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Introduction
Endocrine tissues and neurons release hormones and neurotrans-

mitters through a process of regulated vesicular secretion. Abnor-

malities in regulated secretion cause a variety of diseases, including 

hypertension, diabetes, and neurological disorders. Although 

not widely appreciated, the heart functions as an endocrine 

 organ by regulating blood volume and natriuresis through the 

secretion of natriuretic peptides (NPs) (McGrath et al., 2005). 

Atrial NP (ANP) is secreted exclusively by atrial myocytes, 

whereas brain NP (BNP) is secreted predominantly by ventric-

ular myocytes, albeit at a low rate. In response to acute and 

chronic stress, ventricular myocytes up-regulate the synthesis 

and secretion of ANP and BNP. As such, BNP is a well-accepted 

clinical marker of ventricular wall stress and directly correlates 

with the severity of heart failure (Moe, 2005).

ANP and BNP bind to the same guanylyl cyclase-linked 

receptor, NP receptor-A, causing vasodilation, natriuresis, and 

diuresis, as well as inhibition of endothelin-1 release and the 

renin–angiotensin system (Silver, 2006). These effects lead to a 

decrease in blood volume and total peripheral resistance, thereby 

reducing pre- and afterload on the heart and blood pressure 

(Silver, 2006). BNP also prevents pathological cardiac hyper-

trophy and fi brosis (Tamura et al., 2000) and has emerged as a 

promising therapy for heart failure (Silver, 2006).

Considering their important roles in cardiovascular physiol-

ogy, the stimuli that control NP synthesis have been under 

intense investigation over the past 30 years and extensive infor-

mation has been amassed (Dietz, 2005). In contrast, the mecha-

nisms involved in NP packaging into vesicles, traffi cking of 

vesicles to the cardiomyocyte cell membrane, and exocytosis 

remain largely unexplored. In this regard, several proteins in-

volved in vesicle formation, transport, docking, and fusion are 

ex pressed in the heart and are contained in ANP-containing 

LDCVs (Rossetto et al., 1996; Iida et al., 1997; Fukuda, 2003; 

Muth et al., 2004). However, little is known about the possible 

involvement of these proteins in ANP secretion.

Here, we describe a novel Ras-related protein, called RRP17, 

which is expressed in the heart and neuroendocrine tissues. RRP17 

interacts with Ca2+-activated protein for secretion-1 (CAPS1), 

a mediator of LDCV secretion (Walent et al., 1992), and infl uences 

the storage and secretion of ANP in cardiomyocytes in vivo 

and in vitro. Consistent with a possible role in regulating cardiac 

endocrine functions, mice lacking RRP17 display abnormalities 

in cardiac ANP secretion and blood pressure regulation in uncon-

scious animals. The interaction of RRP17 with CAPS1 provides 

insights into the molecular basis of ANP secretion and endocrine 

functions of the heart.
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Results
RRP17 is a novel Ras-like protein
To identify novel signal transduction molecules involved in 

the regulation of cardiac function, we used microarray anal-

ysis to compare mRNA pools derived from NIH-3T3 fi bro-

blasts and NkL-Tag cells, a mouse cardiac cell line derived 

from the ventricle of a transgenic mouse expressing large 

T antigen under control of a cardiac-specifi c promoter (Rybkin 

et al., 2003). We initially selected a pool of ESTs expressed 

specifi cally in the NkL-Tag cells and subjected these ESTs to a 

secondary screen through NCBI, EMBL, and Celera databases 

to identify uncharacterized transcripts. One EST, AA624579, 

belonged to the mouse UniGene cluster Mm.66275, which was 

classifi ed by NCBI as encoding a novel putative Ras-like protein. 

Computer analysis of the mouse and human genomes revealed 

that the Mm.66275 cluster contains an open reading frame (ORF) 

encoding a putative 203-amino acid protein. The Mm.66275 

transcript was confi rmed by sequencing of RT-PCR products 

generated using heart and brain cDNAs as template. An orthologue 

of this protein exists in all sequenced Coelomata representatives 

including Arthropods, Urochordates, and Echinoderms (Strongy-
locentrotus purpuratus), but not in Nematodes or Fungi. There 

is high homology between orthologues of this protein, such that 

the mouse orthologue is 99% identical to the human protein and 

67% identical to that of Danio rerio.

The protein encoded by the Mm.66275 UniGene cluster 

has a predicted secondary structure characteristic of the small 

G-protein superfamily and includes a guanine nucleotide-binding 

(GNB) domain and a prenylation signal at the C terminus, known 

Figure 1. Characterization of the predicted structure of RRP17. (A) Schematic diagram of RRP17 shows a GNB (guanine nucleotide binding) domain and 
a CAAX box (red). Highlighted in blue are subdomains of the GNB domain (G1–G5) that bind and hydrolyze GTP. (B) Amino acid alignment of several 
members of the Ras superfamily (Di-Ras2, RheB, and H-Ras) with RRP17 and RRP22. Functional subdomains are identifi ed. The R13 position in the G1 loop 
is indicated with an asterisk. (C) Crystal structure of RheB (green) (Yu et al., 2005) and predicted structure of RRP17 (blue). Highlighted in red are predicted 
structural differences in the Switch I (interruption of β-sheet) and Switch II (additional α-helix) regions of RRP17. (D) Dendrogram of representative mouse 
(Mus musculus; Mm) and fi sh (Tetraodon nigroviridis; Tn) members of the Ras-superfamily. 
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as a CAAX-box (Fig. 1 A). This putative protein is most similar 

to a recently described member of the small G protein superfamily 

Ras-related protein on human chromosome 22, RRP22 (Zucman-

 Rossi et al., 1996) (Fig. 1 B). Based on the nomenclature of 

RRP22, we named this newly identifi ed protein RRP17 (Ras-

related protein located on human chromosome 17).

