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Introduction
The coordinated movement of crawling cells depends on the 

proper spatial and temporal regulation of the actin cytoskeleton. 

Actin polymerization is biased toward the cell front, enabling 

protrusion of the leading edge, and myosin contraction is biased 

toward the cell rear, enabling traction of the cell body toward the 

front. In addition to the polarization of actin network dynamics, 

crawling cells exhibit a morphological polarization, with the 

cell front and rear being easily distinguishable.

In neutrophils, which respond to external gradients of 

chemoattractants, front-back polarization is initiated by protru-

sion of the leading edge closest to the chemoattractant source. 

However, stationary neutrophils in a uniform concentration of 

chemoattractant can also polarize spontaneously, initiate motil-

ity, and move in a random direction (Zigmond et al., 1981; 

Coates et al., 1992). In both cases, polarization is accompanied 

by the recruitment of PIP3 to the cell membrane (Servant et al., 

2000) and the formation of actin ruffl es at the leading edge 

(Weiner et al., 1999). Other cell types have also been reported to 

spontaneously break symmetry in the absence of any external 

cues, including fi broblasts, which polarize after plating onto 

glass coverslips coated with polylysine and ConA (Symons and 

Mitchison, 1991), and Walker carcinosarcoma cells (Fedier 

et al., 1999). This suggests that polarization and motility initiation 

do not require an external directional cue. Where one is present, 

it only induces a preferred directionality, but there must be an 

intrinsic mechanism for cell polarization.

In contrast to neutrophils, where polarization is initi-

ated by protrusion, stationary lamellipodial fragments from 

fi sh epidermal keratocytes, which are circular, can be pushed 

at the rear by a stream of media from a micropipette. This in-

duces rear retraction followed by protrusion of the front and 

the initiation of persistent motility (Verkhovsky et al., 1999). 

Similarly, in already polarized chick heart fi broblasts, rear 

 retraction precedes front protrusion (Chen, 1979; Dunn and 

Zicha, 1995). So, although neutrophil polarization in response 

to a chemoattractant is initiated by protrusion at the front, 

lamellipodial fragments can polarize when physically pushed at 

the rear. However, it has not been determined how polarization 
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arises and propagates in the absence of an external stimulus 

and what the events throughout spontaneous symmetry break-

ing may be.

The goal of this study is to establish quantitatively, for the 

fi rst time, the sequence of structural events during spontaneous 

cell polarization. We chose rapidly moving fi sh epidermal kerato-

cytes as a model system for our analyses. These cells are not 

known to respond to chemotactic stimuli; thus, the underlying 

mechanism of spontaneous symmetry breaking can be studied 

without cross talk from chemotaxis. Once keratocytes are polar-

ized, they migrate in a persistent manner (Euteneuer and Schliwa, 

1984). Furthermore, keratocytes are fl at and, thus, are particu-

larly amenable to high resolution live cell microscopy of morpho-

dynamic events.

Our data indicate that the fi rst signs of polarization do not 

emerge at the cell front or periphery but at the cell rear and peri-

nuclear region. Rearrangements of the actomyosin network near 

the cell periphery and cell front occurred later in the polariza-

tion process, indicating that they were a consequence rather 

than a cause of symmetry breaking. This symmetry breaking 

was driven by contraction and was dependent on Rho kinase–

mediated reorganization of the actomyosin network. Thus, we 

have identifi ed an alternative paradigm for spontaneous cell 

symmetry breaking and motility initiation.

Results
Stationary keratocytes are radially 
symmetric and can spontaneously 
initiate motility
Keratocytes isolated from cichlid scales migrated from the scale 

as large epidermal sheets that could be disaggregated by incuba-

tion in 2.5 mM EGTA/85% PBS to form a mixture of smaller 

islands, individual motile polarized keratocytes, and individual 

stationary nonpolarized keratocytes. Stationary keratocytes were 

circular and radially symmetric (Fig. 1, A and C), which is in 

contrast to motile keratocytes, which were crescent shaped and 

bilaterally symmetric (Fig. 1, B and E). The network of actin 

fi laments (fi lamentous actin [F-actin]) of stationary keratocytes 

was denser around the cell body than at the periphery and 

often formed circular bands around the cell body (Fig. 1 A). 

Although stationary keratocytes did not exhibit net transloca-

tion, transient protrusion and retraction occurred around the 

cell edge.

In the lamellipodia of motile cells, F-actin generally 

moves from the leading edge to the cell body. To image F-actin 

network movement in the lamellipodia of stationary kerato-

cytes, we used fl uorescent speckle microscopy (FSM) with low 

levels of labeled phalloidin (Schaefer et al., 2002; Zhang et al., 

2003; Vallotton et al., 2005), which binds specifi cally to F-actin 

and yields a higher signal/noise level than G-actin probes 

(Fig. 1, C and E; Schaefer et al., 2002; Vallotton et al., 2005). 

We measured the rate of F-actin network movement by adaptive 

multiframe correlation tracking of fl uorescent speckle motion 

(Fig. 1, D and F; Ji and Danuser, 2005). In stationary kerato-

cytes, F-actin fl owed centripetally from the cell edge to the cell 

body (Fig. 1 D and Video 1, available at http://www.jcb.org/cgi/

content/full/jcb.200706012/DC1) at a rate of �25–60 nm/s. 

The fl ux was fastest at the cell periphery, decreasing gradually 

toward the cell body. This radial inward fl ow was consistent 

with previous studies of centripetal actin fl ow in circular, sta-

tionary lamellipodial fragments (Verkhovsky et al., 1999) and 

circular sea urchin coelomocytes (Edds, 1993). In motile kera-

tocytes, it has been established that the lamellipodial F-actin 

network moves slowly rearwards with respect to the substratum 

as the cell moves rapidly forward (Jurado et al., 2005; Vallotton 

et al., 2005). In our experiments, we measured retrograde 

F-actin fl ow of �10 nm/s relative to the substratum in the lamelli-

podia (Fig. 1 F and Video 2) and faster inward fl ow at the rear 

sides of the cell (Fig. 1 F and Video 2) as observed previously 

(Theriot and Mitchison, 1991; Lee et al., 1993; Vallotton et al., 

2005), where myosin-dependent contraction gathers the F-actin 

network toward the cell body (Anderson et al., 1996; Svitkina 

et al., 1997).

Stationary keratocytes could spontaneously break sym-

metry, polarize, and initiate motility in the absence of external 

cues at a frequency of �15% per 30 min. Given that the F-actin 

fl ow pattern and speed were different in stationary compared 

with motile keratocytes (Fig. 1 G), mechanisms that lead to 

symmetry breaking and morphological polarity should also alter 

F-actin dynamics within the cell. These changes could occur at 

the prospective cell front, prospective cell rear, or simultane-

ously at the front and rear.

