced 

recruitment of endogenous PDZ-GEF1 to late endosomes was not 

observed in the PDZ-GEF1-knockdown neurons (Fig. 10 Ba). The 

length of axon in the PDZ-GEF1-knockdown neurons was less 

than those of the control neurons (Fig. 10 B, b, c, and d). These re-

sults indicate that PDZ-GEF1 is involved in the BDNF-induced 

axon outgrowth in rat primary cultured hippocampal neurons.

Discussion
We fi rst showed here that NGF induced the sustained activation 

of Rap1 at late endosomes and neurite outgrowth in cultured 

Figure 10 . Involvement of PDZ-GEF1 in the 
BDNF-induced neurite outgrowth in hippo-
campal neurons. (A) Localization of endog enous 
PDZ-GEF1 at late endosomes in hippocampal 
neurons. Hippocampal neurons at 2.0 days 
in vitro were stimulated by BDNF for 30 min 
in the absence of serum and stained with in-
dicated Abs. Insets are enlarged images of 
cell bodies. The area of colocalization was 
quantifi ed in the right panel. Bars, 20 μm. 
(B) Inhibition of axon outgrowth in the PDZ-
GEF1-knockdown hippocampal neurons. (Ba) 
Expression level of PDZ-GEF1 in knockdown 
neurons. Hippocampal neurons from E18 rats 
were cotransfected with GFP as a morpholog-
ical marker along with pSUPER-retro-PDZ-GEF1 
(PDZ-GEF1-KD) by electroporation. Transfected 
neurons were cultured for 1.5 d in the pres-
ence of BDNF, and allowed to extend axons 
and minor neurites. Transfected neurons were 
visualized by the GFP fl uorescence (green) 
and immunostained with the anti-PDZ-GEF1 
pAb (red). The fl uorescence intensity of PDZ-
GEF1 of the neurons expressing GFP was 
 compared with that of the untransfected neu-
rons in the same fi eld of view in the right 
panel. (Bb) Effect of the knockdown of PDZ-
GEF1 on axon outgrowth. The morphology 
of transfected neurons was visualized by the 
GFP fl uorescence (green) and immuno stained 
with the anti-Tau-1 mAb (red) and the anti-
MAP2 pAb (blue). Bars, 20 μm. (Bc) Quanti-
tative analysis of the number of neurite per 
transfected neuron. An average neurite number 
(± SEM) of between 40 and 60 analyzed 
 neurons. (Bd) Quantitative analysis of the length 
of axon per transfected neuron. An average axon 
length (± SEM) of between 40 and 60 ana-
lyzed neurons. The mean value (± SEM) of three 
independent experiments is shown. Asterisks 
indicate statistical signifi cance (t test; *, P < 
0.01; **, P < 0.05). The results shown are rep-
resentative of three inde pendent experiments.
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PC12 cells. The activation of Rap1 at late endosomes was cata-

lyzed by PDZ-GEF1. Earlier FRET studied showed that Rap1 

was activated at peri-nuclear regions and it was practically diffi -

cult to distinguish the sites of the activation of Rap1 at the 

plasma membrane, early endosomes, and late endosomes by 

this method (Mochizuki et al., 2001; Ohba et al., 2003). We 

could not directly show the activation of Rap1 at late endosomes 

but indirectly showed it by immunofl uorescence microscopy 

and immunoisolation analysis: PDZ-GEF1 was recruited to late 

endosomes in response to NGF. PDZ-GEF1 was not recruited to 

early endosomes, whereas C3G was recruited to early endo-

somes, but not to late endosomes. Thus, these two GEFs for 

Rap1 play roles in different compartments.

As Rap1 is fi rst activated by C3G at the plasma membrane 

and early endosomes after NGF stimulation (Kao et al., 2001; 

