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ABSTRACT

Recent advances in high-throughput methods and
the application of computational tools for automatic
classi®cation of proteins have made it possible to
carry out large-scale proteomic analyses. Biological
analysis and interpretation of sets of proteins is a
time-consuming undertaking carried out manually
by experts. We have developed PANDORA (Protein
ANnotation Diagram ORiented Analysis), a web-
based tool that provides an automatic representa-
tion of the biological knowledge associated with
any set of proteins. PANDORA uses a unique
approach of keyword-based graphical analysis that
focuses on detecting subsets of proteins that share
unique biological properties and the intersections
of such sets. PANDORA currently supports
SwissProt keywords, NCBI Taxonomy, InterPro
entries and the hierarchical classi®cation terms
from ENZYME, SCOP and GO databases. The inte-
grated study of several annotation sources simul-
taneously allows a representation of biological
relations of structure, function, cellular location,
taxonomy, domains and motifs. PANDORA is also
integrated into the ProtoNet system, thus allowing
testing thousands of automatically generated
clusters. We illustrate how PANDORA enhances the
biological understanding of large, non-uniform sets
of proteins originating from experimental and
computational sources, without the need for prior
biological knowledge on individual proteins.

INTRODUCTION

In recent years, new experimental and computational methods
have greatly increased the capability of performing large-scale
proteomic and genomic studies. In this line of research, large
sets of proteins or genes are being studied simultaneously.
There are numerous such studies that re¯ect experimental as
well as computational approaches (1,2). Innovation in high-
throughput technologies has led to a ¯ood of data from DNA
microarrays, two-hybrid screens, phage displays, 2D gels and
advanced mass-spectrometry experiments (3,4). On the com-
putational side, comparative genomics, phylogenetic pro®ling

and numerous methods for a global organization of genes and
proteins have led to a large collection of protein sets for which
structural and functional understanding is desirable (5,6). The
biological analysis of such sets tends to be complicated and
time-consuming due to the immense size of the data as well as
the necessity of thorough biological knowledge of each
protein. This often leads to an insuf®cient analysis of only a
small subset of proteins, which provides very limited
biological understanding of the result. However, much effort
has been put into annotating protein sequences in recent years
(7±9). We de®ne an `annotation' or a `keyword' as a binary
property that may be assigned to a protein. Resources such as
InterPro (10), Gene Ontology (GO) (11), ENZYME (12) and
SCOP (13) provide a wealth of biological information, in the
form of annotations. Different annotations offer a whole
spectrum of information for each protein of interest. For well-
studied proteins, information concerning structure, sequential
motifs, cellular localization, association with biochemical
pathways and taxonomy is usually provided. Examination of
the annotation sources used by PANDORA shows that more
than 95% of the proteins are associated with two annotations
or more (excluding taxonomical annotations). The average
number of annotations per protein is 10.9 and the median is 10.
The increasing amount of available annotations allows us to
study protein sets without the need of a deeper examination of
individual proteins.

The organization of annotations into well-focused diction-
aries of keywords enables the usage of computational methods
to analyze such annotation data. The simplest way to analyze a
set of proteins is based on tallying individual keywords.
However, this naõÈve method can often obscure much of the
biological information. Consider for example a set of 100
proteins with 50 appearances of the keyword `membrane' and
50 appearances of the word `enzyme'. What can be con-
cluded? The set could consist of 50 proteins that are
membrane-localized enzymes, two disjoint sets of membrane
proteins and enzymes, or intersecting sets. NaõÈve tallying is
too weak a method to distinguish between these possibilities.
It entails a loss of relevant biological information, especially
when rich and complex protein-keyword sets are being
considered. Therefore it is important to recognize that
intersection and inclusion (subset/superset) relations between
annotation-speci®c subsets of proteins possess crucial
biological data.

We have developed PANDORA (Protein ANnotation
Diagram ORiented Analysis), a web tool based on the
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SwissProt protein database (14) that allows us to carry out
integrative biological annotation analysis of protein sets, using
annotations from various sources. PANDORA currently
integrates annotations from the following sources: SwissProt
keywords, NCBI Taxonomy (15), InterPro, GO, SCOP and
ENZYME.

