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Introduction
Commissural axons cross the midline by elongating between 

the fl oor plate cells and the basement membrane. Dye tracing 

and ultrastructural studies have shown that commissural axons 

are restricted to the basal fl oor plate, growing between the fl oor 

plate cells and the underlying ECM/basement membrane 

(Bovolenta and Dodd, 1990). The avoidance of penetrating fl oor 

plate cells, the source of the chemoattractants netrin and sonic 

hedgehog (Kennedy et al., 1994; Serafi ni et al., 1994; Charron 

et al., 2003), is puzzling. Two possible mechanisms may account 

for this pattern of trajectory. The fl oor plate cells may produce a 

short-range repellent signal that prevents axonal growth into the 

fl oor plate cells or, alternatively, the basement membrane may 

positively attract axons.

The basement membrane of the fl oor plate is a site of de-

position of various adhesion molecules (Yaginuma et al., 1991; 

Hunter et al., 1992), among them F-spondin (Burstyn-Cohen 

et al., 1999). F-spondin, a gene expressed at the ventral midline of 

the embryonic spinal cord (i.e., the fl oor plate) encodes a secreted, 

ECM-attached protein (Klar et al., 1992). It plays a dual role in 

patterning axonal trajectory in the embryonic spinal cord by 

promoting outgrowth of commissural axons and inhibiting out-

growth of motor axons and migration of neural crest cells 

(Burstyn-Cohen et al., 1999; Debby-Brafman et al., 1999; Tzarfaty-

Majar et al., 2001a). The carboxyl half of F-spondin contains 

six thrombospondin type-one repeats (TSRs). The TSRs of 

F-spondin protein are typical of class-two TSRs (Tan et al., 

2002). Vertebrate class-two TSR proteins are represented in the 

nervous system by F-spondin, mindin, subcommissural organ 

(SCO)–spondin and two remotely related proteins, heparin-

binding growth-associated molecule and midkine (Feinstein 

and Klar, 2004).

The TSR domain of F-spondin is proteolytically pro-

cessed. The cleaved products of F-spondin have different adhe-

sive properties: the fifth and sixth TSRs (TSR5 and TSR6, 

respectively) bind to the ECM whereas the TSR1-4 fragment 

does not bind to the ECM (Tzarfaty-Majar et al., 2001b). In this 

paper we demonstrate that the two fragments of F-spondin, 

which are generated in vivo by a proteolytic cleavage, are 
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spatially restricted to different extracellular compartments at the 

midline. An outgrowth-promoting fragment, TSR6, is deposited 

at the basement membrane that underlies the fl oor plate, whereas 

an outgrowth-inhibiting fragment, TSR1-4, is bound to the fl oor 

plate cell surface via binding to lipoprotein receptor–related 

protein (LRP) receptors apolipoprotein E receptor 2 (ApoER2), 

LRP2/megalin, and LRP4. The spatial localization of F-spondin 

fragments forces commissural axons to defl ect from the repul-

sive TSR1-4 and extend on the permissive TSR6. Consequen-

tially, commissural axons elongate between the basement 

membrane and the fl oor plate cells, rather than into the fl oor 

plate cells, which are the source of the chemoattractants netrin 

and sonic hedgehog. Hence, two novel posttranslational modifi -

cations elicit F-spondin activity: the coordinated generation of 

two functionally opposing polypeptides from a single protein by 

proteolysis and immobilization by membranal receptors.

Results
The dual activity of F-spondin in promoting 
and inhibiting neurite outgrowth resides 
from distinct TSR domains
The outgrowth-promoting activity of F-spondin resides in its 

carboxyl half, the TSR domains. F-spondin is proteolytically 

processed in vivo between the amino-terminal reelin/spondin 

and the carboxyl-terminal TSR domain. The TSR domain of 

F-spondin is further cleaved into three fragments. Plasmin cleav-

age between repeats 1–4, 5, and 6 generates a nonadhesive 

TSR1-4 fragment and adhesive TSR5 and 6 fragments (Tzarfaty-

Majar et al., 2001b). To test whether the diverse adhesive prop-

erties of the TSRs of F-spondin are also reflected in their 

outgrowth-promoting potential, we tested the outgrowth of E6 

chick dorsal spinal cord neurons on cell surface–immobilized 

F-spondin substrates. Glycosylphosphatidylinositol (GPI)-

anchored forms of TSR1-4, 5, and 6 were transiently expressed in 

COS cells. A confl uent culture of mixed F-spondin–expressing 

cells marked by EGFP and nonexpressing cells served as a sub-

strate for the dissociated neurons. Chick E6 dorsal spinal cord 

neurons preferably elongate on TSR5GPI and 6GPI (Fig. 1, B and C), 

and avoid growing on TSR1-4GPI (Fig. 1 A). The ratio between 

neurites growing on F-spondin fragments versus neurites growing 

on the nonexpressing cells was calculated. Cultured EGFP-

 expressing COS cells served as a control (Fig. 1 D). The out-

growth on TSR5GPI and 6GPI was signifi cantly higher than the 

control whereas the outgrowth on TSR1-4GPI was signifi cantly 

lower than the control (Fig. 1 E). Similar results were obtained 

in an outgrowth assay with rat E13 spinal cord neurons cultured 

on purifi ed TSR1-4 and 6 proteins (Fig. S1, available at http://

www.jcb.org/cgi/content/full/jcb.200702184/DC1). Thus, the 

dual activity of F-spondin in either promoting or inhibiting neu-

rite outgrowth may result from the activity of different domains; 

the TSR1-4 fragment inhibits outgrowth whereas the TSR5 and 

6 fragments support outgrowth.

Figure 1. Differential outgrowth activity of TRSs of F-spondin. COS cells 
were transfected with pCAGG–TSR1-4GPI–IRES–EGFP (A), pCAGG–TSR5GPI–
IRES–EGFP (B), pCAGG–TSR6GPI–IRES–EGFP (C), and pCAGG–EGFP (D). 
Dissociated E6 chick dorsal spinal cord was plated 24 h after transfection 
and cultured for an additional 48 h. Neurites are detected with 3A10 mAb. 
Fluorescence images are shown in the left, and combination of fl uorescence 
and phase contrast images are shown in the right. Neurites are defl ected 
from TSR1-4GPI–expressing cells (A, arrows) and grow preferentially on the 
adjacent nonexpressing cells. Neurites grow preferentially on TSR5GPI (B)- 
and TSR6GPI (C)-expressing cells (arrowheads) rather than on the neighbor-
ing nonexpressing cells. In the control experiment neurites grow uniformly 
on EGFP-expressing and nonexpressing cells (D). For quantifi cation, images 
(n = 6 for each experiment) of the cultures were taken with a digital cam-
era. The total neurite outgrowth was measured as a 3A10-positive area 
using ImageJ software. A total of 146 neurites were analyzed for TSR5GPI, 
278 for TSR6GPI, 203 for TSR1-4GPI, and 455 for EGFP. The area occupied 
by neurites growing on EGFP-expressing cells was measured using the 
RG2B colocalization plugin of ImageJ software. The ratio between neurites 
extending on expressing cells versus total outgrowth is presented. Comparing 
each experimental group to the control using Dunnett’s method (which takes 