Wu et al., 2001), activated Rap1 may affect the GEF activity of 

PDZ-GEF1. We found that the inhibitory effect of the knock-

down of C3G on the NGF-induced sustained activation of Rap1 

and neurite outgrowth was less effective than that of the knock-

down of PDZ-GEF1. The knockdown of PDZ-GEF1 alone did 

not completely abolish the NGF-induced sustained activation of 

Rap1 or neurite outgrowth. The double knockdown of C3G and 

PDZ-GEF1 completely abolished the NGF-induced sustained 

activation of Rap1 and neurite outgrowth similar to the knock-

down of Rap1. Thus, C3G and PDZ-GEF1 seem to work co-

operatively in the NGF-induced sustained activation of Rap1 and 

neurite outgrowth. We found that C3G was recruited to early 

endosomes, but not to late endosomes. The activation of Rap1 

was observed on late endosomes, not on early endosomes, at 

30 min after NGF stimulation. Moreover, inhibition of the trans-

port of TrkA receptor form early to late endosomes reduced the 

activation of Rap1 at 30 min after NGF stimulation. Collec-

tively, we propose the following model for the activation of 

Rap1 by C3G and PDZ- GEF: (1) Upon NGF stimulation, C3G 

fi rst activates Rap1 on early endosomes; (2) GTP-Rap1 on early 

endosomes is transported to late endosomes with TrkA receptor; 

and (3) Transported GTP-Rap1 activates PDZ-GEF1 and induces 

the sustained activation of Rap1 on late endosomes, eventually 

inducing neurite outgrowth.

The long-distance retrograde NGF signaling from axon 

terminals to cell bodies is crucial for neuronal survival and 

plasticity (Howe and Mobley 2004; Zweifel et al., 2005). It was 

shown that the internalization and endosomal traffi cking of 

TrkA receptor are important for the long-distance retrograde 

NGF signaling (York et al., 2000; Ginty and Segal, 2002; Howe 

and Mobley, 2004). TrkA receptor continues to transduce a sig-

nal after its internalization into endosomes (York et al., 2000; 

Ginty and Segal, 2002; Howe and Mobley, 2004). Certain spe-

cialized endosomal organelles might represent signaling plat-

forms from which specifi c pathways emerge (Howe et al., 2001; 

Sorkin and Von Zastrow, 2002). Earlier studies demonstrated 

that late endosomes are the major endosomal population labeled 

by endocytosed iodinated NGF in cell bodies of sympathetic 

neurons (Claude et al., 1982). As the interaction of TrkA receptor 

and NGF is resistant to decreasing pH values within the 

 endosomal pathway (Zapf-Colby and Olefsky, 1998), it appears 

likely that NGF is still bound to the extracellular domain of 

TrkA receptor within late endosomes. Accordingly, immu no-

electron microscopic study found phospho-TrkA receptor 

(pTrkA) immunoreactivity in late endosomes of sciatic-nerves 

(Bhattacharyya et al., 2002) and biochemical study found pTrkA 

in late endosomes in PC12 cells (Saxena et al., 2005a). Rab7, 

a member of the Rab family small G proteins, which regulates 

TrkA receptor transport from late endosomes to lysosomes, 

was shown to regulate the persistence of TrkA receptor at late 

endosomes and TrkA receptor signaling (Saxena et al., 2005b). 

Consistent with these earlier observations, we showed here by 

use of bafi lomycin, an agent which inhibits the vesicular traffi c 

from early endosomes to late endosomes, that the NGF-induced 

internalization and transport of TrkA receptor to late endosomes 

was essential for the sustained activation of Rap1 at late endo-

somes, the activation of ERK, and neurite outgrowth. Collec-

tively with our fi ndings, like TrkA receptor in clathrin-coated 

vesicles (Howe et al., 2001) and early endosomes (Delcroix et al., 

2003), TrkA receptor in late endosomes is competent of signaling. 

In addition, there are several reports that receptor tyrosine 

kinases (RTKs) induce signaling from late endosomes. For 

instance, it is known that late endosomes contain phospho-EGF 

receptor (pEGFR and its activated downstream signaling com-

ponents (Oksvold et al., 2001). The MAPK scaffold p14 local-

izes to the outer limiting membrane of late endosomes, and this 

localization is essential for EGFR signaling (Wunderlich et al., 

2001). There is also in vivo evidence pointing toward the impor-

tance of late endosomes in the regulation of neuronal TGF-β 

signaling (Sweeney and Davis, 2002). Thus, late endosomes 

 appear to be ideally suited for regulating spatial and temporal 

compartmentalization of signal transduction, beyond its con-

ventional role in cargo degradation. Our report is the fi rst to 

demonstrate that late endosomes represent functional TrkA re-

ceptor signaling platforms. This system might play a role in 

continuing activation state of NGF signaling during transport of 

TrkA receptor from axon terminals to cell bodies.

We furthermore showed here that PDZ-GEF1 was re-

cruited to late endosomes to form a complex with TrkA receptor, 

which was internalized and transported there, and that recruited 

PDZ-GEF1 induced sustained activation of Rap1 and ERK. 