The input to PANDORA is a protein set and a selection of
one or more annotation types. The system displays the full
protein-keyword relations between the proteins of the set and
the keywords of the selected types. This is displayed as an
intersection-inclusion Directed Acyclic Graph (DAG). An
intersection-inclusion DAG is a hierarchical graph that
describes all intersection and inclusion relationships between
given sets. In our case, these sets would be protein sets, each
protein set sharing a unique mixture of keywords. This allows
presentation of the whole collection of protein-keyword
relations without loss of the initial information. This concept
is demonstrated in Figure 1.

In cases of large protein sets and very rich information, we
offer the user the option of controlled graph simpli®cation,
allowing the user to observe the data at varying levels of
detailed granularity. Protein clusters obtained by any compu-
tational method are a natural test-bed for biological analysis
using PANDORA. For such application, PANDORA is
currently being integrated into ProtoNet (16), a system that
provides hierarchical agglomerative clustering of all
SwissProt proteins.

METHODS

Database and source of annotations

We have used annotation sources associated with proteins in
SwissProt version 40.28, containing 114 033 proteins.
SwissProt is considered to be a highly reliable protein
database, and many annotation sources are already mapped

Figure 1. Representation of keyword set relationships as an intersection-inclusion DAG. Numbers indicate amount of proteins in each set. BS indicates the
`Basic Set' of all proteins. (a) Top panel: tally of keyword appearances which does not reveal the amount of intersection between the two sets; middle panel:
all three possibilities of intersection between two sets (A, inclusion; B, disjoint sets; C, partial intersection); bottom panel: intersection-inclusion DAG repre-
sentation of these three cases. (b) Top panel: tally of three keyword appearances; middle panel: six possible cases of intersection between three sets; bottom
panel: intersection-inclusion DAG representation of four out of these six cases.
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to the SwissProt database. Each protein was associated with
annotations obtained from six separate sources. Annotation
sources used: SwissProt keywords, NCBI Taxonomy (as of
September 2002), InterPro version 5.2, SCOP version 1.57,
GO (as of July 2002 using EBI mapping to SwissProt) and
ENZYME version 27.0. The properties and the amounts of
each of the individual sources are listed in Table 1.

PANDORA is a web-based tool written in PHP and HTML,
thus allowing it to be platform independent. PANDORA is
available on the web at: http://www.pandora.cs.huji.ac.il;
supporting data: www.pandora.cs.huji.ac.il/supplement/

URLs of resources are listed: EBI GO Annotation: www.
ebi.ac.uk/GOA/; ENZYME: www.expasy.org/enzyme/; GO:
www.ebi.ac.uk/go/; InterPro: www.ebi.ac.uk/interpro/; NCBI
Taxonomy: www.ncbi.nlm.nih.gov/Taxonomy/; ProtoNet:
www.protonet.cs.huji.ac.il/; SCOP: http://scop.mrc-lmb.cam.
ac.uk/scop/; SwissProt: www.exapsy.org/swissprot/

Generating the intersection-inclusion Directed Acyclic
Graph

Given a set of proteins P as input, and a set of related keywords
K assigned to those proteins, a K3P binary matrix is created
representing a symmetrical binary relation between proteins
and keywords. Using the symmetrical property of this relation,
a row in the binary matrix would be a bit vector that represents
a set of proteins sharing a common keyword. The represent-
ation as a bit vector is possible due to the fact that there is a
limited amount of keywords possible, thus allowing each
keyword to be assigned an indexed bit in the vector. Each of
these K bit vectors becomes a node in a DAG (Directed
Acyclic Graph). Nodes are added one by one, are placed
correctly and are checked for intersections with other relevant
nodes in the graph. The implementation of sets as bit vectors
allows computationally ef®cient manipulation of these sets
using fast logical bit-wise operations. When comparing two
bit vector nodes, ®ve cases may arise, described in the
following pseudo-code:

// A and B are bit vectors of proteins, and
each is assigned one

// or more keywords
If (A = = B){
merge A with B; // new node will share A and B
keywords

}
Else {
C = A & B; // `bitwise and'
if (C = = 0){
A and B are disjoint sets;

}
elseif (C = = A){
make B descendant of A; // A is subset of B

}
elseif (C = = B){
make A descendant of B; // B is subset of A

}
else{
make a new `intersection' node from C;
inherit A and B keywords;
place as descendant of A and B;

}
}

This code is adjusted and implemented recursively, so that it
can handle the process of adding the nodes one by one, placing
them in their correct position in the graph and checking them
for relevant intersections. For ease of use, a node called the
`Basic Set', representing all the proteins of the current set, is
constructed and placed at the top of the graph. This is the only
node whose proteins may not have any keywords in common.
Figure 2 shows a schematic example of a protein-keyword
binary matrix and the resulting DAG.

