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Introduction
The biogenesis of proteins requires the folding of newly syn-

thesized polypeptide chains. In vivo, this process is assisted by 

molecular chaperones that control the folding of their client pro-

teins in an energy-dependent reaction (for reviews see Hartl and 

Hayer-Hartl, 2002; Bukau et al., 2006). In the cytosol of bacteria 

and eukaryotes most of these chaperones rely on the hydrolysis 

of ATP as an energy source. In the periplasmic space of bacteria 

and the ER of eukaryotes, chaperone systems exist that stabilize 

the three-dimensional structure of their client proteins by oxida-

tion, i.e., by the controlled formation of disulfi de bridges between 

cysteine residues of the proteins (Collet and Bardwell, 2002; 

Kadokura et al., 2003; Ellgaard, 2004; Gross et al., 2004; 

Ellgaard and Ruddock, 2005). In the bacterial periplasm, two 

components are critical for protein oxidation, DsbA and DsbB. 

DsbA is a soluble protein that directly interacts with the client 

proteins and transfers the electrons to the membrane protein DsbB. 

DsbB transfers the electrons further via the ubiquinone pool and 

the electron transport chain of the inner membrane to molecular 

oxygen from which water is then fi nally produced (Kobayashi 

et al., 1997; Bader et al., 1999).

Recently, the intermembrane space (IMS) of mitochon-

dria was found to harbor a large number of proteins containing 

disulfi de bonds (for reviews see Herrmann and Hell, 2005; 

Koehler et al., 2006; Herrmann and Kohl, 2007). Like in the 

periplasm of bacteria, proteins in the IMS of mitochondria are 

effi ciently oxidized by a specifi c redox mechanism that is struc-

turally not related to the bacterial system. The IMS contains two 

components, Mia40 and Erv1, that are essential for protein 

oxidation and the viability of eukaryotes (Lisowsky, 1994; Lange 

et al., 2001; Chacinska et al., 2004; Naoe et al., 2004; Hofmann 

et al., 2005; Terziyska et al., 2005). Mia40 functions as an import 

receptor in the IMS. It transiently interacts with newly imported 

polypeptides, thereby converting them from a reduced and 

import-competent state to an oxidized, stably folded one (Allen 

et al., 2005; Mesecke et al., 2005; Rissler et al., 2005; Tokatlidis, 

2005). During this interaction, Mia40 is reduced but subsequently 

reoxidized by the sulfhydryl oxidase Erv1 (also named augmenter 

of liver regeneration [ALR] in humans). Erv1 is a fl avin adenine 

dinucleotide–binding protein that in vitro can directly pass its 

electrons on to molecular oxygen, giving rise to the production 

of hydrogen peroxide (Lee et al., 2000). Interestingly, Farrell 

and Thorpe (2005) showed that, at least in vitro, the human homo-

logue of Erv1, ALR, is able to reduce oxidized cytochrome c. 

This observation led to the interesting hypothesis that the mito-

chondrial disulfi de relay system might, like that of bacteria, 

interact with the electron transport chain of the inner membrane 

(Allen et al., 2005).

In this paper, we present evidence that reoxidation of Mia40 

in mitochondria indeed depends on the presence of oxidized 
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cytochrome c. As a consequence, the import of proteins into the 

IMS via the disulfi de relay system depends on the energetic 

state of the respiratory chain. We show that this connection to 

cytochrome c not only facilitates effi cient reoxidation of Mia40 

but also prevents the formation of potentially harmful hydrogen 

peroxide in the IMS of mitochondria.

Results and discussion
The redox state of Mia40 is infl uenced 
by the oxygen concentration
Reduced and oxidized forms of Mia40 can be easily separated on 

nonreducing SDS gels (Mesecke et al., 2005). This can be used to 

monitor directly the functionality of the disulfi de relay system in 

isolated yeast mitochondria. In wild-type mitochondria �80% of 

the endogenous Mia40 is present in the oxidized, active form 

(Fig. 1 A). When the levels of Erv1 in the mitochondria are down-

regulated, Mia40 is shifted to its reduced form, which shows 

a lower mobility on SDS-PAGE. Conversely, when the protein 

levels of Erv1 are up-regulated, basically all Mia40 is oxidized. 