NGF-bound TrkA receptor activates its own tyrosine kinase 

and gathers the signaling complex consisting of C3G, CrkL, 

and FRS2 on the plasma membrane (Kao et al., 2001; Wu 

et al., 2001). TrkA receptor and the FRS2-Crk-C3G complex 

associating with the receptor are internalized into clathrin-

coated vesicles and move into early endosomes within 5 min 

(Kao et al., 2001). Rap1 is activated at early endosomes and 

 activated Rap1 induces the activation of the MAPK cascade 

through activating B-Raf (Wu et al., 2001). TrkA receptor then 

passes through early endosomes without entering into the re-

cycling pathway to the plasma membrane and reaches to late 

endosomes within 30 min. Like the activated TrkA receptor 

complex at early endosomes, the TrkA receptor complex con-

taining ARMS, S-SCAM, and PDZ-GEF1 at late endosomes 

was competent in activation of Rap1. While the GEF activity of 

C3G is activated by its interacting partner Crk (York et al., 

1998), it remains unknown how the activity of PDZ-GEF1 is 

regulated at late endosomes. PDZ-GEF1 binds to the PDZ1 
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domain of S-SCAM through its C-terminal PDZ-binding motif 

and forms a stable complex (Ohtsuka et al., 1999). However, the 

binding of S-SCAM to PDZ-GEF1 does not affect GEF activity 

in vitro (Ohtsuka et al., 1999). The complex was recruited to 

ARMS-positive late endosomes through directly binding to 

ARMS, in a manner dependent on transport of TrkA receptor. 

The C-terminal PDZ-binding motif of PDZ-GEF1 contributed 

to direct the subcellular localization of PDZ-GEF1, leading to 

the augmented activation of Rap1 at late endosomes. Collec-

tively, PDZ-GEF1 is recruited to late endosomes through its 

C-terminal PDZ-binding motif. PDZ-GEF1 then activates Rap1 at 

late endosomes and the GEF activity of PDZ-GEF1 is aug-

mented by a positive feedback mechanism, resulting in the sus-

tained activation of Rap1 at late endosomes. It may be noted 

that when TrkA receptor is transported from early endosomes to 

late endosomes, the FRS2-Crk-C3G complex associating with 

TrkA receptor remains at early endosomes, suggesting that this 

complex is dissociated from the receptor. The mechanism of 

this dissociation remains unknown and is an issue to be ad-

dressed in the future.