into account multiple comparisons) shows a signifi cant difference between 
the TSR5GPI (P = 0.004), TSR6GPI (P = 0.002), and TSR1-4GPI (P = 0.04) 
groups and the control EGFP group. Bar, 10 μm.
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In vivo localization 
of F-spondin–cleaved fragments
The pattern of expression of the TSR fragments of F-spondin 

protein in chick embryos was examined with R3 antibody raised 

against TSRs 3–6 of chick F-spondin (Burstyn-Cohen et al., 

1999). Epitope mapping with the isolated TSRs indicates that 

R3 recognizes TSR3 and 5 (Fig. S2, available at http://www.jcb

.org/cgi/content/full/jcb.200702184/DC1). Hence, R3 recog-

nizes the repulsive (TSR3) and the outgrowth-promoting, ECM-

attached domain (TSR5) of F-spondin that fl ank the plasmin 

cleavage site P2 (Tzarfaty-Majar et al., 2001b). F-spondin 

immunoreactivity is fi rst detected at stage 21. As the pioneer com-

missural axons invade the midline, expression is detected on the 

apical fl oor plate cells and the pia that underlies the fl oor plate 

cells (Fig. 2 A). Costaining with axonal marker (antineurofi la-

ment 3A10 mAb) reveals that F-spondin accumulates beneath 

and along the pathway of the crossing axons (Fig. 2 B). After 

stage 24, expression was also detected on the crossing fi bers of 

the commissural axons (stage 26; Fig. 2 C). The segregation be-

tween the apical fl oor plate cells and the axonal and pial staining 

persists through development (stage 27, the last stage analyzed 

was stage 29; Fig. 2 D). The pial staining is not restricted to the 

basement membrane underlying the fl oor plate. It also spreads 

lateral to the fl oor plate (Fig. 2 C, arrowheads). This suggests 

that F-spondin binding to the pia is governed by a ubiquitous, 

not midline-specifi c, basement membrane component.

The differential ECM-binding capacities of the different 

F-spondin TSR fragments may be refl ected in their extracellular 

localization at the midline and in their activities. That is, 

the adhesive TSR5 and 6 fragments may accumulate at the 

basement membrane, bind to commissural axons, and support 

commissural axon growth at the midline, whereas the non-

adhesive TSR1-4 may bind to the apical fl oor plate cell mem-

brane and defl ect the axons away from fl oor plate cells. The 

anti–F-spondin antibody recognizes the adhesive TSR5 and 

the nonadhesive TSR3, which precludes its usage as a domain-

specifi c antibody.

To test the subcellular deposition site of F-spondin frag-

ments, the nonadhesive TSR1-4 and the adhesive TSR6 were 

expressed at the chick embryonic fl oor plate. Cell-specifi c expres-

sion was achieved by electroporation of DNA using the fl oor 

plate–specifi c enhancer III of the HoxA-1 gene (Fig. S3 A, avail-

able at http://www.jcb.org/cgi/content/full/jcb.200702184/DC1; 

Li and Lufkin, 2000). The TSR1-4 and 6 fragments were ex-

pressed at the fl oor plate at stages 12–14 along with cytoplasmic 

EGFP. F-spondin fragments were tagged with the myc epitope 

at the amino terminus. The localization of the ectopically ex-

pressed fragments was analyzed at stages 22–24. The TSR1-4 

fragment labeled the fl oor plate cell membrane (Fig. 3, A–C, 

compare myc staining with the cytoplasmic EGFP staining). 

The staining obtained for the TSR1-4 fragment resembles the 

apical fl oor plate staining obtained with the R3 antibody (Fig. 2, 

A–D). The TSR1-4 fragment is likely to accumulate on the 

cell membranes of the expressing cells. In contrast, the TSR6 

fragment labeled the basement membrane underlying the fl oor 

plate (Fig. 3, D–F), similar to the basal staining acquired with 

Figure 2. F-spondin protein is deposited in the apical fl oor plate and the basement membrane, and binds to commissural axons. F-spondin protein expression 
at stage 21 (A and B), 26 (C and E), and 27 (D) chick embryos as revealed by the R3 antibody. F-spondin accumulates at the apical fl oor plate (arrow) and 
the basement membrane (arrowhead). (B) The pioneer commissural axons (3A10 staining) extend on the F-spondin (R3 staining) that is deposited in the base-
ment membrane as they cross the midline at stage 21. (C) At stage 26, the immunoreactivity of F-spondin is evident on the crossing fi bers of the commissural 
axons (arrow) and basement membrane that fl anks the midline ventral pia (arrowheads). Inhibition of serine proteases by in ovo aprotinin injection reduces 
the deposition of F-spondin at the basement membrane (E) and yields homogenous staining along the surface of fl oor plate cells. Fluorescence and phase-contrast 
images in A were taken with microscope using a digital camera. Fluorescence images in B–E were taken with a confocal microscope. Bar, 40 μm.
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the R3 antibody (Fig. 2, A–D). Thus, the different TSR domains 

of F-spondin accumulate in different fl oor plate compartments. 

The nonadhesive TSR1-4 fragment binds to the surface of the 

fl oor plate cells, whereas the adhesive TSR6 fragment is depos-

ited in the ECM that underlies the fl oor plate cells.

F-spondin is processed in vivo
Two plasmin-sensitive sites were predicted based on amino acid 

sequence and were found, in vitro, to be plasmin sensitive: be-

tween the fi rst and second antiparallel β strands of TSR5 and 

between TSR5 and 6 (Tzarfaty-Majar et al., 2001b). To test 

whether the predicted cleavage sites are indeed targets for fl oor 

plate–derived proteases, a double-tagged F-spondin protein was 

used. EGFP and myc epitope were fused to the amino and car-

boxyl ends of the TSR domain, respectively, and expressed in 

the fl oor plate at stages 12–14. At stages 22–24, the intact TSR 

domain EGFP–TSR1-6–myc gave rise to two distinct labeling 

patterns. TSR6 accumulated at the ECM that underlies the fl oor 

plate cells whereas the TSR1-4 domain bound to the fl oor plate 

cells (Fig. 4, A–C). A protein that lacks the adhesive fi fth and 

sixth repeats, EGFP–TSR1-4–myc, was deposited on the fl oor 

plate cells, as revealed by identical staining with either myc or 

EGFP (Fig. 4, D–F). Thus, F-spondin is processed in vivo and 

gives rise to two proteolytic fragments that either bind to the 

membrane of fl oor plate cells or are deposited at the ECM.