Initial morphological changes during 
spontaneous symmetry breaking and 
motility initiation occur at the cell rear
Not all stationary cells initiated motility, and stationary cells 

had variable protrusion and retraction at the cell edge. To de-

termine the sequence of events leading to cell polarization and 

movement, we acquired time-lapse videos of keratocytes spon-

taneously initiating motility (Fig. 2 A and Videos 3 and 4, avail-

able at http://www.jcb.org/cgi/content/full/jcb.200706012/DC1) 

and fi rst examined the movement of the cell edge. We mea-

sured the position of the cell edge in each frame of a video us-

ing the gradient vector fl ow variation of the active contours 

fi tting method (see Materials and methods and Fig. S1; Kass 

et al., 1988; Xu and Prince, 1998). Time sequences of cell edge 

outlines indicated that the prospective rear edge moved in-

wards before forward advancement of the front edge (Fig. 2 B). 

To quantify this, we used consecutive cell outlines to measure 

the extent of protrusion or retraction at points along the cell 

edge for each time point (Machacek and Danuser, 2006) and 

generated maps of cell edge movement over time (Fig. 2 C). 

A region of continuous retraction at the cell rear (Fig. 2 C, 

blue boxes) could reliably be identifi ed in cells before the 

overt initiation of directed motility. There was also a region 

of continuous protrusion at the cell front (Fig. 2 C, red boxes), 

but this generally started after rear retraction was initiated 

(9/11 cells).

Although motility initiation was a continuous process, we 

typically observed three characteristic phases during motility ini-

tiation (Fig. 2 C). Phase I was a period of slow rear retraction (�10–

40 nm/s) of highly variable duration, ranging from 20 to 430 s. 
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In addition, by imaging cells with a fl uorescent volume marker, 

we found that the lamellipodial thickness decreased at the 

prospective rear during phase I, whereas no changes in lamel-

lipodial thickness were observed elsewhere (Fig. S2, avail-

able at http://www.jcb.org/cgi/content/full/jcb.200706012/DC1). 

The types of transients observed in phase I were not unique to 

cells initiating motility but were also within the range of edge 

fl uctuations observed in stationary cells. Phase II was a period 

of fast (�50–180 nm/s) and sustained rear retraction in which 

the rear edge rapidly moved inwards toward the cell body for 

40–170 s, leading to morphological polarization. In contrast to 

phase I, phase II seemed specifi c to those cells initiating motility. 

This was followed by phase III, in which the cell rear ad-

vanced persistently. Persistent protrusion of the cell front co-

ordinated with movement of the cell rear usually began during 

phase III (8/11 cells).

Although the cell rear consistently retracted inwards dur-

ing motility initiation, patterns of edge movement at the cell 

Figure 1. F-actin network movement in stationary and motile keratocytes. (A and B) Keratocytes were fi xed and stained with phalloidin to visualize 
F-actin. (A) F-actin in stationary keratocytes was denser near the cell body than the periphery. (B) Motile keratocytes had a criss-cross pattern of F-actin 
staining in the lamellipodia and F-actin bundles at the cell rear. (C and E) AF546-phalloidin FSM images of F-actin networks in live stationary (C) and 
motile (E) keratocytes. (D and F) F-actin fl ow fi eld relative to the substratum extracted by multiframe correlation tracking of speckle movement. Vectors 
indicate network displacements between consecutive frames. Color encodes fl ow speed. (D) The F-actin network in stationary keratocytes fl owed centripe-
tally inwards. (F) The F-actin network in motile keratocytes had a small retrograde fl ow in the lamellipodium and large inwards movement at the rear 
sides. (G) During symmetry breaking and motility initiation of keratocytes, the cell must transition from being stationary with radially symmetric centripetal 
actin fl ow to being polarized with decreased actin fl ow speed at the cell front. C and E are available as Videos 1 and 2 (available at http://www.jcb
.org/cgi/content/full/jcb.200706012/DC1).
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front were more variable and not predictive of cell polarization. 

For some cells, local transient movement of the cell front was 

observed during phases I and II, but these movements were 

comparable with those in stationary cells. Expansion of the cell 

sides also sometimes occurred during phases I and II. Because 

we observed cells in which there was no detectable movement 

of the front edge before persistent movement during phase III, 

we conclude that persistent movement of the front edge was 

not required for symmetry breaking and motility initiation. 

Together, these data suggested that symmetry breaking may be 

mediated by events at the prospective cell rear.

Initial events in symmetry breaking 
include an increase in actin network fl ow 
speed at the prospective cell rear and 
a reorientation of perinuclear actin 
network fl ow
Next, we examined transients in F-actin network fl ow during 

polarization and motility initiation using FSM and multiframe 

correlation tracking. We performed detailed tracking of F-actin 

network fl ow in fi ve cells undergoing motility initiation. For 

each F-actin fl ow vector, we calculated the radial component 

of velocity (vr) and the centripetal deviation (φ), which was 

Figure 2. The prospective rear edge moves before the front edge during motility initiation. (A) Phase-contrast image sequence of two representative 
keratocytes breaking symmetry and initiating motility. (B, left) Cell outline superimposed on the fi rst and last image in the image sequence for the same cells 
as in A. (B, right) Time sequence of the cell outline during motility initiation, with color denoting time elapsed (in seconds). (C) Protrusion/retraction map of 
the cell edge (in polar coordinates) over time. Blue boxes are regions of continuous rear retraction. Red boxes are regions of continuous front protrusion. 
The rear of the cell exhibited three phases during motility initiation: I, slow rear retraction; II, fast rear retraction; and III, persistent movement. A is available 
as Videos 3 and 4 (available at http://www.jcb.org/cgi/content/full/jcb.200706012/DC1).
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defi ned as the angular displacement between the radial compo-

nent of velocity and the original velocity vector (Fig. 3 A). In 

stationary cells, the radial velocity generally decreased from the 

cell periphery to the center, and the centripetal deviation fl uctu-

ated around zero (Fig. 3 B and Video 5, available at http://www

.jcb.org/cgi/content/full/jcb.200706012/DC1). During phase I, 

slow edge retraction at the prospective cell rear was accompa-

nied by a slight increase in radial velocity and an increase in the 

magnitude of centripetal deviation in the perinuclear region 

(Fig. 3 C, left; and Video 6), indicating that instead of fl owing 

centripetally toward the cell body, F-actin fl ow was biased in 

the direction of prospective cell movement. Phase II was char-

acterized by a large increase in the radial velocity at the cell rear 

and continued alignment of the F-actin fl ow in the perinuclear 

region toward the eventual direction of cell movement (Fig. 3 C, 

right; and Video 6).

To measure when and where changes in F-actin fl ow 

occurred during motility initiation, we distinguished F-actin 

dynamics in the perinuclear and peripheral regions of the lamelli-

podia based on the AF546-phalloidin fl uorescence pattern. 