We fi nally showed here that the PDZ-GEF1-induced sus-

tained activation of Rap1 at late endosomes was involved in the 

NGF-induced neurite outgrowth in PC12 cells and the BDNF-

induced axon outgrowth in rat hippocampal neurons. What is 

the target protein(s) of Rap1 in the neurite outgrowth? Many 

downstream targets of Rap1 have been identifi ed: they include 

c-Raf, B-Raf, RalGDS, afadin/AF-6, PI3-kinase, and RAPL 

(Bos et al., 2001; Kinashi and Katagiri, 2004; Nakanishi and 

Takai, 2004; Price and Bos, 2004). c-Raf and B-Raf are protein 

kinases connecting Ras to ERK; RalGDS is a regulator of an-

other small G protein Ral; afadin/AF-6 is an actin fi lament- and 

nectin-binding protein at adherens junctions; PI3-kinase is a 

phosphatidylinositol kinase, and RAPL is a small protein which 

transduces a signal from Rap1 to integrin. Among them, for 

 activating MAP kinase cascade, B-Raf was shown to be the 

 target protein of Rap1 for the NGF-induced neurite outgrowth 

(Ohtsuka et al., 1996). Several transcription factors, which are 

downstream of the MAP kinase cascade, contribute to neurite 

outgrowth by gene expression. On the other hand, RAPL and its 

binding protein Mst1 were recently shown to be involved in 

transport of integrin LFA-1 and its activation in lymphocytes 

(Katagiri et al., 2006). Transport of transmembrane proteins 

from late endosomes to the plasma membrane is an emerging 

paradigm and generally accepted (Mellman and Steinman, 

2001; Trajkovic et al., 2006; van Niel et al., 2006). Accordingly, 

activation of Rap1 at late endosomes might be involved in the 

transport of integrin from late endosomes to the plasma mem-

brane and thereby regulate the activation of MAP kinase cas-

cade indirectly. Moreover, we previously identifi ed RA-RhoGAP 

as another direct downstream target of Rap1 (Yamada et al., 

2005). RA-RhoGAP has the RA and GAP domains in addition 

to the PH and annexin-like repeat domains. It indeed shows a 

GAP activity specifi c for Rho and this GAP activity is enhanced 

by GTP-Rap1. The Rap1-RA-RhoGAP-Rho pathway plays an 

important role in the neurite outgrowth. Collectively, during the 

initiation of the neurite outgrowth, a neurite formation signal(s), 

such as NGF and BDNF, induces the C3G-mediated activation 

of Rap1 at endocytic vesicles or early endosomes in a growth 

cone of the nascent neurite. Subsequently, RA-RhoGAP is re-

cruited and activated by Rap1 to cause the inactivation of Rho 

at the growth cone of the nascent neurite. Repression of the 

Rho-mediated signaling pathway induces rapid actin depoly-

merization of the growth cone and thereby extends the incipient 

neurite further. In addition, to replenish the requirement for 

neurite outgrowth, such as signaling molecules and cytoskeletal 

proteins, endocytic vesicles or early endosomes are transported 

to late endosomes to sustain the activation of Rap1 by PDZ-

GEF1. The sustained activation of Rap1 prolongs the activation 

time of the MAPK cascade and results in the up-regulation of 

gene expression. Thus, the Rap1-RA-RhoGAP-Rho system and 

the PDZ-GEF-Rap1-B-Raf-MAPK system could cooperatively 

regulate neurite outgrowth. In future studies, it will be impor-

tant to elucidate how these two systems are spatially and tempo-

rally activated during the neurite outgrowth.

Materials and methods
Expression vectors
pFLAG-CMV2-PDZ-GEF1 and pFLAG-CMV2-PDZ-GEF1-∆RA were  obtained 
from Dr. Tohru Kataoka (Kobe University, Kobe, Japan). The RNAi-resistant 
mutant of FLAG-human PDZ-GEF1 (pERedNLS-FLAG-PDZ-GEF1R) was gen-
erated by mutagenesis of 5′-G A G A G A T T G T T A T G G T G A A -3′ to 5′-G C G A A-
A T C G T T A T G G T T A A -3′ using the QuikChange site-directed mutagenesis kit 
(Stratagene). The letters in the codons, which are different from the letters 
in the RNAi sequence of rat PDZ-GEF1, are underlined. pCMV-HA-PDZ-
GEF1 was constructed using standard molecular biology methods. pCI-
neo-Myc-S-SCAM, pCIneo-Myc-S-SCAM-8, pCIneo-Myc-S-SCAM-10, and 
pCIneo-Myc-S-SCAM-12 were obtained from Dr. Yutaka Hata (Tokyo 
Medical and Dental University, Tokyo, Japan). pCIneo-Myc-S-SCAM-∆PDZ4 
(aa 929–1010 deletion) was constructed using standard molecular biol-
ogy methods. KIAA1250/ARMS cDNA was obtained from Dr. Takahiro 
Nagase (Kazusa DNA Research Institute, Chiba, Japan). pCMV-FLAG-ARMS, 
pGEX4T-2-ARMS-Ct (aa 1616–1715), and pGEX4T-2-ARMS-Ct-∆SIL (aa 
1616–1712) were constructed using standard molecular biology methods. 
pCMV-FLAG-C3G was constructed using standard molecular biology methods. 
The RNAi-resistant mutant of FLAG-human C3G (pERedNLS-FLAG-C3GR) 
was generated by mutagenesis of 5′-G C T C C T C A T G G A G G T A T A C  -3′ to 
5′-G C T C C T C A T G G A A G T A T A C -3′ using the QuikChange site-directed 
mutagenesis kit (Stratagene). The letters in the codons, which are differ-
ent from the letters in the RNAi sequence of rat C3G, are underlined. 
pGEX4T-1-RalGDS-3xRBD was constructed using standard molecular 
biology methods.