Thus, the activity of Erv1 infl uences the redox state of Mia40.

Molecular oxygen was shown to serve as the fi nal electron 

acceptor of Ero1 (Tu and Weissman, 2002). To test whether the 

redox relay in the mitochondrial IMS is infl uenced by oxygen, 

we assessed the redox state of Mia40 under oxygen-depleted 

and -saturated conditions at different glutathione concentrations. 

The precise glutathione concentration in the IMS is not known 

but the large diffusion limit of the porin channels in the 

outer membrane (�5,000 D) should lead to similar levels 

of glutathione as in the cytosol, which in yeast is �13 mM 

(Ostergaard et al., 2004). In the experiment shown in Fig. 1 

(B and C), we assessed the redox state of Mia40 at glutathione 

concentrations from 0 to 40 mM. Under oxygen-depleted con-

ditions, Mia40 is signifi cantly more susceptible to reduction by 

glutathione than under oxygen-saturated conditions. It should 

be mentioned that the oxygen-depleted conditions used were 

�5–10% of fully saturated oxygen levels (Fig. S1, available at 

http://www.jcb.org/cgi/content/full/jcb.200707123/DC1). This 

is equivalent to physiological oxygen concentrations in animal 

mitochondria and still allows respiration (Fig. S2). In summary, 

the oxygen concentration in mitochondria has a direct infl uence 

on the redox state of Mia40, suggesting that in the mitochon-

drial disulfi de relay system molecular oxygen serves as the fi nal 

electron acceptor.

The redox state of Mia40 depends on the 
activity of respiratory chain complexes
To address the dependency of the disulfi de relay system on 

enzymes of the respiratory chain, Mia40 redox states were exam-

ined in mitochondria of different yeast mutants. The respiratory 

chain of yeast mitochondria (Fig. 2 A) contains two proton-

pumping enzymes, cytochrome c reductase (complex III) and 

cytochrome c oxidase (complex IV). Mitochondria were iso-

lated from yeast strains lacking activity of either cytochrome c 

reductase (Fig. 2 A, ∆cyt1 and ∆cor1) or oxidase (∆cox19 and 

∆cox23). In addition, mitochondria were prepared from a strain 

in which both mitochondrial cytochrome c isoforms (Fig. 2 A, 

∆cyc1/∆cyc7) were simultaneously deleted as well as from mu-

tants lacking Atp1 or Atp10, respectively, which are subunits of 

the FoF1 ATPase. We observed that the different mutants 

affected the redox state of Mia40 in different directions; in 

mitochondria devoid of cytochrome c or cytochrome c oxidase 

activity, Mia40 was considerably less oxidized than in wild-

type mitochondria (Fig. 2 A). This suggests that oxidized cyto-

chrome c stimulates oxidation of Mia40. In contrast, the loss of 

cytochrome c reductase activity shifted Mia40 to its oxidized 

state. The respiratory activity per se was not critical as the 

ATPase mutants did not infl uence Mia40. This is consistent 

with a specifi c function of oxidized cytochrome c for oxidation 

of Mia40.

Figure 1. The redox state of Mia40 depends on the oxygen concentration. 
(A) Mitochondria were isolated from wild-type cells and GAL-ERV1 yeast 
mutants (Mesecke et al., 2005) in which Erv1 was down- or up-regulated 
by growth on a glucose- or galactose-containing medium. Thiol groups 
were trapped by incubation in 100 mM iodoacetamide at 25°C for 
30 min. The samples were applied to nonreducing SDS-PAGE, and Mia40 
was detected by Western blotting. Reduced (red.) and oxidized (ox.) states 
of Mia40 can be separated because of their different mobility in the gel. 
(B) Wild-type mitochondria were incubated for 30 min in the presence of 
the indicated glutathione (GSH) concentrations under oxygen-saturated or 
-depleted conditions. Thiol groups were trapped with iodoacetamide and 
the samples were analyzed by Western blotting. (C) Reduced and oxidized 
species of the Mia40 signals in B were quantifi ed by densitometry. The per-
centage of oxidized Mia40 in the different samples is shown.
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The Mia40 dependence on respiratory chain complexes 