The F-actin network in the perinuclear region was denser and 

often formed circular bands, whereas the peripheral region had 

less dense labeling (Fig. 1, A and C). We also defi ned four 

sectors of equal angular size—front, back, and two sides—based 

on the eventual direction of cell movement. In the fi ve cells 

tracked while initiating motility, the fi rst sign of polarization 

was an increase in radial velocity (�15–40%) at the rear peri-

nuclear and peripheral regions and a reorientation of F-actin 

fl ow in the perinuclear region toward the prospective direction 

of movement, which was manifested in an increased magnitude 

of centripetal deviation (Fig. 3, D and E). These changes co-

incided with phase I. The changes in actin dynamics in the rear 

and side perinuclear regions were often accompanied by a 

decrease in the radial velocity in the front perinuclear region, 

suggesting a high coordination of F-actin dynamics in the peri-

nuclear ring. However, no changes occurred in the front pe ri pheral 

region during phase I. Notably, fl ow pattern variations similar 

to those observed in phase I were also observed in some cells 

while stationary (Fig. 3 D at 140–180s shows extreme variation 

before motility initiation). This suggests that fl ow transients of 

phase I are not specifi c to motility initiation and probably refl ect 

inherent variation in F-actin fl ow in stationary cells. However, 

changes in F-actin fl ow characteristic of phase I always preceded 

phase II during motility initiation.

Approximately 5–20 s before the start of phase II, the rate 

of change of radial velocity increased in the rear perinuclear and 

peripheral regions, leading to the high radial velocity at the cell 

rear characteristic of phase II, approximately two- to threefold 

faster than basal speeds (Fig. 3, D and E; top). These changes 

were specifi c to the cell rear and were not observed at the pro-

spective cell sides (Fig. 3 E, top). The increased magnitude of 

centripetal deviation in the perinuclear region was maintained 

during phase II and also occurred in the side peripheral regions 

(Fig. 3, D and E; bottom).

Together, these data suggest that symmetry breaking of the 

F-actin network in keratocytes is initiated in the perinuclear region 

and prospective cell rear. Phases of movement initiation defi ned 

by morphological analysis of the cell edge corresponded with spe-

cifi c changes in F-actin network fl ow, suggesting that variations in 

F-actin network movement trigger motility initiation.

Decrease in actin fl ow at the cell front 
occurs after initial polarization
In phases I and II, no changes in fl ow speed were detectable 

in the front peripheral region. However, the speed of F-actin 

retrograde fl ow with respect to the substratum in lamellipo-

dia of fully polarized cells is lower than that of the centripetal 

fl ow in stationary cells (Fig. 1 G), implying that F-actin fl ow 

at the prospective cell front must decrease at some point. We 

followed cells that had initiated motility (Fig. 4 A), and, during 

phase III, in which the cell front and rear moved persistently 

in a coordinated fashion, we observed a period of maturation 

of the polarized form. The cell speed increased, accompanied 

by a decrease in F-actin retrograde fl ow speed relative to the 

substratum at the cell front (Fig. 4 B). Thus, fl ow changes at 

the front occurred only during the later stages of motility initia-

tion and were a consequence, not a cause, of motility initiation. 

In addition, during maturation, the perinuclear F-actin bands 

collapsed toward the cell rear (Fig. S3 and Video 8, available 

at http://www.jcb.org/cgi/content/full/jcb.200706012/DC1), 

where they formed an actin axle characteristic of motile cells 

(Fig. 1, B and E).

Symmetry breaking and motility initiation 
require Rho kinase–dependent 
myosin activity
Microtubules and myosin II were heterogeneously distributed 

in the lamellipodium of stationary keratocytes (Fig. 5 A), and 

asymmetries in these distributions might infl uence cell polari-

zation. Microtubules can regulate actin dynamics and are impli-

cated in the establishment and maintenance of cell polarity 

during the migration of fi broblasts and epithelial cells (Waterman-

Storer et al., 1999; Watanabe et al., 2005), whereas myosin has 

a polarized distribution in motile keratocytes (Svitkina et al., 

1997). In addition, for neutrophils, polarization requires the 

recruitment of PIP3 to the cell membrane (Servant et al., 2000). 

To determine whether any of these molecules might contribute 

to motility initiation, we developed a quantitative assay for mo-

tility initiation based on the observation that the frequency of 

motility initiation was enhanced by increasing temperature (see 

Materials and methods Pharmacological treatments section).

Under control conditions, �45% of stationary cells spon-

taneously broke symmetry and initiated motility within 30 min 

of a temperature shift from 20 to 30°C (Fig. 5 B). Depolymer-

ization of microtubules with nocodazole had no effect on the 

frequency of motility initiation, implying that microtubules 

were not required for motility initiation of keratocytes. Like-

wise, inhibition of PIP3 production by the addition of LY294002, 

a phosphatidylinositol phosphate 3-kinase (PI 3-kinase) inhibi-

tor, had no effect (Fig. 5 B). To confi rm that PIP3 was not re-

quired for motility initiation of keratocytes, we used a GFP-tagged 

pleckstrin homology (PH)–Akt construct (Kontos et al., 1998), 

which binds to the 3′ phosphorylated lipid products generated 

by PI 3-kinase, to visualize the PIP3 localization in keratocytes. 
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Figure 3. Initial events in symmetry breaking include an increase in F-actin network fl ow speed at the prospective cell rear and a reorientation of peri-
nuclear F-actin network fl ow. (A) Representation of an F-actin fl ow fi eld displacement vector by its radial (vr) and tangential (vθ) component. The centripetal 
deviation (φ) was positive for counter-clockwise rotation and negative for clockwise rotation of the original fl ow vector relative to vr. (B and C) F-actin fl ow 
fi eld of a stationary cell (B) and a cell initiating motility (C) with the prospective direction of cell movement to the right. (left) F-actin network fl ow fi eld; fl ow 
vectors are colored according to speed. (right) Scalar maps of radial velocity and centripetal deviation of F-actin fl ow vectors. White line is the delineation 
of the perinuclear and peripheral regions. (C, left) Phase I: the radial velocity increased slightly at the prospective cell rear. The magnitude of the centripetal 
deviation increased in the perinuclear region, corresponding to a reorientation of the F-actin fl ow along the prospective direction of motion. (right) Phase II: 
large increase in radial velocity at the prospective cell rear. The increased magnitude of centripetal deviation remained. (D and E, top) Time courses of 
radial velocity in the front (blue), rear (red), left (brown), and right (green) perinuclear (bold) and peripheral (standard) regions. Data in D originate from 
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GFP-PH-Akt was uniformly localized to the cell membrane. 

Notably, there was lack of enhancement of GFP-PH-Akt to the 

leading edge of motile keratocytes or to the periphery of station-

ary keratocytes. Furthermore, when circular stationary kerato-

cytes were forced to polarize and initiate motility by pushing of 

the cell rear, no redistribution of GFP-PH-Akt was observed 

(unpublished data). Together, this suggests that PI 3-kinase and 

the lipid products of PI 3-kinase are not required for polarization 

and motility initiation of keratocytes.