Corroboration of the predicted cleavage sites was assessed 

with two mutant forms of F-spondin: deletion of the putative cleav-

age sites by deleting TSR5 and the region between TSR5 and 6 

(TSR1-6∆5) and point mutations in the plasmin cleavage sites 

(TSR1-6m; Tzarfaty-Majar et al., 2001b). The mutated proteins 

were fl anked with EGFP and myc tags. On electroporation of 

the mutated proteins into the fl oor plate, the amino and carboxyl 

tags labeled the fl oor plate cells (Fig. 4, G–L). There was no ac-

cumulation of TSR6 at the basement membrane. The complete 

overlapping of the amino and carboxyl tags suggests that delet-

ing or mutating the plasmin cleavage sites generates a plasmin-

resistant F-spondin protein. The unprocessed TSR domain of 

F-spondin, generated by the various mutations, accumulates 

on the membrane of fl oor plate cells rather than at the ECM that 

underlies the fl oor plate.

To test whether plasmin is involved in the processing of 

F-spondin, the serine protease inhibitor aprotinin was used. 

Aprotinin was injected repeatedly into the lumen of the spinal 

cord in ovo. The pattern of the endogenous F-spondin and exog-

enous double-tagged F-spondin EGFP–TSR1-6–myc was stud-

ied. After aprotinin application, the endogenous protein, as 

revealed by the R3 antibody, binds uniformly to the fl oor plate 

cells (Fig. 2 E). The segregation in the deposition of F-spondin 

between the apical fl oor plate and the pia that is evident in the 

fl oor plate of untreated embryos (Fig. 2, A–D) was eradicated. 

In addition, the pial staining was reduced (Fig. 2 E), suggesting 

that the release of TSR5 and 6 from TSR1-4 is inhibited. To 

test directly whether aprotinin inhibits F-spondin processing, 

EGFP–TSR1-6–myc was expressed at the fl oor plate,  followed 

by aprotinin treatment. The amino and carboxyl tags labeled the 

fl oor plate cells in an overlapping manner (Fig. 4, M–O), resem-

bling the pattern of the mutated proteins (Fig. 4, G–L). The resis-

tance of F-spondin to cleavage after aprotinin injection provides 

evidence that F-spondin processing occurs extracellularly. Thus, 

the cleavage of F-spondin by serine protease is required for the 

diffusion and accumulation of the adhesive TSRs at the base-

ment membrane.

Figure 3. Expression and protein localization of F-spondin domains at the fl oor plate. In all the experiments, enhancer III of HoxA-1 gene (Li and Lufkin, 
2000) was used to drive expression of Cre recombinants (HoxA-1–Cre). A TSR1-4 conditional plasmid (loxP–STOP–loxP–TSR1-4–IRES–EGFP; A–C) and a 
TSR6 conditional plasmid (loxP–STOP–loxP–TSR6–IRES–EGFP; D–F) cloned in a pCAGG vector were electroporated into the spinal cord of stage 12–14 
chick embryos. The F-spondin proteins were tagged with 4× myc epitope at their amino end. Cross-sections of stage 22–24 electroporated embryos were 
stained with antibodies to myc (B and E) and EGFP (A and D). TSR1-4 protein (B and C) labels the margins of cytoplasmic EGFP (A and C), refl ecting its 
deposition along the membrane of the expressing cells. (E and F) TSR6 is deposited at the basement membrane that underlies the fl oor plate (arrows). 
(D) Note that the expressing cells, EGFP-positive cells, do not present the protein. The gray box represents the reelin/spondin domain of F-spondin. The blue 
boxes represent the nonadhesive TSR1-4 of F-spondin. The yellow boxes represent the adhesive TSR5 and 6 of F-spondin. The red box represents a cassette 
of 4× myc epitope. The black arrows point to the sites of cleavage of F-spondin. The white arrows point to the site of deposition of TSR6. Images were 
taken with a microscope using a digital camera. Bar, 25 μm.
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The membrane-bound TSR1-4 fragment 
of F-spondin is contact repellent for 
commissural axons
The localization of the TSR1-4 fragment, together with the fi nd-

ing that it does not support neurite outgrowth in vitro, implies 

that it may prevent the growth of commissural axons into the 

fl oor plate cells. To test the potential inhibitory effect of the 

TSR1-4 fragment on commissural axons, the fragment was ec-

topically expressed in the lateral chick neural tube. Expression of 

a guidance molecule in the presumed responding neurons can 

hinder the ability of the neurons to respond to the exogenous, 

target-derived guidance molecule. Thus, an alternate reporter/

guidance molecule approach was used. This method generates 

two different expression patterns: EGFP in the dI1 neuronal sub-

population using the Math1 enhancer (Helms and Johnson, 1998) 

and a guidance molecule in nondI1 cells using a cytomegalovirus 

(CMV) enhancer (Fig. 5 A). dI1 interneurons give rise to com-

missural and ipsilaterally projecting axons (Fig. 5 B and Fig. S3, 

B–D). Embryos were electroporated at stages 17 and 18 and ana-

lyzed at stage 26. The expression of TSR1-4 in nondI1 cells was 

barely detectable (Fig. 5 C), suggesting that the ectopically ex-

pressed TSR1-4 does not bind avidly to the cell surface of the 

lateral spinal cord neurons. The presence of TSR1-4 along the 

axonal trajectory pathway of dI1 axons did not alter their projec-

tion. dI1 cells projected axons in commissural and ipsilateral pat-

terns (Fig. 5 C). The projection pattern is similar to the axonal 

pattern of embryos electroporated with Math1-Cre and EGFP-

Cre–dependent plasmids (Fig. 5 A).

Figure 4. F-spondin is processed in vivo. In all the experiments the double-tagged F-spondin was cloned in a Cre-dependent plasmid and electroporated 
along with Hoxa-1–Cre. The myc epitope at the amino end contains four copies (E and H) and the myc epitope at the carboxyl end contains six copies 
(B, K, and N). (A–C) The TSR1-6 fragment of F-spondin is cleaved in vivo. The amino, EGFP-fused part of the protein stains the fl oor plate cells (A and C), 
whereas the carboxyl, myc-fused part of the protein stains the basement membrane (B and C). The TSR1-4 fragment of F-spondin (D–F), deletion of plasmin 
cleavage site (G–I), mutation of the plasmin cleavage sites (J–L), and inhibition of the endogenous serine proteases by aprotinin (M–O) resulted in the colo-
calization of the amino and carboxyl tags along the membrane of the fl oor plate cells, as revealed by the overlapping staining of the myc and EGFP 
epitopes. The black arrows point to the sites of cleavage of F-spondin. The crossed arrows indicate point mutations in the plasmin cleavage sites. Images 
in A–L were taken with a microscope using a digital camera. Images in M–O were taken with a confocal microscope. Bar, 50 μm.
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The inability of TSR1-4 to inhibit axonal outgrowth in vivo 

contradicts the inhibitory activity obtained in vitro with a substrate-

bound protein (Fig. 1 and Fig. S1; Tzarfaty-Majar et al., 2001a), 

thus suggesting that the repulsive activity of TSR1-4 is context 

dependent and may require immobilization of the protein. It is 

conceivable that the TSR1-4 protein is anchored to the fl oor 

plate cells by binding to a fl oor plate–specifi c receptor, whereas 

the ectopically expressed protein is soluble. We hypothesized 

that a membrane-tethered form of F-spondin may mimic the im-

mobilized form of the protein, yielding its inhibitory effect. 