Antibodies
The GST-fusion fragment of PDZ-GEF1 (aa 1–250) was produced in Esche-
richia coli, purifi ed, and used as an antigen to raise a pAb in rabbit. The 
rabbit anti-PDZ-GEF1 pAb was affi nity purifi ed by using MBP-PDZ-GEF1 
(aa 1–250) immobilized on Amino-link agarose beads (Pierce Chemical 
Co). A rabbit anti-S-SCAM pAb was obtained from Dr. Yutaka Hata (Tokyo 
Medical and Dental University, Tokyo, Japan). A mouse anti-LBPA mAb 
was obtained from Dr. Toshihide Kobayashi (RIKEN, Wako, Japan) and 
Dr. Jean Gruenberg (University of Geneva, Geneva, Switzerland). A rabbit 
anti-Rab7 pAb was obtained from Dr. Marino Zerial (Max Plank Institute, 
Dresden, Germany). A rabbit anti-Rap1 pAb, a mouse anti-pan-Trk mAb 
(B-39), a rabbit anti-C3G pAb, a mouse anti-cMyc mAb (9E10), and a 
mouse anti-GST mAb (B-14) were purchased from Santa Cruz Biotech-
nology, Inc. A mouse anti-phospho-ERK mAb (E10) and a rabbit anti-ERK 
pAb were purchased from Cell Signaling. A mouse anti-Ras mAb and a 
rabbit anti-TrkA receptor pAb were purchased from Upstate Biotechnology. 
A mouse anti-EEA1 mAb and a mouse anti-GM130 mAb were purchased 
from Transduction Laboratories. A mouse anti-FLAG M2 mAb and a rabbit anti-
FLAG pAb were purchased from Sigma-Aldrich. A mouse anti-Kidins220/
ARMS mAb was purchased from Abcam. A rabbit anti-Kidins220/ARMS 
pAb was purchased from ABR. A mouse anti-Tau-1 mAb and a rabbit anti-
MAP2 pAb were purchased from Chemicon International. A mouse anti-HA 
mAb was purchased from Babco.
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Knockdown of PDZ-GEF1, ARMS, and C3G by the RNAi method
For PDZ-GEF1-knockdown, double-stranded 19-nucleotide RNA duplexes 
(QIAGEN) for PDZ-GEF1 #1 (5′-G A G A G A U U G U A A U G G U G A A -3′), #2 
(5′-G A G U A G A G A G A G U C U U G A A -3′), scramble RNA for #1 (5′-A A U-
U G U A A U A G G A U G G G A G -3′), or double-stranded 25-nucleotide RNA 
duplexes (StealthTM RNA-mediated interference; Invitrogen) for PDZ-GEF1 
#3 (5′-C G A U C C A G U A U U G U C A G C A A U U C U U -3′) was transfected into 
PC12 cells using Lipofectamine 2000 reagent. For C3G-knockdown, 
double-stranded 25-nucleotide RNA duplexes (Stealth RNA-mediated inter-
ference; Invitrogen) for C3G #1 (5′-C A G A A C G A G A A A U G G A G A U U C-
U G A A -3′), double-stranded 19-nucleotide RNA duplexes (QIAGEN) for 
C3G #2 (5′-G A U G C U C A U G G A G G U C U A U -3′), #3 (5′-C C A G A C U A C-
A U A G A C G G G A A G G U C A -3′), or scramble RNA for #1 (5′-A G A G U U A-
G C G G C G A A U A U A A A A A G C -3′) was transfected into PC12 cells using 
Lipofectamine 2000 reagent. For ARMS-knockdown, double-stranded 25-
nucleotide RNA duplexes (StealthTM RNA-mediated interference; Invitro-
gen) for ARMS #1 (5′-C A G G C C G A G U A U A G A G A C G C C U A U A -3′), #2 
(5′-C G G C U C U C A A C A G A A G G G A C A C U U A -3′), #3 (5′-G G G C U C C A U-
C C A U U C U A C U C U A G A A -3′), or scramble RNA for #1 (5′-C A G G A G C-
A U A U A G A G C C G C U C G A U A -3′) was transfected into PC12 cells using 
Lipofectamine 2000 reagent. For Rap1-knockdown, double-stranded 25-
nucleotide RNA duplexes (StealthTM RNA-mediated interference; Invitro-
gen) for Rap1 #1 (5′-C A G A A U U U A G C A A G A C A G U G G U G U A -3′), #2 
(5′-C A G C A A U G A G G G A U U U G U A U A U G A A -3′), or #3 (5′-U G G G A A A-
G U C U G C U C U G A C A G U U C A -3′) was transfected into PC12 cells using 
Lipofectamine 2000 reagent. For detection of knockdown effi ciency, the 
whole cell lysates of PC12 cells were subjected to SDS-PAGE, followed by 
immunoblotting with the anti-PDZ-GEF1 pAb, the anti-C3G pAb, the anti-
ARMS pAb, or the anti-actin mAb. For FRET analysis and rescue experi-
ment in neurite outgrowth, the siRNA expression vector, pSUPER-retro was 
used for expression of shRNA in PC12 cells. The following inserts were 
used: PDZ-GEF1 gene-specifi c insert was a 19-nucleotide sequence cor-
responding to nucleotides 740–758 (5′-G A G A G A T T G T A A T G G T G A A -3′) 
of PDZ-GEF1 cDNA, which was separated by a 10-nucleotide noncomple-
mentary spacer (TTCAAGAGA) from the reverse complement of the same 
19-nucleotide sequence. C3G gene-specifi c insert was a 19-nucleotide 
sequence corresponding to nucleotides 1407–1425 (5′-G A T G C T C A T G G-
A G G T C T A T -3′) of C3G cDNA, which was separated by a 10-nucleotide 
noncomplementary spacer (TTCAAGAGA) from the reverse complement of 
the same 19-nucleotide sequence.