Input methods

Selection of the basic protein set as input for PANDORA
re¯ects the underlying type of research that is involved.

Table 1. Annotation sources used by PANDORA

Source Annotation
method

Number of
annotations

Annotation type Data structure

SwissProt Keywords
(release 40.28)

Expert/automatic 865 Wide range of annotations from very general to very speci®c;
www.expasy.org/swissprot/

Unstructured

NCBI Taxonomy
(Sept 2002)

Automatic 10 844 Taxonomical annotations; www.ncbi.nlm.nih.gov/Taxonomy/ Tree

InterPro (version 5.2) Integration expert/
automatic

5551 Sequence based annotations. Integration from: TIGRFAMs,
SMART, ProDom, Pfam, PROSITE and PRINTS; four categories:
Family (4261), Domain (1200), Repeat (82) and PTM (8);
www.ebi.ac.uk/interpro/

Partly unstructured, some trees;
additional relations, i.e.
`found in' and `contains in'

SCOP (version 1.57) Expert 2927 Structural annotations, based on structural domains;
http://scop.mrc-lmb.cam.ac.uk/scop/

Tree, four levels

GO (Gene Ontology;
July 2002)

Expert/automatic 5229 Three categories: Molecular Function (3004),
Cellular Component (480) and Biological Process (1745);
www.ebi.ac.uk/go/

Each category is implemented
as a Directed Acyclic
Graph (DAG)

ENZYME (version 27.0) Expert/automatic 1959 Enzyme classi®cation annotations; www.expasy.org/enzyme/ Tree, four levels; by an
established nomenclature

Recent releases may have additional information (see text).
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For a global proteomic protein family research, one might
wish to study a set of all proteins that share a keyword of
interest as a starting point for study. Note that this feature can
be used to study various biological sets, such as all the proteins
that are involved in a certain biological process (according to
GO) or that are structurally similar (according to SCOP).

For any sets of proteins resulting from external data,
whether they are obtained by computational or experimental
methods, the user may input the proteins either manually or by
®le upload.

In case the proteins of interest do not appear in the
SwissProt database or the accession numbers are unknown, the
user might wish to ®nd similar proteins in SwissProt, and
study them with PANDORA. In this case, the sequences of the
proteins are submitted, and each sequence is locally aligned
using the BLAST (17) search engine against the SwissProt
database, and the accession number of the protein with the
highest E-score (above a set threshold) is returned. The entire
list of proteins found by the BLAST search can be used as
input for PANDORA. As PANDORA is not limited to
proteomic information, genomic information may also be
used as input sequences for BLASTing. A set of nucleotide
sequences may be used for alignment with the protein
database using BLASTX. It is important to note that a local
alignment may be misleading in terms of protein similarity.
This problem may be more severe when nucleotide sequences
are used as input. Proteins that are considered `similar' by
local alignment may often share only a local region, resulting
in an incorrect annotation transfer. Changing the E-score
threshold to force a more signi®cant alignment will not
necessarily resolve this problem. This is a widely known
problem (18) which is not addressed in this current version of
PANDORA.

PANDORA allows study of protein clusters. Several
sources for protein families are known that include
SwissProt proteins, i.e. ProtoMap (19) and ProtoNet (16).
Other systems are based on additional information from
TrEMBL and from complete genomes, i.e. ClusTR (20),

Systers (21) and iProClass (22). ProtoNet is a website that
provides a hierarchical agglomerative clustering organization
of all SwissProt proteins including a rich view on the quality
of each protein cluster. PANDORA enables biological
annotation analysis of these protein clusters.

RESULTS

Combining all protein-keyword relations, a DAG is con-
structed (for details on graph construction, see Methods). Each
node in the graph represents a number of proteins sharing a
unique combination of keywords. The graph shows inclusion
and intersection relations between these nodes. The hierarchy
in the graph is based on the proteins of each node, so that the
keywords are passed by inheritance. This means that each of
the proteins of a given node share not only the keywords of
that node but also all the keywords of its ancestors. Figure 2
shows a schematic example of a protein-keyword relation
DAG.

We begin with an explanation of the mathematical/
computational concepts that underlie PANDORA.