However, the inhibition of myosin II with blebbistatin 

(Straight et al., 2003) decreased the fraction of cells initiating 

motility to 10% (Fig. 5 B), suggesting that myosin II was re-

quired for motility initiation. Nonmuscle myosin II is primarily 

regulated by Rho kinase, myosin light chain kinase (MLCK), 

and myosin light chain phosphatase. Used at concentrations 

effective in keratocytes, the Rho kinase inhibitor Y-27632 but 

not the MLCK inhibitor ML-7 (Jurado et al., 2005) mimicked 

the effect of myosin II inhibition by blebbistatin (Fig. 5 B). 

Rho kinase phosphorylates myosin light chain phosphatase, 

inhibiting its phosphatase activity and, thereby, increasing 

phosphorylation of the myosin II light chain. Calyculin A, 

an inhibitor of Ser/Thr protein phosphatases types I and IIA and 

a known inhibitor of myosin light chain phosphatase, inhibits 

dephosphorylation of the myosin II light chain, potentiating 

myosin II activity and leading to constriction of the central 

actin–myosin ring in sea urchin coelomocytes (Henson et al., 

2003) and increased F-actin fl ow in newt lung epithelial cells 

(Vallotton et al., 2004). In motile keratocytes, calyculin A in-

creases myosin-dependent inwards F-actin fl ow at the cell rear 

(unpublished data). Therefore, we hypothesized that caly culin A 

might facilitate symmetry breaking in keratocytes by increasing 

myosin II activity. Indeed, we found that 100% of cells initiated 

motility with calyculin A treatment (Fig. 5 B). Importantly, 

these drugs did not infl uence the morphology, polarity, or 

F-actin organization of motile keratocytes (Fig. S4, avail-

able at http://www.jcb.org/cgi/content/full/jcb.200706012/DC1) 

and had little effect on the steady-state speed. Together, these 

data implicate myosin II activity regulated by Rho kinase as 

a critical factor in symmetry breaking and motility initiation 

of keratocytes.

Myosin-mediated actin network 
organization in the perinuclear region 
is required for symmetry breaking
To investigate the effect of myosin II or Rho kinase inhibition 

on F-actin organization, drug-treated cells were fi xed and 

stained with fl uorescent phalloidin to visualize the F-actin net-

work. Cells treated with blebbistatin and Y-27632 were larger 

and fl atter, and F-actin tended to accumulate around the cell 

periphery, whereas circular F-actin bands were absent from the 

perinuclear region (Fig. 5 C). In contrast, ML-7 had no de-

tectable effect on the F-actin network (Fig. 5 C), which is con-

sistent with its lack of effect on motility initiation. Myosin 

phos phatase inhibition by calyculin A at low concentrations 

also had no detectable effect (Fig. 5 C). In some cases, increased 

phalloidin staining in the perinuclear region was observed at 

higher concentrations or longer incubations with calyculin A. 

These results suggest that perturbation of F-actin network 

organi zation, particularly in the perinuclear region, inhibits 

motility initiation.

We also measured the effect of the various drugs on F-actin 

network flow. Cells were imaged by FSM before and after 

drug treatment, and F-actin movement was calculated by multi-

frame correlation tracking. We characterized the F-actin fl ows 

by radial velocity and directional coherence, a measure of how 

similar the orientations of the F-actin fl ow vectors in a local 

region were to each other. Perfectly coherent fl ow had a value 

of 1 (see Materials and methods section Analysis of displace-

ment fi elds generated…). All drug treatments affecting symme-

try break ing altered F-actin fl ow. Myosin II inhibition by 

blebbistatin decreased the radial velocity and coherence in the 

Figure 4. Decrease in F-actin network fl ow at the cell front occurs during 
maturation of the polarized form. (A) F-actin network fl ow vectors relative 
to the substratum in the front central lamellipodium (boxed area) overlaid 
on an AF546-phalloidin FSM image. (B) Development of cell speed versus 
F-actin fl ow speed at the front relative to the substratum and parallel to the 
direction of movement over phase III (maturation) for fi ve cells. During mat-
uration, cells increased in speed, whereas the F-actin retrograde fl ow 
speed decreased in the lamellipodia.

the cell in C and showed large transients before sustained polarization. (bottom) Time courses of centripetal deviation in the left (brown) and right (green) 
perinuclear (bold) and peripheral (standard) regions. Phases I and II are indicated by horizontal bars. B and C are available as Videos 5 and 6 (available 
at http://www.jcb.org/cgi/content/full/jcb.200706012/DC1).
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perinuclear and peripheral regions (Fig. 5, D and E), with a 

greater effect in the perinuclear region. The Rho kinase inhibitor 

Y-27632 decreased F-actin fl ow coherence, with a stronger ef-

fect in the perinuclear region than the peripheral region (Fig. 5 E). 

These changes in F-actin dynamics were consistent with the 

F-actin staining in cells showing perinuclear F-actin network 

disruption by myosin II or Rho kinase inhibition. In contrast, 

ML-7, which had no effect on the frequency of motility initia-

tion or F-actin organization, also had no effect on F-actin fl ow 

(Fig. 5, D and E). Calyculin A, which increased the frequency 

of motility initiation, increased the radial velocity both in the 

perinuclear and peripheral regions (Fig. 5 D), supporting the 

notion that calyculin A promotes motility initiation by increas-

ing actomyosin contractility.

Local increase in actin network fl ow 
stimulates symmetry breaking 
and motility initiation
Based on these results, we hypothesized that symmetry break-

ing could be induced by the local activation of myosin II. First, 

we tested whether calyculin A treatment of keratocytes pro-

moted motility initiation via the same mechanism as in normal 

untreated cells. We imaged a cell initiating motility spontane-

ously in the presence of calyculin A. Like untreated cells under-

going spontaneous motility initiation, the action started by 

retraction of the prospective rear edge accompanied by an in-

crease in F-actin fl ow at the prospective cell rear and reorienta-

tion of the perinuclear F-actin fl ow toward the prospective 

direction of movement (Fig. 6, A and B). Again, no change 

in F-actin fl ow was observed at the front peripheral region. 

Although the transients in F-actin network fl ow were faster, 

motility initiation by calyculin A stimulation appeared to operate 

through the same pathway as identifi ed for untreated cells.

Next, we sought to stimulate asymmetric contraction with 

the expectation that we might direct symmetry breaking and 

motility initiation. We locally applied calyculin A to one side of 

a stationary cell and indeed found that the cell would break 

symmetry and move away from the source of calyculin A (Fig. 

6 C and Video 7, available at http://www.jcb.org/cgi/content/

full/jcb.200706012/DC1). 39% (15/38 cells) initiated motility 

away from the calyculin A source within 5 min, with 29% 

(11/38 cells) polarizing without initiating motility, and only 

26% (10/38 cells) remained stationary. In contrast, when cells 

were exposed to local perfusion with medium lacking drug, 

13% (3/24 cells) initiated motility away from the pipette and 

13% (3/24 cells) polarized without initiating motility, whereas 

most cells (67%; 16/24) remained stationary. We were unable to 

induce motility initiation by a local decrease in contractility at 

the presumptive front (via local application of blebbistatin or 

Y-27632); this may have been the result of unfavorable kinetics of 

drug entry or intracellular diffusion of the drug or drug–target 

complex. Thus, a local increase in actin–myosin contraction 

mediated by the local application of calyculin A could induce 

cell polarization from the cell rear.