Rap1 GEF assay
GEF assay was performed as described previously (Yamamoto et al., 
1990). Lipid-modifi ed GST-Rap1A was generated in Sf9 cells using the 
baculovirus expression system as described previously (Mizuno et al., 
1991; Umikawa et al., 1999). FLAG-PDZ-GEF1 and FLAG-PDZ-GEF1-∆RA 
were purifi ed from transfected HEK 293 cells as described previously 
(Kimura et al., 2006). Lipid-modifi ed GDP-bound form of GST-Rap1A 
(5 pmol) was incubated at 30°C for indicated periods of time in a reaction 
mixture (50 μl) containing FLAG-PDZ-GEF1 (0.5 pmol) with or without the 
GST-Rap1A-CA (5 pmol), 50 mM Tris/HCl at pH 8.0, 12 mM MgCl2, 
2 mM EDTA, 0.4 mM DTT, 0.06% CHAPS, and 12 μM [35S]GTPγS (6 × 103 
cpm/pmol). The mixture was applied to a nitrocellulose fi lter, and the radio-
activity retained on the fi lter was measured.

FRET imaging
PC12 cells were transfected with an empty pSUPER-retro vector or pSUPER-
retro-PDZ-GEF1. After selection with puromycin, cells were further trans-
fected with pRaichu-Rap1. PC12 cells expressing Raichu-Rap1 were starved 
for 6–12 h with phenol red-free DMEM/F12 medium containing 0.1% 
 bovine serum albumin (BSA), and then treated with 50 ng/ml of NGF. 
The medium was covered with mineral oil (Sigma-Aldrich) to preclude 
evaporation. Cells were imaged with an IX71 inverted microscope (Olympus) 
equipped with a Cool SNAP-HQ cooled CCD camera (Roper Scientifi c) 
controlled with MetaMorph software (Universal Imaging), as described 
previously (Mochizuki et al., 2001). The fi lters used for the dual-emission 
imaging studies were obtained from Omega Optical: an XF1071 (440AF21) 
excitation fi lter, an XF2034 (455DRLP) dichroic mirror, and two emission 
fi lters (XF3075 (480AF30) for CFP and XF3079 (535AF26) for YFP). Cells 
were illuminated with a 75-W Xenon lamp through a 12% ND fi lter and 
viewed through a 60x immersion objective lens. The exposure times for 
4 × 4 binning were 400 msec for CFP and YFP images, and 100 msec for 
differential interference contrast (DIC) images. After background subtrac-
tion, YFP/CFP ratio images were created with the MetaMorph software 
and the images were used to represent FRET effi ciency.

Immunofl uorescence and confocal microscopy
Staining was performed as follows: PC12 cells were seeded onto poly-L-
lysine coated coverslips in 24-well plates a day before the experiment. 
PC12 cells were cultured in DME with serum for 24 h, serum-starved for 16 h, 
treated with bafi lomycin for 2 h, and stimulated by NGF for 30 min. The 
cells were fi xed with 4% paraformaldehyde for 15 min and permeabilized 
with 0.05% Saponin for 30 min at room temperature. Images were cap-
tured using a Carl Zeiss confocal laser scanning microscope using a 63× 
oil immersion objective lens (model LSM 510-V3.2; Carl Zeiss MicroImaging, 
Inc.) or a confocal laser scanning microscope (model TE2000; Nikon) 
using a 60× oil immersion objective lens. The fl uorescence area and in-
tensity of each protein in PC12 cells were measured by use of NIH Image 
software. Collected data were exported as 8-bit TIFF fi les and processed 
using Adobe Photoshop 7.0.