Concepts and principles for PANDORA development

Dealing with complex data. It is important to understand that a
DAG constructed contains ALL the information of relation-
ships between keywords and proteins, speci®cally, all unique
keyword combinations with underlying proteins. This neces-
sarily means that complex data will yield a complex graph. A
larger set of proteins potentially means more keywords and
increased complexity. In the worst possible case, a graph with
K keywords will haveXK

n�1

K

n

� �
� 2K

nodes (the collection of all possible subsets, also known as the
Power Set). This worst-case scenario is clearly unacceptable.
For example, a set annotated by merely 20 keywords will have

Figure 2. A protein-keyword binary matrix and its matching intersection-inclusion DAG. K1±K6 are keywords, P1±P5 are proteins. Arrows (edges) in the
graph represent hierarchical inclusion (subset/superset) relationships. Each node represents a set of proteins that share a unique combination of keywords. The
top node of the graph is the `Basic Set', representing all the keywords of the set (it is marked empty due to the fact that there are no keywords common to all
proteins in the set). The proteins of each node in the graph appear in parentheses next to it. While the matrix seems cryptic, the graph shows the proteins are
divided into two major groups: P1±P4 that have K1 in common, and P5 that has K2. Keywords are passed by inheritance due to the hierarchical inclusion
relationships. For example, all the proteins that have the keyword K5 and K6 (in this case only P1Ðin the node on the bottom left) also have the keywords K3

and K1 due to inheritance. For details of graph construction see Methods.
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over a million nodes (220 = 1 048 576). Fortunately, instances
of such immense complexity, though possible from the pure
mathematical perspective, do not tend to manifest themselves
in the world of proteins, due to some intrinsic properties of
protein-keyword relationships. Still, graphs of complexity that
humans ®nd hard to digest do occur. We have developed some
computational methods that address this issue.

The ®rst method is based on the notion of `resolution'. This
essentially is a user-controlled parameter that trades off a
graph's accuracy for simplicity. We de®ne the level of
resolution according to the maximal error allowed. The error is
measured by the number of proteins by which two nodes may
differ and still be considered the same. For example, with a
resolution of three proteins, nodes that differ by three proteins
or less are considered equal and are merged. Furthermore, two
nodes whose intersection is `almost' equal to one of them (i.e.
within the set resolution) are shown as parent and child. This
concept simpli®es the graph and allows the user to control the
amount of data lost by this simpli®cation. Based on experi-
ence, we set the default resolution value to 1% of the number
of proteins in the set.

`Zooming' is an additional simpli®cation method intro-
duced in PANDORA. While studying a complex graph at low
resolution, i.e. trading accuracy for simplicity, the user sees a
simpli®ed global view of the data. However, one may wish to
view a biologically interesting subset of proteins at higher
accuracy (higher resolution). For this we provide the `zoom-
ing' method. Each node in the graph can be selected as a new
set of proteins, and studied separately in a new graph. This
allows focusing on a speci®c subset of proteins, studying it at
any desired resolution, removing irrelevant nodes and edges
and studying different aspects of the chosen subset by
including other annotation types.

An inherent problem of the different types of annotation
sources is the multiple usages of similar (or identical)
keywords to describe different sets (23,24). For example,
321 proteins are annotated `Voltage-gated channel' by GO
`molecular function', but only 312 proteins are annotated
`Voltage-gated channel' by SwissProt. It is important to
mention the resolution method as a means of dealing with such
annotation inconsistency. Lowering graph resolution separates
protein sets with a low degree of intersection, and uni®es sets
that have a high degree of intersection. Thus, protein sets that
share similar keywords from different sources and are roughly
equal (e.g. the `Voltage-gated channel' sets mentioned above)
will be uni®ed.

Integration of multiple annotation types. One of the strengths
of PANDORA is the capability of integrating several anno-
tation types. For a given set of proteins, the user may choose a
preferable type of annotation. Jointly with the `zooming'
option (see above), this provides rich biological data that are
not easily accessible. For example, assume a set of proteins is
studied through taxonomical annotations. The user then
`zooms in' on the subset of proteins that are speci®c to
Drosophila, examining it in a new graph. Now this subset can
be further studied through their cellular location information,
for example, zooming in on all proteins that are located in the
nucleus. This will open a new graph, and so on.