Therefore, a GPI signal was added to the carboxyl end of the 

TSR1-4 fragment.

A TSR1-4GPI/EGFP alternate plasmid with a Math1-Cre 

plasmid were expressed in the chick neural tube. In contrast to 

TSR1-4, the staining of ectopic TSR1-4GPI is intense, and cell 

bodies as well as the axons express it, as revealed by the myc- 

positive axons at the contralateral side of the spinal cord (Fig. 5 D). 

The expression of TSR1-4GPI along the trajectory pathway of dI1 

axons resulted in substantial elimination of the diagonally cross-

ing commissural axons (Fig. 5 D). The number of diagonally 

crossing axons toward the fl oor plate was evaluated. A mean of 

5.45 ± 2.2 axons per section was scored in the TSR1-4–treated 

embryos (n = 20) whereas 1.48 ± 1.35 axons were scored in the 

TSR1-4GPI–treated embryos (n = 25; Fig. 5 E). The repulsion of 

dI1 axons for TSR1-4GPI, demonstrated in this protocol, is spe-

cifi c for commissural axons because motor neurons expressing 

either TSR1-4GPI or EGFP projected laterally in a normal man-

ner (unpublished data). These results support the hypothesis 

that the endogenous TSR1-4 fragment of F-spondin should be 

associated with the fl oor plate cell surface to exert its repulsive 

effect. TSR1-4 and TSR1-4GPI have no effect on cell fate, as 

determined by cell fate markers (Fig. S4, A and B, available at 

http://www.jcb.org/cgi/content/full/jcb.200702184/DC1).

Immobilization of the TSR1-4 fragment 
of F-spondin by LRP receptors
The TSR1-4 fragment of F-spondin binds to the ApoER2 (Hoe 

et al., 2005). Fluorescent in situ hybridization with the chick 

ApoER2 probe demonstrates that ApoER2 is expressed in the 

lateral fl oor plate and in the ventral ventricular zone. A low level 

of expression is also evident at the midline (Fig. 6 A). Thus, 

ApoER2 is expressed at the fl oor plate, mostly at the lateral fl oor 

Figure 5. Membrane-tethered TSR1-4 inhibits commissural out-
growth in vivo. (A, top) Two plasmids are coelectroporated into 
the chick neural tube. Math1 enhancer, which drives expression in 
the dI1 dorsal interneurons (Helms and Johnson, 1998), was used 
to drive expression of Cre recombinase and an alternate guid-
ance molecule/EGFP plasmid. This plasmid contains a CMV en-
hancer followed by a guidance molecule (F-spondin or ApoER2) 
fl anked with two Plox sites, followed by EGFP. (A, bottom) On 
electroporation into the chick spinal cord, the guidance molecule 
will be excised in dI1 cells that express Cre, leading to EGFP ex-
pression, whereas nondI1 cells present along the dI1 axonal path-
way will express the guidance molecule. EGFP (B), TSR1-4 (C), 
and TSR1-4GPI (D) were electroporated using an EGFP alternating 
cassette along with a Math1-Cre plasmid. An alternating cassette 
contains a Plox-TSR-Plox-EGFP cloned in pCAGG vector. Electro-
poration was performed at stages 17–18 and embryos were ana-
lyzed with anti-myc (Cy3) and anti-EGFP (Cy2) antibodies at stage 
26. (B) Expression of EGFP in dI1 cells. dI1 neurons project their 
axon toward and across the fl oor plate (arrow) and ipsilaterally 
(arrowhead). Commissural axons projecting diagonally toward 
the fl oor plate and across it to the contralateral side are observed 
(arrow). (C) dI1 EGFP-expressing cells are present at the dorsal, 
dorsal-lateral, and medial-lateral spinal cord. Commissural axons 
projecting diagonally toward the fl oor plate and across it to the 
contralateral side are observed (arrow). In addition, the medial-
lateral dI1 subpopulation projects ipsilaterally (arrowhead). 
(D) Very few axons are extending diagonally toward the fl oor 
plate at the TSR1-4GPI domain (myc epitope in red). EGFP-expressing 
axons and TSR1-4GPI–expressing axons projecting longitudinally 
at the contralateral side are evident (arrow). (E) Quantifi cation of 
the extent of commissural projection in B and C. Sections from four 
different embryos (for each group) with matching EGFP intensity 
were selected. 25 sections of the TSR1-4GPI and 20 sections of the 
TSR1-4 were analyzed. The number of diagonally crossing axons 
toward the fl oor plate was scored. Using a t test shows a signifi -
cant difference between the TSR1-4 and TSR1-4GPI groups, under 
a signifi cant level of α = 0.05. The dashed lines demarcate the 
spinal cord. The image in A was taken with a microscope using a 
digital camera. Images in C and D were taken with a confocal 
microscope. Bar, 100 μm.
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plate cells. Therefore, ApoER2 may bind to F-spondin, immo-

bilize it, and present it to the commissural axons.

The possible immobilization of TSR1-4 by ApoER2 was 

tested in vitro. COS cells were transfected with a myc-tagged 

TSR1-4 or cotransfected with TSR1-4 and ApoER2. Surface 

staining (unfi xed cells) with 9E10 mAb was used to reveal im-

mobilization of TSR1-4 to the cell membranes. Cells expressing 

(Fig. 7, A–C) or coexpressing TSR1-4 and a secreted form of 

ApoER2, ApoER2ecto (Fig. 7, G–I), did not present TSR1-4 on their 

cell surface. However, coexpression of ApoER2 and TSR1-4 re-

sulted in the immobilization and presentation of TSR1-4 on the cell 

surface of the expressing cells (Fig. 7, D–F). TSR1-4 did not bind 

to DCC when coexpressed in COS cells (Fig. S5, A–C, available 

at http://www.jcb.org/cgi/content/full/jcb.200702184/DC1). 

Thus, ApoER2 is required for the cell surface immobilization of 

the TSR1-4 fragment of F-spondin. Consistent with the in vitro 

experiment, when expressed in the chick hemitube, the combi-

nation of ApoER2 and TSR1-4 yielded intense cell surface 

staining in vivo (Fig. 8, A and B). The staining, however, is con-

fi ned to cell bodies and is not detected on axons.

The possible binding of F-spondin to other LRP receptors 

was tested using the aforementioned immobilization assay. The 

TSR1-4 fragment of F-spondin binds to very-low-density lipo-

protein receptor (VLDLR), LRP4, and megalin (Fig. S5, D–L). 

The expression pattern of LRP genes was analyzed by mRNA 

in situ hybridization. Megalin is expressed in the fl oor plate and 

in the ventricular zone (Fig. 6 B). LRP4 is expressed at embryonic 

day (E) 4 in the dorsal third neural tube (Fig. 6 C). Its expres-

sion overlaps the region of commissural neurons. At E5 the ex-

pression of LRP4 spreads to the ventricular zone and the fl oor 

plate (Fig. 6 D). VLDLR is expressed in the dI1 subpopulation 

of commissural neurons (Fig. 6 E). Thus, LRP receptors that 

bind F-spondin are expressed at the fl oor plate and in commis-

sural axons.