was further studied in detail. In mitochondria of two exemplary 

yeast strains lacking activity of cytochrome c reductase (∆cyt1) 

or oxidase (∆cox19) the infl uence of externally added glutathi-

one on the redox state of Mia40 was tested (Fig. 2, B and C). 

In wild-type mitochondria Mia40 remained largely oxidized even 

in the presence of up to 30 mM of reduced glutathione. The loss 

of cytochrome c reductase activity even slightly increased the 

levels of oxidized Mia40. Conversely, in ∆cox19 mitochondria, 

Mia40 was rapidly reduced when glutathione was added, and at 

glutathione concentrations >15 mM virtually no oxidized 

Mia40 protein was found. This again points to a direct infl uence 

of the respiratory chain on the redox state of Mia40.

To exclude side effects in the various mutants, we tested 

the effect of inhibitors of the respiratory chain on the redox state 

of Mia40. To this end, wild-type mitochondria were incubated 

in the presence of 25 mM glutathione and subjected to anti-

mycin A or potassium cyanide, which completely inhibit cyto-

chrome c reductase and oxidase activity, respectively. The addition 

of antimycin A increased the fraction of oxidized Mia40, whereas 

inhibition of cytochrome c oxidase by cyanide led to a decrease 

of the oxidized form (Fig. 2 D). These shifts were not found in 

mutants lacking cytochrome c (Fig. 2 E). This again indicates 

that cytochrome c oxidase activity infl uences the state of Mia40. 

However, it should be noted that even in the absence of cyto-

chrome c or cytochrome c oxidase activity, Mia40 is not com-

pletely reduced, and thus cytochrome c and cytochrome c 

oxidase are not essential for the oxidation of Mia40 under the 

conditions tested.

Yeast Erv1 interacts with cytochrome c
It has been shown that in vitro cytochrome c can function as an 