Another helpful method is to look at more than one
annotation type on the same graph at the same time. This could

show relations between different biological aspects such as
structure-function or function-location intersections.
PANDORA provides this feature, allowing selection of
multiple annotation types simultaneously. However, it is
important to remember that graph complexity potentially
increases exponentially with the amount of keywords, so this
feature should be used while keeping in mind that the graphs
may become very complex.

Assessing the quality of a protein set. When studying protein
sets that share a keyword, it is often important to be able to
quantitatively assess the contents of the set in terms of quality
or signi®cance. For example, when studying a random set of
10 proteins sharing a keyword, it might be useful to know if
this keyword is assigned to only 10 proteins in the database or
to 100 000 proteins. The way PANDORA quanti®es the
quality of a protein set is by sensitivity, de®ned as:

Sensitivity�k� � TP�k�
TP�k� � FN�k�

where TP(k) are the True-Positives (the amount of proteins in
the set and are assigned the keyword k) and FN(k) are the
False-Negatives (the amount of proteins that are not in the set
and are assigned the keyword k). The sensitivity scores are
displayed on the graph, allowing easy evaluation of the protein
set (sensitivity is also color-coded in the graph; nodes ®ll from
red to white: red represents false-negatives, white represents
true-positives).

In this version of PANDORA, no statistical evaluation is
assigned for the keywords of the protein sets. This would
require a prior assumption on the source of the data and the
properties of the proteins that are used as input (for a null
model). We choose not to limit PANDORA to a given method
of data input (for details see Methods) and thus application of
a statistical model seems inappropriate. However, the sensi-
tivity scoring does supply a quantitative measure of evaluation
and can give some indication as to the signi®cance of the
results.

Analysis of complex biological examples

All graphs mentioned in the examples are available inter-
actively at the PANDORA supplemental web site (http://www.
pandora.cs.huji.ac.il/supplement/). Studying these graphs
interactively on-line may enhance the understanding of these
examples.

We bring examples of three typical uses of PANDORA:
analysis of a protein set resulting from a comparative
proteomics experiment, analysis of a protein cluster derived
computationally and detection of false annotations by analysis
of a protein set sharing an annotation.

Analysis of a large protein cluster. Large protein clusters
resulting from computational methods are natural targets for
biological analysis with PANDORA. Such clusters are
extremely dif®cult to analyze manually, especially the identi-
®cation of `biological' subsets of proteins. We applied
PANDORA on a ProtoNet protein cluster (A220629) contain-
ing 326 proteins. The cluster contains 61 proteins marked by
InterPro as `Glucose-inhibited division protein, A family'
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(gidA). GidA proteins are highly conserved proteins found in
both prokaryotes and eukaryotes, yet the function of these
proteins remains unknown. Previous research suggests local-
ization to the periplasm in prokaryotes (25) and to the
mitochondria in eukaryotes (26) and binding of FAD (25).
Some of the gidA proteins are partially annotated by InterPro,
but no annotation of any source is shared by a signi®cant
amount of these proteins. Biological interpretation of the 326-
protein cluster may provide some further evidence as to these
proteins' function. Looking at the graph of InterPro `domain'
and `family' keywords (Fig. 3), the cluster consists of eight
main biological subsets.

The most prominent set is `FAD-dependent pyridine
nucleotide-disul®de oxidoreductase' (FPNDO), with a sensi-
tivity of 73% (color-coded in the graph) and containing 74%
of the proteins in the cluster. Additionally these eight main
subsets appear highly interconnected, indicating that they
share many biological properties, more speci®cally InterPro
annotations. This high degree of interconnection is especially
apparent between the group of 240 FPNDO proteins and the
other seven main subsets. This can be appreciated by
decreasing the resolution, thus lowering the accuracy and
removing annotation `noise': the low-resolution graph (Fig. 4)
shows the FPNDO set as a superset, containing all other main
subsets, indicating a high degree of intersection with these
groups.

Furthermore, examining the cluster through `enzyme'
keywords shows that all 201 proteins that are annotated by
`enzyme' are annotated as `oxidoreductase', spanning several
different types of oxidoreductases. A graph of SCOP anno-
tations (not shown) reveals 12 proteins are assigned structures,
all belonging to the SCOP `FAD/NAD(P)-binding domain'
superfamily. None of the gidA proteins are assigned as solved
structures, yet a prediction using GenTHREADER (27) fold-
recognition server of a gidA protein (GIDA_BUCAI) that has
no annotations (except as gidA) showed several statistically
signi®cant hits (Table 2), all folds of oxidoreductases.