Pull-down assay for GTP-Rap1 and GTP-Ras
The pull-down assay was performed as described previously (Sasagawa 
et al., 2005). PC12 cells were transfected with siRNA for 2 d and stimulated 
by NGF for indicated periods of time. The PC12 cells were washed with 
1 ml of ice-cold PBS and lysed in Buffer A (50 mM Tris/HCl at pH 7.4, 150 
mM NaCl, 5 mM MgCl2, 1% NP-40, 0.5% sodium deoxycholate, 0.1% 
SDS, 1 mM phenylmethylsulfonyl fl uoride, 1 mM sodium vanadate). The 
samples were centrifuged at 100,000 x g for 10 min, and the supernatant 
was collected as the cell lysates. For the Rap1 pull down assay, the cell 
lysate (600 μg of protein) was incubated with GST-RalGDS Rap binding 
domain (RBD) (10 μg of protein) immobilized on glutathione-Sepharose 
beads (50 μl) for 30 min. After the beads were washed three times with 
Buffer A, GTP-Rap1 was detected by immunoblotting with an anti-Rap1 
pAb. For the Ras pull-down assay, the cell lysate (600 μg of protein) was 
incubated with GST-c-Raf Ras binding domain (RBD) (30 μg of protein) 
 immobilized on glutathione-Sepharose beads (50 μl) for 30 min. After the 
beads were washed three times with Buffer A, GTP-Ras was detected by 
immunoblotting with an anti-Ras mAb.

Detection of ERK activation
5% of the total cell lysates of PC12 cells was used for immunoblotting with 
either the anti-phospho-ERK mAb or the anti-ERK pAb to determine the 
amount of activated ERK (Phospho-ERK) or the total amount of ERK (Total-ERK), 
respectively, in each transfected cells.

Quantifi cation of neurites
PC12 cells were obtained from Dr. Shinya Kuroda (Tokyo University,  Tokyo, 
Japan) and maintained in DMEM with 5% horse serum and 10% bovine 
calf serum (Hyclone) in a 10% CO2 atmosphere. PC12 cells were cultured 
in DMEM with serum for 48 h and stimulated by NGF for 24 h. Images 
were captured using a confocal laser scanning microscope using a 60× 
oil immersion objective lens (model TE2000; Nikon). Collected data were 
exported as 8-bit TIFF fi les and processed using Adobe Photoshop software. 
The assay for neurite outgrowth was performed on 40–60 cells randomly 
chosen in each group. The number of primary neurites per cell was defi ned 
as the number of thin cell processes with a length longer than one cell 
diameter. The statistical signifi cance of differences between each group 
was analyzed by the two-tailed t test.