Discussion
Symmetry breaking and motility initiation 
is driven by contraction and initiated at the 
prospective rear and perinuclear region
This study establishes the sequence of morphodynamic events 

and spatio-temporal reorganization of the F-actin network dur-

ing spontaneous symmetry breaking of fi sh epidermal kerato-

cytes. In contrast to polarization and motility initiation of 

neutrophils in response to chemoattractants, where initial mor-

phological changes occur at the prospective cell front and pe-

riphery (Weiner et al., 1999; Servant et al., 2000), here, the fi rst 

events were detected at the prospective cell rear and perinuclear 

region (Fig. 7 A). Changes at the cell front occurred later in mo-

tility initiation and appeared to be consequences rather than causes 

of cell polarization.

In unpolarized stationary keratocytes, the F-actin network 

fl ows centripetally from the cell periphery to the cell body. 

Based on changes in cell morphology, we defi ned phases of mo-

tility initiation: phase I (slow rear retraction) and phase II (fast 

rear retraction). These phases were associated with characteristic 

changes in F-actin dynamics, suggesting that morphological 

changes are directly mediated by reorganization of the F-actin 

network (Fig. 7 A). During phase I, F-actin fl ow increased at the 

prospective cell rear and reoriented in the perinuclear region 

such that it was biased along the eventual direction of cell move-

ment. The fl ow speed increase appeared to be tightly coupled to 

the change in fl ow orientation, as we were unable to distinguish 

whether one event occurred before the other. The radial velocity 

Figure 5. Motility initiation requires Rho kinase–dependent myosin activity. (A, top) Keratocyte fi xed and stained for tubulin to visualize microtubules. 
(bottom) Live stationary keratocyte expressing YFP-myosin regulatory light chain. (B) Motility initiation frequency of stationary keratocytes within 30 min of 
a temperature shift from 20 to 30°C. Successful motility initiation was defi ned as persistent polarized morphology and cell movement over at least four cell 
lengths. Shape changers were cells that had irregular morphologies. Depolymerization of microtubules with 1 μg/ml nocodazole, inhibition of PI-3 kinase 
with 50 μM LY294002, and inhibition of MLCK with 10 or 25 μM ML-7 had no effect on the frequency of motility initiation (P = 0.7498, P = 0.0173, 
and P = 0.5562, respectively). Myosin II inhibition with 40 or 100 μM blebbistatin and Rho kinase inhibition with 10 or 25 μM Y-27632 decreased the 
frequency of motility initiation (P < 0.0001). In contrast, myosin phosphatase inhibition with 10 or 25 nM calyculin A increased the frequency of motility ini-
tiation (P < 0.0001). When two drug concentrations were used, there was no signifi cant difference between the results (P > 0.2); results from the two con-
centrations were pooled. (C) Stationary keratocytes were treated with the indicated drugs for 10–20 min. F-actin was visualized by fi xing the cells and 
staining with phalloidin. Treatment with ML-7 and calyculin A retained the circular bands of F-actin in the perinuclear region. Treatment with blebbistatin or 
Y-27632 reduced F-actin in the perinuclear region, and circular bands were no longer visible (yellow brackets). (D and E) Changes in perinuclear and 
peripheral F-actin radial velocity and directional coherence (see Materials and methods) before and after treatment with the indicated drugs. Error bars indi-
cate the SD of the mean over time; gray lines indicate correspondence between data points representing the same cell before and after treatment. In some 
cases, the SD is smaller than the size of the data point. (D) Blebbistatin treatment decreased the perinuclear and peripheral radial velocity; conversely, caly-
culin A treatment increased the perinuclear and peripheral radial velocity. Y-27632 or ML-7 treatment had no effect. (E) Blebbistatin and Y-27632 treatment 
decreased the directional coherence of the actin fl ow in the perinuclear and peripheral zones. The effect was greater in the perinuclear zone than the 
peripheral zone. ML-7 and calyculin A had no effect.
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usually decreased in the front perinuclear region during phase I, 

but F-actin fl ow was never altered in the front peripheral region. 

The changes in F-actin fl ow observed during phase I is most 

likely a consequence of fl uctuations in actin polymerization 

kinetics and increased perinuclear actomyosin contraction, 

similar to variations that can occur in stationary cells. In fact, 

cells exhibiting transient F-actin dynamics similar to those in 

phase I did not necessarily initiate motility and often remained 

stationary. Phase I appeared to be necessary but not suffi cient 

for motility initiation.

For those cells that initiated motility, phase I was followed 

by phase II, which was characterized by a larger increase in 

F-actin fl ow speed at the cell rear. The increase in F-actin fl ow 

speed was similar to the increase in rear edge retraction speed, 

suggesting that increased actomyosin contractility during phase II 

drives inward movement of the cell edge at the rear accompa-

nied by a loss of adhesive coupling to the substrate.

During phase III/maturation, the cell speed increases, and 

the F-actin retrograde fl ow speed relative to the substratum at 

the cell front decreases, probably refl ecting an increased coupling 

of the actin–myosin network with the substrate. The increase 

in cell speed observed could not be accounted for solely by 

the decrease in F-actin retrograde fl ow speed, implying that 

increased polymerization at the cell front also occurs during 

phase III. Our data defi ne a new paradigm for actomyosin-

driven symmetry breaking and motility initiation in the absence 

of external cues, where symmetry breaking can be initiated by 

contraction and the initial events occur at the prospective cell 

rear and cell interior.

Symmetry breaking and motility initiation 
require Rho kinase–dependent actomyosin 
contractility
The requirement for Rho kinase and myosin II activity for 

symmetry breaking in our data is consistent with experiments 

identifying a requirement for Rho, Rho kinase, and myosin light 

chain phosphorylation in the spontaneous polarization and mi-

gration of Walker 256 carcinosarcoma cells (Wicki and Niggli, 

2001; Gutjahr et al., 2005) and in the polarization of neutrophils 

in response to a chemoattractant (Xu et al., 2003). In stationary 

Figure 6. Local application of calyculin A can stimulate motility 
initiation. (A and B) Changes in F-actin network radial velocity (A) 
and centripetal deviation (B) in phases I and II of spontaneous sym-
metry breaking in the presence of 20 nM calyculin A. (top) Scalar 
maps of the radial velocity and centripetal deviation. White line 
is the delineation of perinuclear and peripheral regions. (bottom) 
Time course of radial velocity and centripetal deviation. Phases I 
and II are indicated by horizontal bars. (A) The radial velocity at 
the cell rear increased during phases I and II. (B) The magnitude of 
the centripetal deviation increased during phases I and II, refl ect-
ing a reorientation of the F-actin fl ow along the prospective direc-
tion of motion. (C) Local application of calyculin A to one side of 
a stationary keratocyte. Red pseudocolor indicates the drug fl ow 
from the micropipette (positioned in the bottom left corner). The 
keratocyte polarized and initiated motility away from the source of 
calyculin A. C is available as Video 7 (available at http://www.jcb
.org/cgi/content/full/jcb.200706012/DC1).
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keratocytes, Rho kinase and myosin II were required for peri-

nuclear F-actin band formation and normal F-actin fl ow. We 

suggest that the perinuclear F-actin bands in stationary kerato-

cytes assemble by dynamic network contraction (Fig. 7 B), 

a model proposed for the behavior of the actomyosin network 

in lamellipodia of motile keratocytes (Svitkina et al., 1997). 