Immobilization of the TSR1-4 fragment 
of F-spondin by LRP receptors results 
in exertion of its repulsive activity
To test whether ApoER2 may collaborate with the TSR1-4 frag-

ment of F-spondin in inhibiting commissural axon outgrowth, 

TSR1-4 and ApoER2 were jointly expressed unilaterally at 

the chick neural tube using TSR1-4/EGFP and ApoER2/EGFP 

alternating plasmids with a Math1-Cre plasmid. Ectopic expres-

sion of ApoER2 at stage 18 had no effect on cell fate as deter-

mined by cell fate markers (Fig. S4 C). Coexpression of TSR1-4 

and ApoER2 along the dI1 axonal pathway resulted in an axonal 

failure to turn diagonally toward the fl oor plate (Fig. 8, A and B). 

Axons seem to circumvent the ApoER2/TRS1-4 domains. The 

ratio between the accurate, diagonally crossing axons and the er-

roneous axon growing in the ventral lateral neural tube is 1.09 ± 

1.07 (n = 76; Fig. 8 D). Electroporation of ApoER2 did not cause 

any dI1 axonal errors and axons projected diagonally toward the 

fl oor plate (Fig. 8 C). The ratio between normal and erroneous 

axonal projection in ApoER2 + TSR1-4 ectopic expression is 

signifi cantly different from ectopic ApoER2 (4 ± 2.41, n = 18) 

and ectopic TSR1-4 (5.58 ± 4.39, n = 25; Fig. 8 D).

In ectopic TSR1-4/ApoER2 expression, EGFP axonal la-

beling is evident in the white matter on the ipsi- and contralat-

eral sides of the fl oor plate, indicating that dI1 axons elongated 

in the white matter rather than in the neuroepithelium express-

ing ApoER2/TSR1-4. Thus, the attraction to the fl oor plate is 

retained. The extent of commissural axonal lateral defl ection 

and the failure to cross the midline to the contralateral side in 

ApoER2/TSR1-4 is smaller than the erroneous phenotype ob-

tained with TSR1-4GPI. This may result from the larger spinal 

cord domain that is occupied by TSR1-4GPI neuronal cell bodies 

and axonal processes as opposed to ApoER2-immobilized 

TSR1-4 that is restricted to cell bodies.

Impeding F-spondin/LRP binding facilitates 
the growth of commissural axons into 
the fl oor plate cells
The redundancy in numerous F-spondin binding receptors pre-

cludes the use of loss-of-function approach. As an alternative, 

we chose to impede the endogenous interaction of F-spondin 

and F-spondin family proteins with LRP receptors.

ApoER2 binds to the nonadhesive TSR of F-spondin TSR1-4. 

The adhesive TSR5 and 6 do not bind to ApoER2 (Hoe et al., 

2005). This provides the means to specifi cally block the immobi-

lization of the endogenous TSR1-4 fragment of F-spondin using a 

secreted (ecto) form of ApoER2. To test whether ApoER2ecto can 

block the binding of TSR1-4 to the membranal ApoER2, COS 

cells were transfected with myc-tagged TSR1-4, ApoER2, and 

various concentrations of ApoER2ecto. At an ApoER2/ApoER2ecto 

Figure 6. Expression pattern of LRP receptors in the chick embryonic spinal cord. In situ hybridization of ApoER2 (A), LRP2/megalin (B), and LRP4 recep-
tors at E5 chick spinal cord (D), and LRP4 (C) VLDLR (E) at E4 chick spinal cord. (A) ApoER2 expression is confi ned to the midline, the lateral fl oor plate 
cells, and the ventral ventricular zone. Lower levels are detected at the medial fl oor plate. (B) Megalin is expressed at the ventricular zone, including the 
fl oor plate. (C) LRP4 is expressed at E4 in the dorsal third neural tube, at the ventricular zone, and laterally to the ventricular zone. (D) At E5, LRP4 expres-
sion spreads to the ventricular zone and the fl oor plate. (E) VLDLR is expressed in subpopulation of dorsal interneurons. Colabeling with Lhx2 reveals that 
VLDLR is expressed in dI1 neurons (not depicted). The dashed lines demarcate the spinal cord. Bars: (A, B, and D) 75 μm; (C and E) 100 μm.
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ratio of 1:10, no binding of TSR1-4 to the cell surface was de-

tected (Fig. 7, J–L). Coexpression experiments with ApoER2ecto 

and other LRP demonstrated that it blocks the binding of 

F-spondin to LRP4, megalin, and VLDLR (unpublished data).

Thus, ApoER2ecto can serve as a dominant-negative form of 

ApoER2 that blocks the binding and immobilization of the en-

dogenous TSR1-4 to the endogenous fl oor plate–derived LRPs 

ApoER2, megalin, and LRP4. ApoER2ecto was expressed ectopi-

cally at the ventral spinal cord. The ventral ectopic expression of 

ApoER2ecto yielded erroneous axonal projection at the midline. 

Axons are detached from the ventral bundle that underlies the 

fl oor plate and turn dorsally within the fl oor plate cells (64%, n = 

115; Fig. 9, A–C and M). ApoER2ecto has no patterning effect 

when expressed in the lateral and ventral spinal cord and no axo-

nal guidance effects when expressed in the lateral spinal cord (un-

published data). However, it cannot be excluded that ApoER2ecto 

may directly affect axon guidance specifi cally at the fl oor plate.

F-spondin activity at the midline might be shared by other 

class-two TSR proteins that are expressed at the central nervous 

system. Mindin and SCO-spondin (SCO-spondin contains 13 

class-one and 12 class-two TSR repeats) are expressed at the 

fl oor plate (Higashijima et al., 1997; Lichtenfeld et al., 1999; 

Guinazu et al., 2002). The TSR of mindin and 19 out of the 25 

SCO-spondin TSRs are not adhesive (as predicted by the absence 

of basic amino acids at their third antiparallel β strand) and thus 

resemble TSR1-4 of F-spondin. The TSRs of SCO-spondin bind 

with ApoER2 (Fig. S5, M–R) and thus may also serve as a re-

pellent cue for commissural axons. The binding of the endogenous 

LRPs and class-two TSR proteins can be blocked by secreted 

LRP and also by the dominant-negative form of TSR1-4. In vitro 

TSR1-4 does not promote outgrowth of spinal cord neurons. 

However, the inclusion of an adhesive TSR together with TSR1-4 

(as in the TSR1-5 protein) converts in vitro the outgrowth activity 

of F-spondin to a promoting one (Burstyn-Cohen et al., 1999). 

The mutated noncleavable forms of F-spondin bind to the sur-

face of fl oor plate cells (Fig. 4, G–L) via binding to the fl oor 

plate LRPs and probably compete with the endogenous TSR1-4. 