electron acceptor for ALR (Farrell and Thorpe, 2005). In gen-

eral cytochrome c accepts electrons in vitro from a variety of 

sulfhydryl oxidases, including those that are not present in 

mitochondria. However, Erv1 and cytochrome c are both located 

in the mitochondrial IMS, making a direct interaction both fea-

sible and physiogically reasonable. Because the direct transfer 

of electrons by sulfhydryl oxidases to molecular oxygen yields 

hydrogen peroxide, a physiological interaction with cytochrome c 

might protect the cell against oxidative damage. First, we 

tested whether yeast Erv1 is able to interact with cytochrome c 

in vitro like its human homologue. To this end, we incubated 

Erv1 and oxidized cytochrome c with DTT, which serves as a 

substrate for Erv1 (Lee et al., 2000; Levitan et al., 2004), and 

measured the reduction of cytochrome c in a spectrophotometer 

at 550 nm. In the presence of Erv1, cytochrome c was effi ciently 

reduced (Fig. 3 A, squares). This was not caused by a direct 

Figure 2. The Mia40 redox status depends 
on complexes of the respiratory chain. (A) Mito-
chondria isolated from wild-type, ∆cor1, ∆cyt1, 
∆cyc1/∆cyc7, ∆cox19, ∆cox23, ∆atp1, and 
∆atp10 yeast strains were incubated in 30 mM 
glutathione at 25°C for 30 min. Reduced thiol 
groups were trapped. After reisolation of the 
mitochondria, the samples were analyzed by 
SDS-PAGE and Western blotting. The fraction of 
oxidized Mia40 in the samples was quantifi ed 
by densitometry. For comparison, the dotted 
line indicates the wild-type fraction of oxidized 
Mia40. (B) Mitochondria derived from wild-
type, ∆cyt1, and ∆cox19 strains were incu-
bated at different glutathione con cen trations 
and treated with iodoacetamide. Oxidized 
and reduced fractions were separated by non-
reducing SDS-PAGE and detected by immuno-
blotting. (C) Percentages of Mia40 oxidation 
of the experiment shown in B. (D) Wild-type 
mitochondria were incubated in the absence or 
presence of the respiratory chain inhibitors anti-
mycin A (Ant A) or potassium cyanide (KCN). 
Reduced thiols were trapped and the samples 
were analyzed by SDS-PAGE, Western blotting, 
and densitometry. (E) Experiments described in 
D were performed three times in wild-type and 
cytochrome c–deletion mitochondria. The rela-
tive changes in the amounts of oxidized Mia40 
were quantifi ed. Error bars indicate SD.
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interaction of DTT with cytochrome c, as cytochrome c remained 

almost entirely oxidized when Erv1 was omitted (Fig. 3 A, 

circles). Thus, Erv1 can effi ciently shuttle electrons from DTT 

to cytochrome c.

In contrast to Erv1 and Mia40, cytochrome c is not essen-

tial for the viability of yeast cells, indicating that Erv1 can be 

oxidized in vivo even in the absence of cytochrome c, at least to 

a certain degree. To test the relevance of cytochrome c more 

explicitly, we assessed the redox states of Mia40 in wild-type or 

∆cyc1/∆cyc7 double deletion mutants under oxygen-saturated and 

-depleted conditions. Upon saturation with atmospheric oxygen, 

Mia40 was largely oxidized even in cytochrome c–defi cient 

mitochondria (Fig. 3 B, left). The addition of low amounts of 

glutathione (7.5 mM) did not considerably infl uence the state of 

Mia40, indicating a stable state of the redox relay system as 

long as the oxygen concentration is high. Mia40 also remains 

largely oxidized in both strains under low oxygen conditions. 

In the wild type, the addition of 7.5 mM glutathione affected the 

redox state of Mia40 only slightly (Fig. 3 B, right). In contrast, 

in the ∆cyc1/∆cyc7 mitochondria, Mia40 was almost completely 

shifted to its reduced form. This suggests that cytochrome c is 

especially important under oxygen-limiting conditions. Consis-

tently it was reported that cytochrome c is a 100-fold better 

electron acceptor relative to oxygen in the reoxidation of ALR 

(Farrell and Thorpe, 2005).

Mia40-mediated protein import depends on 
the activity of respiratory chain complexes
Next we examined whether the variation of the redox states of 

Mia40 observed in respiration-defi cient mitochondria affects 

protein import into the IMS. It has been shown that the deple-

tion of Erv1 renders protein import highly sensitive to DTT 

(Mesecke et al., 2005). Import experiments were performed 

under oxygen-depleted conditions with mitochondria iso-

lated from wild-type cells and respiratory chain mutants. 

Low amounts of DTT (2 mM) reduced protein import of Cox19 

into isolated wild-type mitochondria to �50% and almost com-

pletely blocked import into mitochondria lacking cytochrome c 

oxidase (Fig. 4 A, ∆cox18). In contrast, import into mitochon-

dria of a cytochrome c reductase–defi cient strain (∆rip1) was 

less affected than in wild-type mitochondria (Fig. 4 A). Similar 

results were obtained with other IMS proteins such as Tim10 

(unpublished data).

Import into ∆cyc1/∆cyc7 mitochondria was hypersensi-

tive to DTT similarly to import into mitochondria lacking cyto-

chrome c oxidase activity (Fig. 4 B). Moreover, the import of 

Tim10 was tested in the presence of antimycin A or potas-

sium cyanide. Blockage of cytochrome c oxidase by potassium 

cyanide rendered the import of Tim10 more sensitive to the 

addition of DTT, whereas the inhibition of cytochrome c re-

ductase with antimycin A had the opposite effect (Fig. 4 C). 