The dynamic network contraction model postulates that at the 

periphery of the lamellipodium, myosin bipolar fi laments cross-

link a dendritic F-actin network without contraction. Toward 

the rear of the lamellipodium, network contractility is enhanced 

as the size of the myosin clusters increases, and the myosin 

clusters are able to align F-actin into bundles. In stationary 

Figure 7. Symmetry breaking and motility initiation 
are initiated at the cell rear and perinuclear region and 
propagate throughout the entire cell. (A) Model for 
symmetry breaking and motility initiation in keratocytes. 
(left) Schematic of F-actin network fl ow in the peripheral 
(gray) and perinuclear (purple) regions. (right) Cell cross 
section schematic. In a stationary keratocyte, the F-actin 
network fl ows centripetally inwards, driven by net po-
lymerization at the periphery and myosin contraction 
and net depolymerization in the perinuclear region. In 
phase I, an increase in perinuclear contractility causes 
an increase in the F-actin network fl ow speed at the pro-
spective cell rear and partial polarization of the peri-
nuclear F-actin network fl ow in the direction of eventual cell 
movement. The rear edge retracts slightly and decreases 
in thickness. A further increase in F-actin network fl ow 
speed at the prospective cell rear, which is caused by 
a further increase in perinuclear contractility, leads to 
phase II. The rear edge retracts, and adhesive coupling 
to the substrate decreases at the rear. The cell body 
moves forward slowly. In phase III, perinuclear actin 
bands transform into an actin axle. F-actin fl ow speed 
at the cell front decreases relative to the substratum, 
whereas the adhesive coupling to the substrate and net 
F-actin polymerization increases. This leads to protrusion 
of the front edge, and the entire cell moves rapidly and 
persistently. (B, left) Symmetry breaking is driven by 
coordinated actin–myosin contraction and requires peri-
nuclear F-actin bands. (right) Model of actin–myosin 
organization in stationary keratocytes. At the periphery 
of the lamellipodium, myosin bipolar fi laments cross-link 
a dendritic F-actin network without contraction. Toward 
the cell body, the activity of large myosin II clusters contracts 
and reorganizes the dendritic network to form F-actin 
bands and bundles. This is dependent on Rho kinase.
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keratocytes, this bundling activity is dependent on Rho kinase. 

We propose that during symmetry breaking, asymmetric acto-

myosin contraction is transformed into the morphological 

events of cell polarization via the consequential asymmetry of 

F-actin fl ow. According to the network contraction model, this 

mechanical signal from the cell center to the cell periphery trig-

gers an autocatalytic positive feedback loop in that the more 

asymmetric the fl ow, the more effective the contraction and 

bundle alignment leading to further fl ow asymmetry.

The implication of Rho kinase in perinuclear actin dy-

namics but not peripheral actin dynamics is consistent with Rho 

kinase activity in neuronal growth cones, which is responsible 

for the maintenance and movement of actin arcs in the center 

(C domain) of the growth cone lamellipodium but not for peri-

pheral (P domain) F-actin retrograde fl ow (Zhang et al., 2003). 

Similarly, Rho kinase has been implicated in regulating myosin 

activity and stress fi ber formation in the interior and rear of 

fi broblasts (Totsukawa et al., 2000), and, in neutrophils, Rho, 

Rho kinase, and activated myosin are restricted to and defi ne the 

cell rear (Xu et al., 2003). However, unlike keratocytes, activa-

tion of backness signals alone (e.g., through the expression of 

a constitutively active myosin light chain mutant or the addition 

of fMLP (formyl-methionyl-leucine-phenylalanine) to pertussis 

toxin–treated cells) in neutrophils does not lead to correct polar-

ization and cell migration. Instead, pertussis toxin–treated neu-

trophils exposed to a gradient of fMLP polarize in the opposite 

direction to normal, with their rear closest to the fMLP source, 

and do not initiate movement (Xu et al., 2003). This and other 

results indicate that frontness is normally dominant over back-

ness in neutrophils and that chemotactic signals at the front are 

required for normal polarization. Likewise, neutrophil polariza-

tion depends on PIP3 localization to the cell front (Weiner et al., 

2002), whereas spontaneous keratocyte polarization is indepen-

dent of PIP3. Backness signals alone in keratocytes can trigger 

polarization possibly because, unlike neutrophils, keratocytes 

are not known to respond to chemoattractants and can polarize 

in the absence of external chemical cues.

It remains to be determined whether the propagation of 

organizational information from the cell rear to the cell front 

during polarization also involves chemical signals besides me-

chanical processes. It has been proposed for neutrophils and la-

mellipodial fragments that the functional incompatibility of the 

F-actin assemblies characteristic of the front and back causes 

them to segregate into separate domains (Verkhovsky et al., 

1999; Xu et al., 2003). Furthermore, changes in actomyosin 

contractility around the cell body during motility initiation 

could generate hydrostatic pressure, which could affect protru-

sion at the leading edge (Charras et al., 2005). In simpler model 

systems of actin-based motility, such as polystyrene beads 

coated with the actin nucleating proteins ActA or N-WASP, 

spontaneous symmetry breaking and motility initiation depend 

on purely mechanical effects. For small beads in which actin 

turnover is rapid, symmetry breaking results from cooperative 

interaction among a large population of polymerizing actin fi la-

ments, amplifying small stochastic events to generate large-

scale polarity (van Oudenaarden and Theriot, 1999). In large 

beads, symmetry breaking results from the accumulation of strain 

in the actin gel followed by release of elastic energy via break-

age of cross-links or fi laments (Sekimoto et al., 2004; van der 

Gucht et al., 2005).

In the case of symmetry breaking of entire cells, Rho ki-

nase and myosin II activity might be required not only to regu-

late local contractility but also for the large-scale coordination 

and amplifi cation of local contraction fl uctuations throughout 

the cell. Motility initiation may be a purely stochastic event, re-

sulting from intrinsic variation in actomyosin contractility. The 

increased frequency of symmetry breaking under calyculin A 

treatment supports this hypothesis. Calyculin A, which potenti-

ates myosin II activity, may amplify intrinsic fl uctuations in 

actomyosin contractility so that they more often exceed the 

threshold at which they initiate polarization. We could induce 

polarization by a local increase in contractility, but whether 

an absolute increase in contractility or merely an imbalance 

in contractility is required for symmetry breaking remains an 

open question.