The recruitment of the adhesive TSR5 and 6 (TSR1-6m) or the 

TSR6 (TSR1-6∆5) to the cell surface of fl oor plate cells may 

either serve as a gain of function (positioning of the outgrowth 

promoting modules on the surface of fl oor plate cells) or a loss 

of function (competing away the repulsive TSR1-4 with a non-

repulsive TSR mutant proteins).

The mutant forms of the TSR domain were electroporated 

into the ventral spinal cord. Commissural axons encountering the 

TSR1-6∆5 (82%, n = 100; Fig. 9, D–F and M) and TSR1-6m 

(81%, n = 147; Fig. 9, G–I and M) turned within the fl oor plate 

dorsally into the floor plate cells. Electroporation of EGFP 

(6%, n = 100) or the nonadhesive fragment TSR1-4 (18%, n = 

100) did not alter axonal trajectory at the fl oor plate (Fig. 9, J–M). 

The erroneous projection of the commissural axons was always 

confi ned to the ventral midline, though the mutated proteins 

were expressed nonspecifi cally throughout the entire ventral or 

lateral/ventral neural tube. This suggests that the adhesive TSR5 

and 6 are not suffi cient to alter commissural outgrowth but 

rather function as dominant-negative TSR1-4 that inhibits the 

binding of the endogenous TSR1-4 to the endogenous fl oor 

plate LRPs. In support of this, expression of a membrane-tethered 

Figure 7. F-spondin is immobilized to the cell surface by the ApoER2 receptors. ApoER2 is required for the binding of myc-tagged TSR1-4 to the cell surface of 
COS cells. COS cells were transfected with TSR1-4–IRES–EGFP and nEGFP (A–C), TSR1-4–IRES–EGFP and ApoER2-IRES-nEGFP (D–F), a secreted form of ApoER2 
(ApoER2ecto-IRES-nEGFP and TSR1-4–IRES–EGFP [G–I]), ApoER2ecto-IRES-nEGFP, ApoER2-IRES-EGFP, and TSR1-4–IRES–EGFP (J–L). At 48 h after the transfection, 
surface staining (without fi xation) of the cells was preformed. TSR1-4 is bound to the cell surface, where it is coexpressed with ApoER2 (D–F). Bar, 5 μm.
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form of TSR6 (TSR6GPI) at the ventral neural tube did not cause 

pathfi nding errors at the fl oor plate (19%, n = 100; Fig. 9 M). 

These results support the hypothesis that the TSR1-4 fragment 

of F-spondin serves as a repellent that prevents the invasion of 

commissural axons into the fl oor plate.

Discussion
The fl oor plate boundary at the entering ipsilateral side of the 

neural tube is a checkpoint for commissural axons. Commis-

sural axons, which extend in the neuroepithelium, advancing in 

a netrin gradient (Serafi ni et al., 1994; Kennedy et al., 2006), are 

faced with new environmental conditions. The growth cone 

turns from the neuroepithelium to the region between the fl oor 

plate cells and the pia, extending in the basement membrane 

that underlies the fl oor plate. The turning at the midline is ac-

companied by exposure to a new set of short-range guidance 

molecules expressed at the fl oor plate and a change in the pat-

tern of receptors presented on the growth cone. We have pro-

vided evidence that F-spondin protein expressed at the floor 

plate participates in shaping the precise turning into the ventral 

midline. F-spondin processing in vivo generates two function-

ally opposing fragments, an inhibitory TSR1-4 and an adhesive 

TSR6, that are deposited in different extracellular milieus that 

fl ank or associate with, respectively, the crossing fi bers of com-

missural axon (Fig. 10, A and B). In vivo gain- and loss-of-

function experiments demonstrate that the repulsive TSR1-4 

fragment of F-spondin contributes to the constriction of com-

missural axons to the basement membrane under the fl oor plate 

cells (Fig. 10 C). The coordinated posttranslational generation 

of two functionally antagonistic polypeptides from a single pro-

tein is a novel mechanism for increasing the complexity of a given 

guidance molecule. Revealing the inhibitory activity of TSR1-4 

requires immobilization and presentation by LRP receptors. 

Thus, membrane proteins, like proteoglycans, contribute to the 

regulation and activation of guidance molecules.

Short-range repulsion from the fl oor plate 
cells and short-range attraction to midline 
basement membrane
The phenotype obtained after perturbation of ApoER2/TSR1-4 

binding resembles the phenotype of the Slits and Robo1 null 

mice. Interaction between the Slit-repellent proteins, expressed 

at the fl oor plate, and the Robo receptors, expressed in commis-

sural neurons, is required for midline crossing (Long et al., 2004; 

Sabatier et al., 2004). In the triple Slits and Robo1 null mice, ax-

ons fail to leave the fl oor plate and commissural axons collapse 

at the midline. In addition, many axons project dorsally at the 

Figure 8. ApoER2 is required for eliciting 
TSR1-4 repulsive activity. ApoER2 (A–C) was 
coelectroporated with TSR1-4 (A and B) using 
EGFP-alternating cassettes along with a Math1-
Cre plasmid. An alternating cassette containing 
Plox-ApoER2-Plox-EGFP cloned in a pCAGG 
vector was used for ApoER2 expression. 
(A and B) The dotted square in A’ is presented 
as an enlargement in B. ApoER2 coexpressed 
with TSR1-4 in dI1-negative cells and EGFP in dI1 
cells. dI1 axons are circumventing ApoER2 + 
TSR1-4–expressing domains (A and B). Many 
axons are defl ected laterally (arrowhead). The 
number of diagonally crossing axons is re-
duced. (C) ApoER2 was expressed in dI1-
negative cells and EGFP in dI1 cells. The dI1 cell 
projects axons toward the fl oor plate (arrow). 
The dashed lines demarcate the spinal cord. 
(D) Quantifi cation of erroneous projection of 
dI1 axons. Sections with matching EGFP inten-
sity were selected: ApoER2 18 (from two em-
bryos), TSR1-4 25 (from two embryos), and 
ApoER2 + TSR1-4 73 (from fi ve embryos). In 
each section, the number of axons projecting 
diagonally toward the fl oor plate versus the ax-
ons that are projecting laterally in the motor 
neurons domain was determined by quantify-
ing EGFP brightness intensity using National In-
stitutes of Health image software. The ordinate 
is the ratio between the normal diagonally 
crossing axons and the erroneous axon project-
ing at the ventral lateral spinal cord. The pro-
jection pattern of dI1 axons growing in a 
TSR1-4 milieu was compared with ApoER2 and 
ApoER2 + TRS1-4 milieus. Comparisonsfor all 
pairs using the Tukey-Kramer honestly signifi -
cant difference test shows a signifi cant differ-

ence between the ApoER2 + TRS1-4 group and the TSR1-4 and ApoER2 groups, and no difference between the TSR1-4 and ApoER2 groups, with a 
signifi cance level of α = 0.05. Images in A and B were taken with a confocal microscope. The image in C was taken with a microscope using a digital camera. 
The ends of the box in D are the 25th and 75th percentiles. The line and the dashed line across the box identify the median and the mean, respectively. 
The horizontal line above the box represents the outermost data point that falls within the 75th percentile plus 1.5 the interquartile range (75th minus 25th 
percentile). The same applies for the line below the box. Bars, (A and C) 150 μm; (B) 20 μm.
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fl oor plate toward the ventricular zone (Long et al., 2004). Thus, 

Slit proteins are likely to play a repulsive role in defl ecting com-

missural axons away from their site of expression—the fl oor 

plate cells. In both mutations, the triple Slits and Robo1, most of 

the axons still elongate under the fl oor plate cells (Long et al., 

2004), suggesting that a repulsive fl oor plate–derived activity 

might be shared with other proteins. F-spondin may cooperate 

with Slit proteins in squeezing commissural axons between the 

fl oor plate cells and the basement membrane. This cooperation 

is likely to be mediated by parallel signaling pathways because 

F-spondin does not bind to Robo receptors (unpublished data).