In addition, the DTT sensitivity of the import correlated with 

the DTT sensitivity of the binding of Mia40 to the newly im-

ported Tim10 (Fig. 4 C, Mia40 ● Tim10). This suggests that 

the activity of the respiratory chain complexes infl uences the 

activity of the Mia40 receptor and, as a consequence, the effi -

ciency of protein import. In summary, the observed effects 

on the protein import into the IMS correlate with the redox 

levels of Mia40 found in the mutants: increased oxidation of 

cytochrome c renders protein import more resistant toward 

DTT, whereas lower levels of oxidized cytochrome c impair 

the import process.

The presence of cytochrome c prevents the 
production of hydrogen peroxide by Erv1
Does the interaction of Erv1 with cytochrome c really prevent 

the formation of hydrogen peroxide? To address this question, 

we developed an assay to monitor the Erv1-dependent produc-

tion of hydrogen peroxide. To this end, we incubated purifi ed 

recombinant Erv1 with its substrate DTT in the presence of 

Amplex red. This compound reacts in a 1:1 ratio with hydrogen 

peroxide, thereby forming resorufi n, which can be easily de-

tected by fl uorescence. As shown in Fig. 5 A, mixing DTT and 

Erv1 led to rapid generation of hydrogen peroxide (top). Inter-

estingly, the addition of oxidized cytochrome c considerably de-

layed the production of hydrogen peroxide in a dose-dependent 

manner (Fig. 5 A, middle and bottom). This was not caused by 

Figure 3. Erv1 transfers electrons to cytochrome c. (A) 40 μM of oxidized 
cytochrome c was incubated with 2 mM DTT and 8 μM of recombinant 
Erv1 in a cuvette, and the reduction of cytochrome c was monitored over 
time by spectroscopy at 550 nm. The amount of reduced cytochrome c was 
calculated and plotted against time (squares). For comparison, control 
samples lacking Erv1 (circles) or both Erv1 and DTT (triangles) are shown. 
(B) Wild-type and ∆cyc1/∆cyc7 mitochondria were incubated in the pres-
ence of 7.5 mM glutathione under oxygen-saturated or -depleted condi-
tions. All samples were treated with iodoacetamide. Oxidized and reduced 
fractions of Mia40 were separated by nonreducing SDS-PAGE and ana-
lyzed by Western blotting.



THE MITOCHONDRIAL DISULFIDE RELAY • BIHLMAIER ET AL. 393

a potential quenching effect of cytochrome c because the fl uo-

rescence generated by hydrogen peroxide in the presence or 

absence of cytochrome c was identical (Fig. 5 B). We thus 

conclude that electron transfer from Erv1 to cytochrome c and 

cytochrome c oxidase leads to the generation of water instead of 

harmful hydrogen peroxide.

Conclusions
In this paper, we describe a pivotal role of the respiratory chain 

for the activity of the disulfi de relay system in the IMS of mito-

chondria. Based on our observations we propose a physical 

interaction of Erv1 with cytochrome c (Fig. 5 C). This inter-

action directly connects the redox relay system to the respira-

tory chain that prevents the generation of hydrogen peroxide. 

The following observations support this model: (a) Erv1 effi -

ciently reduces cytochrome c in vitro; (b) in the absence of 

oxidized cytochrome c, Mia40 is shifted to its reduced state; 

(c) the increase of oxi dized cytochrome c increases the oxidized 

form of Mia40; (d) cytochrome c prevents the Erv1-dependent 

formation of hydrogen peroxide; and (e) protein import in the 

absence of cytochrome c or cytochrome c oxidase is hyper-

sensitive to DTT.