Materials and methods
Keratocyte culture and labeling
Keratocytes were cultured as described previously (Lacayo et al., 2007). 
To obtain individual cells, sheets of keratocytes were disaggregated by 
incubating in 85% PBS and 2.5 mM EGTA, pH 7.4, for 4.5–5 min. YFP 
Xenopus laevis myosin regulatory light chain (a gift from A.F. Straight, 
Stanford University, Stanford, CA) and GFP-PH-Akt (a gift from T. Meyer, 
Stanford University, Stanford, CA) was transfected into keratocytes as 
described previously (Lacayo et al., 2007).

AlexaFluor546 phalloidin (AF546-phalloidin; Invitrogen) was used 
to visualize F-actin dynamics in live keratocytes using FSM (Zhang et al., 
2003; Vallotton et al., 2005). AF546-phalloidin was introduced into kerato-
cytes with a small volume electroporator for adherent cells (provided by 
M.N. Teruel and T. Meyer, Stanford University, Stanford, CA; Teruel and 
Meyer, 1997; Teruel et al., 1999). 2 μM AF546-phalloidin was premixed 
with 7.5 μM deoxy-ATP, 7.5 μM deoxy-GTP, and 5 μM deoxy-CTP in 
water for �15 min at room temperature to prevent phalloidin aggregation. 
Cells were electroporated with 20 μl of the phalloidin mixture with three 
pulses at 150 V and were allowed to recover for �10 min before viewing 
on an inverted microscope (Diaphot-300; Nikon). Phalloidin staining of 
F-actin and staining of microtubules were performed as described previously 
(Lacayo and Theriot, 2004; Yam and Theriot, 2004).

Microscopy and image acquisition
Phalloidin was conjugated to AlexaFluor546 or tetramethylrhodamine for 
live cell FSM or fi xed cell labeling, respectively. Myosin regulatory light 
chain and PH-Akt were visualized in live cells by conjugation to YFP or 
GFP, respectively. FITC-conjugated secondary antibodies were used to de-
tect the primary antibody in tubulin labeling of fi xed cells. Live cell imaging 
was performed at room temperature or at 25°C by mounting the coverslips 
on a temperature-controlled chamber, with the exception of temperature 
shift experiments (see next section) in which the temperature was shifted 
from 20 to 30°C. Cells were imaged in culture media ( Leibovitz’s L-15 me-
dium without phenol red supplemented with 14.2 mM Hepes, pH 7.4, 
10% FBS, and 1% antibiotic-antimycotic). Time-lapse phase contrast and 
epifl uorescent images were acquired using an inverted microscope 
(Diaphot-300; Nikon) with a 40× NA 1.3 oil Fluor or 60× NA 1.4 oil 
plan-Apo objective (Nikon). For FSM of AF546-phalloidin, images were 
acquired every 2 or 3 s with the 60× oil objective. A 20× NA 0.4 air 
phase-contrast objective was also used for some image acquisition. Images 
of fi xed cells were collected with a microscope (Axioplan 2; Carl Zeiss 
MicroImaging, Inc.) using a 63× NA 1.4 oil plan-Apochromat objective 
(Carl Zeiss MicroImaging, Inc.). All time-lapse and fi xed images were col-
lected with a cooled back-thinned CCD camera (MicroMax 512BFT; Princ-
eton Instruments) with a 2× optovar attached using MetaMorph software 
version 6 (Molecular Devices). Adjustments to brightness and/or contrast 
were performed with MetaMorph or Photoshop (Adobe), and pseudocolor 
overlays were made with Photoshop.
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Pharmacological treatments
Cells were treated with 1 μg/ml nocodazole (Sigma-Aldrich), 50 μM 
LY294002 (Calbiochem), 40 or 100 μM blebbistatin (a gift from A.F. 
Straight), 10 or 25 μM Y-27632 (Calbiochem), 10 or 25 μM ML-7 (Cal-
biochem), or 10 or 20 nM calyculin A (Upstate Biotechnology). For FSM of 
drug-treated cells, the same cell was imaged before and 3–10 min after 
addition of the drug. For pharmacological treatments in conjunction with 
temperature shifts, individual stationary cells were generated by treatment 
of the keratocyte culture with 2.5 mM EGTA and 85% PBS and were al-
lowed to recover in full media at 20°C for 5–8 min. Stationary cells were 
imaged for 4 min. The drug was added, and, 4 min later, the temperature 
was increased to 30°C, and the cells were imaged for a further 30 min. 
The effect of various pharmacological treatments on the frequency of motil-
ity initiation assayed by temperature shift was analyzed using the Chi-
square test with Prism version 3.03 for Windows (GraphPad).

Local perfusion of calyculin A was performed with a glass micro-
pipette controlled by a micromanipulator. A fl uorescent marker (Alexa-
Fluor488; Invitrogen) was added to visualize the fl ow from the micropipette. 
An overall fl ow throughout the live cell chamber, which was generated by 
a peristaltic pump connected to two needles spaced �1 cm from each 
other �1 mm above the coverslip, made the calyculin A gradient steeper.

Automated cell outline determination and calculation of cell 
boundary movement
Cell outlines were calculated using a variation of the active contours algo-
rithm (Kass et al., 1988) derived from the gradient vector fl ow method of 
Xu and Prince (1998). The method was custom written in MATLAB 7 (The 
MathWorks). First, a nonlinear sigmoidal scaling of pixel intensities was 
applied to the image to stretch the contrast of the cell margin while reduc-
ing the contrast of edge responses inside the cell, such as those around the 
cell body (Fig. S1). This was followed by bandpass fi ltering to reduce noise 
and fi ne detail. Then, the edge map was calculated as the squared magni-
tude of the image gradient. A vector fi eld oriented toward the steepest 
edges and zero elsewhere was generated from the gradient of the edge 
map. This vector fi eld was then diffused iteratively as described previously 
(Xu and Prince, 1998) and normalized. After diffusion, the vector fi eld was 
oriented toward the edges of interest even in relatively smooth regions of 
the image. An active contour representation of the cell outline was initial-
ized by the cell outline from the previous time point. For the fi rst frame of a 
time-lapse sequence, the contour was initialized manually. Subsequently, 
the contour was deformed iteratively by minimizing an energy function that 
used the edge-oriented vector fi eld to attract the contour to the position of 
image edges while controlling the internal tension and curvature of the 
contour (Kass et al., 1988). The contour minimizing this energy function 
was taken as the cell outline for that image (Fig. S1).