Ectopic expression of a membrane-tethered form of TSR6 

did not alter the projection pattern of commissural axons before 

and while crossing the fl oor plate. The inability to affect axonal 

Figure 9. Inhibiting LRPs/F-spondin binding enables growth of commissural axons into the fl oor plate cells. ApoER2ecto (A–C) or F-spondin EGFP-tagged 
isoforms (D–L) were electroporated into the ventral spinal cord at stages 12–14. Cross-sections of stage 22–24 embryos were stained with anti-EGFP 
(A, D, G, and J) or antineurofi lament mAb 3A10 (B, E, H, and K). In the control experiment, expression of EGFP (J–L), commissural axons cross the midline as 
a tight bundle (arrowhead) under the fl oor plate cells whereas expression of ApoER2ecto (A–C) and the mutated F-spondin’s isoforms (D–L) resulted in a dorsal 
erroneous neurites projection into the fl oor plate cells (B, E, and H, arrows). (M) Quantifi cation of the extent of pathfi nding errors at the midline. For each 
protein 
100 sections were inspected. A cross-section with axons extending dorsally at the fl oor plate was scored as an error. The crossed arrows indicate 
point mutations in the plasmin cleavage sites. Bar, 50 μm.
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projection as the axons elongate toward the fl oor plate may result 

from spatially restricted expression of putative TSR6 receptors, 

expressed only as the axons transverse the fl oor plate. In support 

of this, the TSR1-6 fragment of F-spondin fused to alkaline phos-

phatase–labeled fl oor plate cells and axons under the fl oor plate 

(unpublished data). However, even at the midline, axons are not 

attracted to the ectopic cell surface–associated TSR6. The reposi-

tioning of TSR6 along the cell surface may not shift the ratio be-

tween repulsive and attractive cues in the fl oor plate cells. The 

repulsive activity of TSR1-4 and Slits may dominate the attractive 

activity of the exogenous TSR6. Furthermore, the short-range at-

traction of the midline basement membrane, mediated by the en-

dogenous TSR5 and 6 of F-spondin, together with other adhesive 

molecules, is potentially more robust than the adhesiveness of the 

ectopic TSR6. Inhibition of both the repulsive activity of endoge-

nous TSR1-4 and the deposition of TSR5 and 6 at the basement 

membrane, together with ectopic expression of TSR6, is required 

to elucidate the presumed short-range attractive role of TSR6.

Immobilization of TSR1-4 by LRPs
Guidance molecules are presented to the growth cone as either 

membrane-bound or ECM-attached molecules. Semaphorins 

4, 5, and 6; eprinBs; and the Eph receptors that reverse signal 

through interaction with ephrinAs are membranal proteins. 

EphrinAs are GPI encored. Netrin, Slits, and semaphorin 3 bind 

to the ECM via interaction with proteoglycans. Global blocking 

of glycosaminoglycan synthesis results in many axonal guid-

ance defects, many of them at the midline (for review see Van 

Vactor et al., 2006). The immobilized TSR1-4 fragment of 

F-spondin was shown in vitro to inhibit neurite outgrowth of 

spinal cord neurons (Fig. 1 A; Tzarfaty-Majar et al., 2001a). 

However, TSR1-4 does not bind to proteoglycans or the ECM 

(Tzarfaty-Majar et al., 2001b), and subsequently, when applied 

ectopically in vivo, does not perturb axonal wiring. The inhibi-

tory activity of TSR1-4 is exerted by a novel mechanism, i.e., 

binding to a cell surface receptor expressed in cis: the ApoER2, 

megalin, and the LRP4 receptor. A knockdown of ApoER2, 

megalin, and LRP4 is required to substantiate the requirement 

of LRPs for TSR1-4 immobilization to the fl oor plate cells.

Two LRPs are expressed in commissural axons. Expression 

of LRP4 in the dorsal neural tube is in the ventricular zone and also 

spreads to cells lateral to the ventricular zone. It is formally pos-

sible that LRP4 protein is stable and expressed in postmitotic 

commissural neurons. However, VLDLR is expressed in the 

postmitotic dI1 neurons. LRP4 and VLDLR may serve as a sig-

naling receptor for F-spondin.

Other TSR proteins at the fl oor plate
Several class-two TSR proteins are expressed at the fl oor plate. 

F-spondin and SCO-spondin are expressed at the fl oor plate of 

zebrafish, Xenopus laevis, chicks, and rodents (Lichtenfeld 

et al., 1999) whereas mindin is expressed at the fl oor plate of 

zebrafi sh (Higashijima et al., 1997). The structural homology 

between F-spondin, mindin, and SCO-spondin, and their extensive 

overlapping expression domains, is likely to represent redun-

dancy in their biological activities. This notion is reinforced by 

the expression pattern of SCO-spondin protein at the fl oor plate. 

Immunolabeling with anti–SCO-spondin in various vertebrates 

reveals that SCO-spondin protein is expressed on the fl oor plate 

cells above the midline bundle of the commissural axons 

(Lichtenfeld et al., 1999; del Brio et al., 2000; Richter et al., 2001), 

similar to the site of deposition of TSR1-4.

The amino acid composition at the third antiparallel strand 

of SCO-spondin suggests that some TSRs of SCO-spondin are 

adhesive (TSR2, 3, 8, 14, 18, 19, and 24), and may play a redun-

dant role to TSR5 and 6 of F-spondin. However, it is not known 

whether SCO-spondin is subjected to proteolysis that is required 

for release of the adhesive domains to the ECM.

The foremost factors directing the projection of commis-

sural axons toward the fl oor plate are the long-range guidance 

molecules emanating from the midlines of the neural tube: the 

roof plate and the fl oor plate, BMP7, and netrin (Serafi ni et al., 

1994; Augsburger et al., 1999). At choice points along the path-

way (entering and exiting to the fl oor plate), additional short-range 

guidance molecules (neuronglia cell adhesion molecule–related 

cell adhesion molecule, Slits, and F-spondin) contribute to the 

accurate projection of commissural axons (Klar et al., 1992; 

Stoeckli and Landmesser, 1995; Brose et al., 1999). An addi-

tional layer of complexity is attained by the proteolytic process-

ing of F-spondin. Similar posttranslational modifi cations may 

augment the versatility of other guidance molecules and thus 

intensify the diversity of guidance cues.