Despite the large size of the cluster and some degree
of inconsistency between various annotation sources,
PANDORA provides a global view of this ProtoNet protein
cluster, providing further evidence that gidA proteins function
as NAD/FAD binding oxidoreductases. The full extent of
these annotations, such as the subdivision into main biological
subsets and high degree of interconnectivity, would be
extremely dif®cult to appreciate by means of examining the
long annotation `hit lists' or other view of individual proteins.

Biological interpretation of experimental results. Proteomic
experiments often result in long lists of proteins. Biological
analysis of these protein sets is dif®cult due to the amounts of
proteins and their different biological properties. The inability
to interpret the full extent of these sets often results in an

Figure 3. PANDORA graph of a ProtoNet protein cluster (A220629), containing 326 proteins. Resolution level is of three proteins. Annotations (InterPro):
(A) `NAD binding site'; (B) `Pyridine nucleotide-disul®de oxidoreductase, class-II'; (C) `Adrenodoxin reductase'; (D) `FAD-dependent pyridine nucleotide-
disul®de oxidoreductase'; (E) `Aromatic ring hydroxylase'; (F) `Pyridine nucleotide-disul®de oxidoreductase, class-I'; (G) `Glucose-inhibited division protein,
A family'; (H) `Thiamine biosynthesis Thi4 protein'. Sensitivity is re¯ected by the color of the nodes: red re¯ects misses and white re¯ects hits (intersection
nodes are marked by a red-white swirl). Nodes A±H appear to be highly interconnected, re¯ecting the sharing of biological properties. Node D is the largest
node, containing 240 proteins out of 331 `FAD-dependent pyridine nucleotide-disul®de oxidoreductase' proteins in the database.
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analysis of a small subset of proteins, undermining the attempt
to achieve a global view of complex biological processes.
Selenium salts are toxic at high concentrations and have
mutagenic effects in several prokaryotes (28). However,
selenium is a trace element required for the synthesis of the
amino acid selenocysteine. In mammals, selenium is known to
have an insulin-like hypoglycemic effect of stimulating
glucose uptake and metabolism (29,30). Furthermore, there
is also some evidence that selenium possesses anticarcino-
genic properties in mammals (31). We chose a set of 57
proteins that were induced by selenium salts in Escherichia
coli (32), and used PANDORA in order to obtain a compre-
hensive biological view of the set. Figure 5 shows the
PANDORA graph of these proteins (at a two protein
resolution), using GO `biological process' annotations.

The graph shows a clear division into three distinct subsets:
nine `transport' proteins, eight `stress response' proteins and
37 `metabolism' proteins (a low degree of intersection
between these sets was removed by the resolution threshold).
Furthermore, the 37 `metabolism' proteins are subdivided into
six major subsets. The authors (32) suggest that selenium
toxicity under aerobic conditions may result from superoxide
production, due to the induction of superoxide dismutases.

The induction of a stress response can be easily recognized in
the graph, with eight `stress response' proteins and three
`oxygen and radical metabolism' proteins. Yet the graph
shows that there are other interesting subsets, especially six
proteins annotated as `glucose catabolism'. Moreover, using
the `zoom' option to view separately the graph of the nine
`transport' proteins reveals by annotation two proteins
involved in carbohydrate uptake. The induction of six proteins
involved in glucose metabolism and two proteins involved in
carbohydrate uptake could possibly explain the insulin-like
hypoglycemic effects attributed to selenium in mammals.
Consistently with our analysis, research suggests aerobic

Figure 4. PANDORA graph of a ProtoNet protein cluster (A220629), con-
taining 326 proteins. Resolution level is of 30 proteins. Annotations
(InterPro): (A) `FAD-dependent pyridine nucleotide-disul®de oxidoreduc-
tase'; (B) `NAD binding site'; (C) `Adrenodoxin reductase'; (D) `Pyridine
nucleotide-disul®de oxidoreductase, class-I'; (E) `Glucose-inhibited division
protein, A family'; (F) `Pyridine nucleotide-disul®de oxidoreductase, class-
I'; (G) `Aromatic ring hydroxylase'. Sensitivity is re¯ected by the color of
the nodes: red re¯ects misses and white re¯ects hits (intersection nodes are
marked by a red-white swirl). Node A appears to be a superset of all other
protein sets in this highly simpli®ed graph. This low-resolution view of the
graph shown in Figure 3 helps appreciate the high degree of intersection
between the main subsets (nodes B±G) and the `FAD-dependent pyridine
nucleotide-disul®de oxidoreductase' set (node A).