Although oxidized cytochrome c clearly facilitated oxi-

dation of Mia40, it was found to be nonessential for this 

process at least under the conditions tested. However, under 

oxygen-limiting conditions, cytochrome c effi ciently prevented 

the reduction of Mia40 by glutathione. This suggests that the 

interaction of the disulfi de relay to the respiratory chain might 

be particularly important under low-oxygen conditions. Allen 

et al. (2005) reported that the single deletion of the cytochrome c 

isoform Cyc1 impairs growth under oxygen-depleted condi-

tions. Low oxygen concentrations are common in many tissues 

of animals and humans (for reviews see Nathan and Singer, 

1999; Erecinska and Silver, 2001). It is very conceivable that 

the interaction of the disulfi de relay system with the respira-

tory chain might be particularly important for multicellular 

organisms. The prevention of hydrogen peroxide production is 

presumably more critical for higher eukaryotes than for yeast cells. 

Figure 4. Mia40-dependent protein import is 
infl uenced by the activity of the respiratory 
chain. (A) Radiolabeled Cox19 protein was in-
cubated with wild-type, ∆rip1, and ∆cox18 
mitochondria in the presence of different con-
centrations of DTT. Nonimported protein was 
removed by treatment with proteinase K on ice. 
Mitochondria were re isolated and dissolved 
in sample buffer. Proteins were analyzed by 
SDS-PAGE and autoradiography. Imported pro-
teins were quantifi ed by densitometry. Import ef-
fi ciencies without DTT were set to 100% (control). 
(B) Radiolabeled Tim10 was imported into mito-
chondria from a wild-type and a ∆cyc1/∆cyc7 
mutant as described in A. (C) Wild-type mito-
chondria were incubated in the absence or 
presence of 100 μg/ml antimycin A and 
10 mM potassium cyanide for 3 min at 25°C 
before radiolabeled Tim10 was imported. Mito-
chondria were treated with 65 mM iodoaceta-
mide and reisolated, and proteins were analyzed 
by nonreducing SDS-PAGE. This allows the iden-
tifi cation of monomeric Tim10 as well as of 
Mia40-associated Tim10 (Mia40 ● Tim10).
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Therefore, it will be interesting to address the physiological 

relevance of the Erv1–cytochrome c interaction in mammalian 

tissues in the future.

Materials and methods
Yeast strains
Saccharomyces cerevisiae yeast strains ∆rip1, ∆cox18, ∆atp1, ∆atp10, 
and ∆cyc1/∆cyc7 were isogenic to the wild-type strain W303 (Mat α, 
ade2-1, his3-11,15, leu2-3,112, trp1-1, and ura3-1; Sherman et al., 
1986). The cytochrome c double deletion strain was provided by 
A. Barrientos (University of Miami, Miami, FL). Other mutants used in 
this study (∆cor1, ∆cyt1, ∆cox19, and ∆cox23) and the corresponding 
wild-type BY4742 (Mat α, his3∆1, leu2∆0, lys2∆0, and ura3∆0) were 
obtained from the yeast deletion collection (Winzeler et al., 1999). 
All strains were grown in YP medium consisting of 10 g/liter of yeast 

extract and 20 g/liter of peptone adjusted to pH 5.5, to which 2% galac-
tose was added. The GAL-ERV1 mutant (Mesecke et al., 2005) was 
grown in liquid lactate medium (Herrmann et al., 1994) in the presence 
of 0.1% glucose or galactose to repress or induce the GAL10 promoter, 
respectively. Mitochondria were isolated as described previously (Herrmann 
et al., 1994).

Analysis of the redox state of Mia40 and protein import
Mitochondria were incubated for 30 min at 25°C in SH buffer (0.6 M 
sorbitol and 20 mM Hepes/KOH, pH 7.2). Depending on the experi-
ments, glutathione, 10 μM KCN, or 100 μg/ml antimycin A were added as 
indicated. Samples were diluted 15-fold into SH buffer containing an excess 
of 100 mM iodoacetamide to trap free thiol groups. After incubation for 30 min, 
mitochondria were reisolated and lysed in a nonreducing sample buffer. 
For oxygen-depleted conditions, experiments were performed in a nitrogen-
fl ushed glove bag (Sekuroka; Carl Roth). All buffers used were degassed for 
15 min using a water-jet vacuum pump (Carl Roth) and subsequently fl ushed 
with nitrogen. An oxygen electrode (Oxygraph; Hansatech  Instruments) was 