Using these cell outlines, the movement of the cell boundary was de-
termined according to the mechanical model described by Machacek and 
Danuser (2006) using software provided by M. Machacek (The Scripps 
Research Institute, La Jolla, CA). The cell boundary positions were trans-
lated to polar coordinates, and the scalar map function (see Scalar map 
function section) was used to generate continuous space-time plots of pro-
trusion and retraction.

Tracking of F-actin network movement
An adaptive multiframe correlation technique (Ji and Danuser, 2005) was 
used to measure the movement of fl uorescent image features from the FSM 
image sequences and, thus, the velocity of F-actin network fl ow. We imple-
mented modifi cations to the technique to remove stationary background 
features before correlation for tracking of F-actin fl ow in stationary cells. 
Signals from these background features were very weak but contributed 
to the integrated correlation score because of their intensity stability and 
consistency. In many cases, they created a false global maximum at zero 
displacement (Fig. S5 A, available at http://www.jcb.org/cgi/content/
full/jcb.200706012/DC1). To eliminate signal contributions from stable 
background features, we calculated the time-averaged intensity of each 
pixel in the correlation window and subtracted the average map pixel by 
pixel from both the original and the shifted templates before correlation. 
This maintained the characteristic signal variation in a template for cross-
correlation while removing stationary signals. Consequently, the global 
correlation maximum at zero displacement was suppressed, whereas the 
secondary local maximum associated with the true velocity was preserved 
(Fig. S5 B).

For stationary cells and cells initiating motility, fl ow fi elds were calcu-
lated for a sequence of overlapping 7 or 10 frame windows (for videos ac-
quired at 3- or 2-s intervals, respectively), giving an upper bound to the 

temporal resolution of �10 s, which is suffi cient to capture the events of 
motility initiation occurring on a time scale of 100–200 s. The tracking algo-
rithm automatically adjusted the correlation template size between a length 
of 13 and 23 pixels (1 pixel = 0.1121 μm), depending on the local image 
contrast. This yielded an upper bound to the spatial resolution of 1.3 μm, 
which is more than an order of magnitude less than the size of the cell.

Once cells entered rapid motility, they moved too quickly to still as-
sume stationary F-actin network fl ow over the 7–10 frames required for the 
application of multiframe correlation tracking. Therefore, the videos were 
transformed into a cell frame of reference using a rigid body approxima-
tion of whole cell motion (Wilson and Theriot, 2006). Multiframe correla-
tion tracking was then performed on the transformed videos using 
sequences of overlapping fi ve-frame windows and a template size adjusted 
between 13 and 23 pixels. The fl ow fi elds generated were transformed 
back into the original lab frame of reference for comparison with measure-
ments from stationary cells.

To confi rm the results obtained from adaptive multiframe correlation 
tracking, we analyzed a subset of our stationary cell FSM data with spatio-
temporal image correlation spectroscopy (STICS). STICS was performed 
on three consecutive nonoverlapping 20-frame time windows with partially 
overlapping subregions of 16 × 16 pixels as previously described 
(Wiseman et al., 2004; Hebert et al., 2005). STICS averaged the actin 
network fl ow over longer time scales compared with multiframe correlation 
tracking, producing qualitatively similar results and trends with slightly lower 
absolute speeds.

Analysis of displacement fi elds generated by adaptive multiframe 
correlation tracking
The displacement fi elds (fl ow vectors) obtained by adaptive multiframe cor-
relation tracking of F-actin network fl ow were fi ltered before subsequent 
analysis using custom code in MATLAB 7 (The MathWorks). First, measure-
ments made within 7 pixels of the cell margin were discarded to avoid the 
risk that the algorithm was measuring movement of the cell edge rather 
than that of the F-actin network. Then, measurements that deviated substan-
tially from measurements in the local neighborhood were removed. Be-
cause the search templates often overlapped, a certain degree of spatial 
coherence in the calculated displacements was a necessary consequence. 
Therefore, outliers in a local neighborhood must be the result of tracking 
error. For each vector, a dissimilarity score was calculated that compared 
the measured speed and direction with the mean speed and direction of 
measurements within 18 pixels. A threshold was fi xed at 2.5 SDs above 
the mean dissimilarity of vectors in a displacement fi eld. The measurement 
with the highest dissimilarity was removed, the dissimilarity scores were re-
calculated, and the process was repeated until no dissimilarity scores ex-
ceeded the initial threshold. Flow vectors in the perinuclear region were 
additionally fi ltered by removing vectors with a speed greater than 4× the 
mean speed in the perinuclear region.

For analysis of fl ow patterns in stationary cells before and during 
symmetry breaking, each fl ow vector was transformed into polar coordi-
nates with the center of the polar coordinate system defi ned as the cell center. 
The radial component of velocity and the centripetal deviation (i.e., the an-
gle between the radial velocity component and the original velocity vector) 
were calculated (Fig. 3 A). These data were presented as continuous scalar 
maps of the radial fl ow speed and centripetal deviation. The directional 
coherence of the fl ow vectors was defi ned as the similarity in orientation 
among vectors inside 1 of 12 radial sectors defi ned over the lamellipodium. 
For each sector, the fl ow vectors were normalized to unit speed and aver-
aged. The magnitude of the mean vector was taken as the coherence score 
for the sector. The maximum coherence score was one (all vectors in the 
sector aligned along the same direction).

Scalar map function
For continuous space-time plots of protrusion and retraction and scalar fi eld 
visualizations of radial velocity and centripetal deviation, it was necessary 
to resample data that were not measured regularly in the dimensions along 
which they were being plotted. A custom scalar map function implemented 
in MATLAB 7 (The MathWorks) was used to resample data on a regularly 
spaced grid. The value at each grid point was interpolated from measure-
ments within a given radius and weighted using a Gaussian window cen-
tered at the grid point. Then, bicubic interpolation between grid points was 
performed to generate continuous images. Color maps were then applied 
to the continuous maps.

Online supplemental material
Fig. S1 illustrates the automated cell outline determination method. Fig. S2 
shows that the prospective rear edge thickness decreases early during 
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motility initiation. Fig. S3 illustrates the formation of an actin axle at the cell 
rear during maturation of the polarized form. Fig. S4 shows that perturba-
tion of myosin II activity does not perturb the polarity of motile cells. Fig. S5 
illustrates the removal of stationary background features in adaptive multi-
frame correlation tracking. Videos 1 and 2 show F-actin network movement 
in stationary and motile keratocytes, respectively, visualized with FSM. 
Videos 3 and 4 depict stationary keratocytes spontaneously breaking sym-
metry and initiating motility. Video 5 shows the radially symmetric F-actin 
fl ow fi eld in a stationary keratocyte. Video 6 shows changes in the F-actin 
fl ow fi eld in a keratocyte initiating motility. Video 7 shows a stationary ker-
atocyte initiating motility in response to the local application of calyculin A. 
Video 8 illustrates the formation of an actin axle at the cell rear during 
the maturation of polarity. Online supplemental material is available at 
http://www.jcb.org/cgi/content/full/jcb.200706012/DC1.
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