Table 2. Fold `hit list' for an unannotated gidA protein (GIDA_BUCAI)
as predicted by GenTHREADER fold recognition server

Description PDB no. E-value

Fumarate reductase 1qjd 0.001
Sarcosine oxidase 1b3m 0.002
Fumarate reductase 1qla 0.002
Adenylylsulfate reductase 1jnr 0.002
Thioredoxin reductase 1trb 0.003
Phenol hydroxylase 1foh 0.003
Flavocytochrome C sul®de dehydrogenase 1fcd 0.003
Glutathione reductase 3grs 0.003
Dihydrolipoamide dehydrogenase 1lvl 0.003
Adrenodoxin reductase 1cjc 0.003

Ten best matches are shown. All structures are of oxidoreductases.

Figure 5. PANDORA graph of 57 proteins induced by selenium salts in
E.coli. Resolution is of two proteins. Annotations (GO `Biological
process'): (A) `Metabolism'; (B) `Stress response', `Temperature response';
(C) `Transport'; (D) `Electron transport'; (E) `Oxygen and radical metabol-
ism'; (F) `Nucleic acid metabolism'; (G) `Glucose catabolism',
`Glycolysis'; (H) `Biosynthesis'. The graph shows a clear division into
biological subsets. Induction of the proteins of nodes B and E is obviously
stress-related. Node G (six proteins) indicates induction of glycolysis.
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glycolysis as a means of protection against reactive oxygen
species (33).

A global view of the results such as the one presented here
allows easy perception of the data in a biological context,
offering a clearer view of a complex process. All this is
achieved without any speci®c knowledge about the identities
of the individual proteins, only through annotations. However,
the division into subsets by using lower resolution not only
allows a comprehensible view, but also facilitates navigation
of the data in order to easily focus research on biologically
relevant subsets that are small enough to allow study of
individual proteins.

Identi®cation of false annotations. Automatic annotation
sources are commonly based on statistical evaluation. As
such, they are susceptible to both errors of type I and II (34).
Furthermore, incorrect annotations tend to be mistakenly
transferred across species via sequence similarity, and once
they have penetrated into widely used databases only careful
manual screening may trace these false annotations (35).

When examining large protein sets, PANDORA facilitates
the detection of protein subsets that share common biological
properties. This notion can be applied to a set of proteins that
were all given the same annotation by an automatic statistical
method (e.g. InterPro). When examining such a set, one would
expect to ®nd that the proteins share several properties,
especially if looking at annotations that relate to various
biological aspects. This would result in a highly intercon-
nected graph. However, separation of the large set into distinct
subsets would mean that there are no biological properties
shared by these subsets. There are three possible reasons for
this: (a) the keyword that was given to the proteins of the set
really does describe some aspect that is shared by protein
subsets that have no other biological properties in common;
(b) the proteins of the set are very poorly annotated, therefore
no shared biological properties are found; (c) some of the
distinct subsets are incorrectly annotated. Viewing the graph,
it is very easy to discern between these three cases, simply by
looking at the meanings of the speci®c annotations.

To demonstrate the detection of false annotations, we
examined the set of all 140 proteins annotated by InterPro as
`Homeobox protein, antennapedia type'. According to
PROSITE (from which the InterPro annotation was taken),
there are three known proteins that are annotated falsely. We
examined the PANDORA graph of these 140 proteins using
InterPro `family', InterPro `domain' and SwissProt keywords.
The graph (Fig. 6) shows two proteins that are absolutely
distinct from the rest of the proteins, each sharing a list of
unique keywords. A third protein has a list of unique keywords
apart from one (`Developmental Protein') that is shared with
the rest.

This supplies preliminary evidence that these proteins may
be falsely annotated. An examination of the keywords of these
three proteins and the other interconnected set of 137 proteins
con®rms this suspicion. While the large set of 137 proteins
shares annotations such as `Homeobox', `Nuclear Protein' and
`DNA-Binding', the other three proteins appear to be
completely different biologically: one is annotated
`Ribosomal protein' and `Mitochondrion', the second as
`ABC transporter' and `Membrane', and the third as `Serine
protease' and `Zymogen'. Surely enough, these three proteins

were found to be the three known false-positives mentioned by
PROSITE.