Figure 5. Cytochrome c prevents Erv1-dependent 
generation of hydrogen peroxide. (A) Production of 
hydrogen peroxide (H2O2) was assayed in a fl uores-
cence-based assay using Amplex red. 2 μM of puri-
fi ed Erv1 was incubated with 50 mM Amplex red and 
1 U/ml horseradish peroxidase in 600 μl of 100 mM 
potassium phosphate, pH 7.4. Upon addition of DTT, 
fl uorescence emission at 610 nm was recorded at an 
excitation wavelength of 550 nm. Incubation with 
150 and 300 nmol cytochrome c counteracted the 
production of hydrogen peroxide linearly with time 
(arrows). (top, inset) The generation of hydrogen perox-
ide represents the same measurement at a larger scale 
of the y axis. (B) 1 nmol hydrogen peroxide was pre-
incubated with or without a twofold excess of oxidized 
cytochrome c for 1 min at 25°C before fl uorescence 
was analyzed in the Amplex red assay. Note that the 
presence of cytochrome c did not quench the fl uores-
cence signal. (C) Model for the interaction of the di-
sulfi de relay system and the mitochondrial respiratory 
chain. The electron fl ow from the imported proteins to 
the fi nal electron acceptor oxygen is indicated. The cyto-
chrome c–independent side reaction of Erv1 with oxy-
gen is shown in light gray. Cytochrome c reductase and 
oxidase complexes are indicated as complexes III and 
IV, respectively. Q indicates the ubiquinone pool. 
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present in the glove bag to control oxygen levels that were �5–10% com-
pared with full saturation.

Western blotting signals of Mia40 were quantifi ed using image ana-
lyzer software (AIDA; Raytest).

Import of radiolabeled proteins into mitochondria was performed as 
described previously (Mesecke et al., 2005).

Cytochrome c reduction by Erv1
Recombinant Erv1 (expression plasmid provided by T. Lisowsky, University 
of Düsseldorf, Düsseldorf, Germany) was purifi ed as described previously 
(Lee et al., 2000). Reduction of horse heart cytochrome c was measured at 
550 nm in a UV/visible light spectrophotometer (Ultrospec 2100 pro; GE 
Healthcare). The reaction was started by addition of 2 mM DTT (GERBU 
Biochemicals) to 8 μM of purifi ed Erv1 in 0.5 mM EDTA (Merck) and 50 mM 
potassium phosphate buffer, pH 7.4. Software (Swift II; GE Healthcare) was 
used for data collection and quantifi cation.

Reactive oxygen species measurements
The production of hydrogen peroxide by Erv1 was measured using the fl uor-
escence dye Amplex red (10-acetyl-3,7-dihydroxyphenoxazine) according 
to the manufacturer’s instructions (Invitrogen). 2 μM of purifi ed Erv1 was 
incubated in 100 mM potassium phosphate buffer, pH 7.4, with 50 μM 
Amplex red and 1 U/ml horseradish peroxidase (Sigma-Aldrich). Erv1 was 
activated with the artifi cial substrate DTT (Levitan et al., 2004). Cytochrome c 
from horse heart (Sigma-Aldrich) was added in the concentrations de-
scribed. Fluorescence was recorded in a spectrofl uorometer (FluoroMax-2; 
HORIBA Jobin Yvon) with excitation at 550 nm and emission at 610 nm 
using a 1-nm slit. The integration time was 600 ms and the data was col-
lected every 600 ms.

Online supplemental material
Fig. S1 shows that the oxygen concentration in the oxygen-depleted 
conditions used in this study is equivalent to �5–10% of full saturation. 
Fig. S2 shows that these oxygen concentrations still allow respiration 
and growth of cells on nonfermentable carbon sources. Online supple-
mental material is available at http://www.jcb.org/cgi/content/full/jcb
.200707123/DC1.
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