Rat hippocampal neurons were prepared form embryonic day (E) 
18 Sprague-Dawley rats with slight modifi cations as described (Goslin and 
Banker, 1989). For cDNA transfection, before plating, the cells were re-
suspended in an optimized transfection solution for primary rat hippocampal 
neurons (Amaxa). Each sample (2 × 106 cells in 100 μl) was transfected 
with 2 μg cDNA as indicated by using Nucleofector electroporation de-
vice (Amaxa), according to the optimized protocol for primary rat hippo-
campal neurons (Amaxa). Immediately after transfection, the cells were 
cultured in 24-multiwells at a density of 3 × 104 cells/well. After 1.5 d cul-
ture, neurons were processed for immunohistochemistry. Images were cap-
tured using a confocal laser scanning microscope using 40 and 60× oil 
immersion objective lens (model TE2000; Nikon). Collected data were ex-
ported as 8-bit TIFF fi les and processed using Adobe Photoshop software. 
The morphometrical analysis for axons and minor neurites was performed 
on between 40 and 60 GFP-positive neurons (Ahnert-Hilger et al., 2004). 
The number of axons or minor neurites per cell was defi ned as the number 
of Tau-1-positive processes at least twice as long as the other processes or 
MAP2-positive processes longer than one cell diameter, respectively. The 
length of individual axons for each neuron was measured by use of the 
NIH Image software. Axon length encompasses all visible parts of an axon 
without the length of its branches. The statistical signifi cance of differences 
between each group was analyzed by the two-tailed t test.
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Subcellular fractionation
PC12 cells (cultured on 3 × 10 cm plates) were cracked with a ball-bearing 
homogenizer in Buffer B (250 mM sucrose, 3 mM imidazole at pH 7.4, 
1 mM EDTA, 10 μg/ml cycloheximide, and complete protease inhibitor 
cocktail [Roche]). Subsequently, a post-nuclear supernatant (PNS) was pre-
pared by centrifugation at 3000 rpm for 10 min (Kubota 5800). The PNS 
was adjusted to 40.6% sucrose, loaded at the bottom of a p55ST centri-
fuge tube (Hitachi), and overlaid sequentially with 35% and 30.5%  sucrose 
solutions in 3 mM imidazole at pH 7.4, 1 mM EDTA, and 10 μg/ml cyclo-
heximide. Subsequently, the tube was fi lled up with the homogenization 
buffer. The gradient was centrifuged at 35,000 rpm for 66 min using a 
p55ST rotor (Hitachi). After the centrifugation, the different interfaces and 
sucrose cushions were collected from top to bottom of the tube. Heavy 
membrane fraction was recovered in the 40.6/35% fraction. Early endo-
somal fraction was recovered in the 35/30.5% fraction. Late endosomal 
fraction was recovered in the 30.5/8% fraction. BCA assays (Pierce 
Chemical Co.) were performed to determine the protein concentration of 
each fraction. Equal amounts of protein from each fraction were loaded on 
SDS-PAGE, followed by immunoblotting with the mouse anti-GM130 mAb, 
the mouse anti-EEA1 mAb, the rabbit anti-Rab7 pAb, and the rabbit anti-
Rap1 pAb.

For detecting GTP-Rap1, PC12 cells (cultured on 3 × 10 cm plates) 
were cracked with a ball-bearing homogenizer in Buffer C (250 mM 
sucrose, 3 mM imidazole at pH 7.4, 1 mM EDTA, 10 μg/ml cycloheximide, 
complete protease inhibitor cocktail [Roche], and 100 μg/ml GST-RalGDS-
3xRBD). Subsequently, the PNS was prepared and used for the subcellular 
fractionation as described above. Equal amounts of protein from each frac-
tion were loaded on SDS-PAGE, followed by immunoblotting with the mouse 
anti-GST mAb, the rabbit anti-Rap1 pAb, and the mouse anti-Ras mAb.

Immunoisolation of PDZ-GEF1–containing vesicles
Immunoisolation of vesicles was performed as described previously (Saucan 
and Palade, 1994). In brief, PC12 cells (cultured on 4 × 10 cm plates) 
were starved for 16 h in phenol red-free DMEM/F12 medium containing 
0.1% BSA, and either left unstimulated or stimulated by NGF for 30 min. 
Subsequently, the cells were cracked with a ball-bearing homogenizer in 
Buffer B. Subsequently, a PNS was prepared by centrifugation at 3,000 
rpm for 10 min (Kubota 5800). Dynabeads Protein A (DYNAL Inc.) mag-
netic beads were coated with the anti-PDZ-GEF1 pAb or the control IgG 
at a density of 10 μg Ab per 50 μl beads according to manufacturer’s 
instructions. The anti-PDZ-GEF1 pAb-coated beads were added to the PNS 
and incubated with continuous rotation at 4°C for 2 h. The immunoisolated 
beads were washed fi ve times with Buffer B using a magnet and trans-
ferred to fresh tubes. The beads were fi nally resuspended in 80 μl of the 
SDS sample buffer for SDS-PAGE, followed by immunoblotting with the 
mouse anti-EEA1 mAb, the rabbit anti-Rab7 pAb, the anti-ARMS mAb, and 
the rabbit anti-PDZ-GEF1.

Online supplemental material
Fig. S1 shows the effect of GTP-Rap1 on the GEF activity of PDZ-GEF1-∆RA. 
Fig. S2 shows the effect of overexpression of PDZ-GEF1 on neurite out-
growth. Fig. S3 shows the recruitment of C3G to early endosomes in a NGF-
dependent manner. Fig. S4 shows the Inhibition of the transport of TrkA receptor 
from early endosomes to late endosomes by bafi lomycin. Fig. S5 shows the 
expression levels of S-SCAM and ARMS in S-SCAM-expressing- and ARMS-
knockdown PC12 cells, respectively. Online supplemental material is avail-
able at http://www.jcb.org/cgi/content/full/jcb.200610073/DC1.
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