This example suggests a novel method of spotting false-
positive annotations, through the examination of the degree of
annotation connectivity of protein sets. This is based on the
notion that related proteins usually share a number of different
properties of various biological aspects.

DISCUSSION

At present already ~1000 viruses, over 100 microbial genomes
and 10 multi-cellular organisms have been fully sequenced.
Methods such as comparative genomics, chromosomal local-
ization, phylogenetic pro®les, structural predictions and
remote homology search are applied to gain information on
new proteins and on their cellular and biochemical function.
While it is expected that the huge body of knowledge will
accelerate the success in inferring structure and function, the
truth of the matter is that a substantial fraction (~50% in
eukaryotes) of all predicted open reading frames (ORFs) are
still orphans with no assigned function (36). Several attempts
were introduced for evaluating the power of prediction
methods at a genomic scale (37±40). We provide a new
notion that attempts to analyze proteins not at the level of

Figure 6. PANDORA graph of 140 proteins annotated by InterPro as
`Homebox protein, antennapedia type'. Resolution is maximal (no simpli®-
cation). Select annotations on nodes (InterPro in italics, SwissProt under-
lined): (A) `Homebox protein, antennapedia type'; (B) `Homeobox', `DNA-
binding', `Nuclear protein'; (C) `Developmental protein'; (D) `Ribosomal
protein', `Mitochondrion'; (E) `ABC transporter', `Nitrate assimilation',
`Membrane'; (F) `Chymotrypsin Serine protease S1', `Zymogen'. Nodes D,
E and F appear biologically distinct in the graph, and are falsely annotated
as `Homebox protein, antennapedia type' proteins.
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individual proteins but rather in the context of a protein
collection. Such collections may be derived from experimen-
tal or computation sources. We have developed PANDORA, a
web-based tool that allows integrative biological analysis of
protein sets, based on protein annotations derived from
multiple annotation sources, including information regarding
function, structure, cellular location, biological process and
taxonomy. PANDORA offers description of protein-keyword
intersection and inclusion relations, controlled graph simpli-
®cation, easy manipulation of relevant protein sets, multiple
annotation-type integration and ¯exible protein set input
methods. The impact of PANDORA is expected to increase by
the availability of additional sources of information and by
including sources of annotation with high quality and
accuracy.

Annotation inconsistency is a potential pitfall for
annotation-based studies (35,41,42), especially when integrat-
ing multiple annotation sources. As such, efforts have been
made to tackle such inconsistency between annotation
sources. PANDORA helps overcome such inconsistencies
either by showing the degree of intersection between sets or by
using the resolution method to simplify the graph via
uni®cation of sets that have a high degree of intersection
and separation of sets that have a low degree of intersection.

It is important to recognize the limits of an annotation-based
approach. Many annotations are transferred to new proteins
automatically, often based on statistical methods. It should be
taken into consideration that such automatic methods are
prone to some instances of false-positive and false-negative
annotations. We suggest a novel method of detecting false-
positive annotations by utilizing the ability to easily recognize
distinct biological subsets that share common biological
properties in the graphs produced by PANDORA. This may
lead to an improved automatic identi®cation of false-positive
annotations (N.Kaplan and M.Linial, in preparation).

Because of the generic way PANDORA is written, the
underlying database can be easily substituted with another
protein database such as TrEMBL (14) or even with a
complete translated genome database. This would of course
require suf®cient annotation of the data in these databases.
Based on the impressive growth in annotation efforts and the
addition of new systematic annotation systems (43), we expect
PANDORA to cope with these advances in the near future. At
present, InterPro annotation already covers 85% of all proteins
in TrEMBL. At the same time, extensively studied model
organisms such as that of Saccharomyces cerevisiae already
include rich genome-wide functional information regarding
gene lethality, protein±protein interactions, coordinated gene
expression and more. We designed PANDORA to be ¯exible
in terms of the annotation sources, and new annotation sources
can be easily added.

PANDORA shares sources with the ProtoNet system, and as
such will be updated every few months to include the newest
versions of both the SwissProt protein database and the
various annotation sources. Future plans include the addition
of more annotation sources to provide richer biological
analysis, statistical evaluation for speci®c input types (such
as single organism proteomic experiments) and educated
annotation transfer to provide more accurate analysis of input
sequences.
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