Materials and methods
In ovo electroporations
Fertilized white leghorn chicken eggs were incubated at 38.5–39°C. 
A DNA solution of 5 mg/ml was injected into the lumen of the neural tube at 
either Hamburger and Hamilton stages 12–14 (CMV enhancer in pCAGG 

Figure 10. The role of F-spondin in midline crossing. (A) F-spondin is ex-
pressed and secreted from the fl oor plate cells. F-spondin is subjected to 
proteolysis by serine proteases within the amino end of TSR5 and between 
TSR5 and 6 (arrows). A yet unidentifi ed protease cleaves F-spondin be-
tween the spondin domain and TSR1 (arrow). (B) The reelin/spondin do-
main (Burstyn-Cohen et al., 1999) and the adhesive TSR5 and 6 bind to the 
ECM that underlies the fl oor plate. The TSR1-4 fragment binds to the apical 
fl oor plate cells via interaction with the LRP receptors ApoER2, megalin, 
and LRP4. (C) The cell surface–tethered TSR1-4 repels commissural axons 
and prevents their penetration into the fl oor plate cells. The adhesive TSRs 
provide an outgrowth supportive substrate for the commissural axons.
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plasmid) or stages 17 and 18 (Math1 and HoxA1 enhancers, provided by 
T. Lufkin, Mount Sinai School of Medicine, New York, NY). Electroporation 
was performed using 3 × 50 ms pulses at 25 V applied across the embryo 
using a 0.5-mm tungsten wire and an electroporator (ECM 830; BTX). 
Embryos were incubated for 2–3 d before analysis.

In ovo aprotinin treatment
Aprotinin (Protosol [500,000 kallikrein inactivator units/ml]; Kamada) was 
injected into the lumen of the spinal cord at 10-h intervals from stages 
16–23 (fi ve injections). Embryos were analyzed at stage 25.

Immunohistochemistry
Embryos were fi xed overnight at 4°C in 4% paraformaldehyde/0.1 M 
phosphate buffer, washed twice with PBS, incubated in 30% sucrose/PBS 
for 24 h, and embedded in optimal cutting temperature compound. 14-mm 
cryostat sections were collected on Superfrost Plus slides (Fisher Scientifi c) 
and kept at −70°C. The following antibodies were used: 3A10 (dilution 
1:10), 4D7, HNF3β (dilution 1:10), MNR2 (dilution 1:100), Pax7 (dilu-
tion 1:5), Nkx2.2 (dilution 1:10; all provided by T. Jessell, Columbia Uni-
versity, New York, NY), and 9E10 (dilution 1:200). The rabbit polyclonal 
GFP antibody (dilution 1:500) was obtained from Invitrogen.

For the R3 antibody, embryos were fi xed in 4% paraformalde-
hyde/0.1 M phosphate buffer and processed for embedding in paraffi n. 
8-μm sections were cut and collected on Superfrost Plus slides. Paraffi n 
was removed by immersion in xylene and the sections were rehydrated us-
ing a graded ethanol/H2O series. For antigen retrieval, slides were sub-
merged completely in 10 mM sodium citrate, pH 6.0, in a glass histology 
box. The buffer was then brought to boiling in a pressure cooker (PickCell 
Laboratories), and the slides were boiled in buffer for 1 h. Slides immersed 
in buffer were allowed to cool for 15 min and washed twice for 5 min in 
PBS at room temperature.

Images were taken on a microscope (Axioscope 2; Zeiss) with a 
digital camera (DP70; Olympus) or confocal microscope (Eclipse C1; Nikon). 
Cy2 and 3 were used as fl uorochromes.

Outgrowth assay
E13 rat and E6 chick dorsal spinal cord neurons were obtained and plated 
on F-spondin fragments as described previously (Burstyn-Cohen et al., 
1999). F-spondin proteins TSR1-4_HIS, and TSR6_HIS were affi nity puri-
fi ed on an affi nity column (Talon; CLONTECH Laboratories, Inc.).

DNA
The fl oor plate–specifi c enhancer Hoxa-1 enhancer III was provided by 
T. Lufkin. The human ApoER2 was obtained from the I.M.A.G.E. Consor-
tium (6143442). The chick LRP4 (ChEST392o8) was obtained from the 
Chick EST Project. To generate the ApoER2ecto the sequences downstream 
to amino acid 472 were deleted using a BglII site. To generate TSR1-4GPI, 
TSR5 GPI, and TSR6GPI, a synthetic DNA sequence encoding the prion 
GPI signal (T C T A G A T C C A G C G C G G T G C T G T T C T C C T C C C C T C C T G T G A T C-
C T C C T C A T T T C C T T T C T C A T C T T C C T G A T G G T G G G A T G A ) was cloned in 
frame downstream from the TSR fragments of F-spondin.

A megalin minigene was constructed from two partially overlap-
ping EST clones (ChEST548d5 and ChEST437i20) that encompass the 
third complement-type repeats of chick megalin gene (amino acids 2704–
3102), obtained from the Chick Est sequencing project. The ESTs were 
annealed and “fi lled in” by PCR using a 5′ (5′-C G A A G C T T T G G A A A T G-
T G A C A A C G A C A A T G -3′) and 3′ primer (5′-T A G G A T C C C A C T G C A T T C A T-
T T A T A C C A C -3′). The PCR product was subcloned into a pSecTagB vector 
(Invitrogene). A membranal form of megalin was generated by fusing the 
secreted chick minigene of megalin to the carboxyl end of ApoER2 (trans-
membrane and cytoplasmatic domains).

TSR12 and 26 of the mouse SCO-spondin were obtained by PCR 
from genomic mouse DNA. PCR products were cloned in pSecTagB.

Fluorescence in situ hybridization
Fluorescence in situ hybridization of chick spinal cords was performed as 
described in the TSA plus protocol (PerkinElmer).

Online supplemental material
Fig. S1 depicts the outgrowth of rat E13 dorsal spinal cord neurons on a 
substrate of purifi ed TSR1-4 and 6. Neurons extend neurites only when 
cultured on TSR6. Fig. S2 depicts epitope mapping of the R3 antibody. 
R3 recognizes TSR3 and 5. Fig. S3 describes the expression pattern of 
the fl oor plate–specifi c enhancer HoxA-1 and the commissural-specifi c 
enhancer Math-1. Fig. S4 depicts the effect of TSR1-4, TSR1-4GPI, and 
ApoER2 on the patterning of the neural tube. None of these proteins 

changes the patterning of neural tube when expressed ectopically in 
the spinal cord. Fig. S5 illustrates the binding of F-spondin’s and SCO-
spondin’s TSR to LRP receptors. The TSR1-4 fragment of F-spondin binds 
to LRP2, LRP4, and VLDLR. TSR12 and 26 of SCO-spondin bind to 
ApoER2. Online supplemental material is available at http://www.jcb
.org/cgi/content/full/jcb.200702184/DC1).
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