Although RRP17 clearly belongs to the Ras family of 

small G proteins, it possesses two important features that dis-

tinguish it from other members of the Ras family. First, similar 

to RheB and in contrast to H-Ras, RRP17 has an arginine in-

stead of the usual glycine at the third amino acid position of 

the P-loop (GARGVGK(S/T)) (Fig. 1 B). The substitution of 

Gly (12) for a charged or bulky amino acid, such as Arg, re-

sults in a decrease of GTPase activity of Ras proteins due to 

steric interference with the γ-phosphate of GTP and ensures 

Ras oncogenicity (Krengel et al., 1990). A second difference 

is the 13-amino acid insertion (from D59 to E74) within the 

G3 loop of the Switch II region (DXXG). The glycine residue 

within this loop forms a hydrogen bond with the γ-phosphate 

of GTP, and is universally conserved through the small GTPase 

family (Sprang, 1997; Colicelli, 2004). In RRP17, this glycine 

is replaced with a hydrophobic nonfl exible proline residue. 

RRP22 is the only other small G protein known to possess a 

similar size insertion that disrupts the G3 loop (see supple-

mental material, available at http://www.jcb.org/cgi/content/full/

jcb.200707101/DC1). Although the amino acid composition 

of that insertion is different from the insertion of RRP17, there 

is a conserved proline residue within this region of both proteins, 

corresponding to amino acid 67 and 69 of RRP17 and RRP22, 

respectively. Due to this 12-amino acid insertion, the Switch II 

region of RRP17 is longer than the corresponding region 

of any known GTPase and potentially has a distinct and more 

rigid 3D structure compared with RheB, the closest homologue 

with a known crystal structure (Fig. 1 C). Indeed, 3D predic-

tion analysis shows an additional α-helix within the Switch II 

region of RRP17 (Fig. 1 C). A dendrogram reveals that RRP17 

and RRP22 form a distinct family within the Ras-superfamily 

(Fig. 1 D).

Figure 2. Expression pattern of RRP17. (A) Northern blot analysis of RRP17 mRNA in adult mouse and human tissues. (B) Section of an E9.5 mouse em-
bryo after in situ hybridization with an RRP17 cDNA labeled with dig-UTP. RRP17 transcripts are detected in the dorsal part of the neural tube (nt), skeletal 
myotome (m), and heart (h). (C) In situ hybridization of sections of E15.5 mouse brain. Left panels show in situ hybridization using RRP17 cDNA labeled 
with 35S-UTP as probe and right panels show the same sections counterstained with hematoxylin. Bottom panels show magnifi cation of cortex area (outlined 
by box in top panels). RRP17 transcript is detected in mature neurons. (n) neopalial cortex (future cerebral cortex), (i) intermediate zone; (v) ventricular 
zone; (lv) lateral ventricle; (p) pituitary. Bar: 500 �m for top panels, 100 �m for bottom panels. (D) In situ hybridization of sections of mouse heart and 
surrounding tissues at E13.5. Left panels show in situ hybridization using RRP17 cDNA labeled with 35S-UTP as probe and right panels show the same 
section counterstained with hematoxylin. (h) heart; (d) dorsal root ganglia, and (s) gray matter of spinal cord. Bar: 500 �m for top panels, 100 �m for 
bottom panels.
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Expression of RRP17 in cardiac, brain, 
and endocrine tissues
Northern blot analysis revealed a single 3.6-kb RRP17 transcript 

in mouse and human heart and brain, as well as in human skeletal 

muscle and pancreas (Fig. 2 A). RRP17 mRNA was detected at 

embryonic day (E) 9.5 in the developing heart, skeletal myo-

tomes, and dorsal portion of the neural tube by in situ hybridization 

(Fig. 2 B). At E13.5 and E15.5, RRP17 mRNA was detected in 

the heart and neural tissue including the central and peripheral 

nervous system. Expression of RRP17 mRNA in the embryonic 

brain is not uniform but restricted to more mature neurons and 

absent from the progenitor neuronal cells of the ventricular 

zone (Fig. 2 C). RRP17 mRNA is also present in mature periph-

eral neurons, such as the neurons of the dorsal root ganglia 

(Fig. 2 D) and the Auerbach’s and Meissner’s plexi of the in-

testinal tract (unpublished data). Although RRP17 expression 

was detected in human skeletal muscle, we did not detect it in 

mouse skeletal muscle, even when we examined expression 

in individually isolated mouse muscles, such as extensor digito-

rum longus, white vastus longus and soleus (unpublished data). 

The basis for this species-specifi c difference of RRP17 expression 

is unclear.

Interaction of RRP17 and CAPS1
In an initial effort to elucidate the functions of RRP17, we sought 

to identify proteins that interact with RRP17 in a yeast two-hybrid 

screen using brain and heart cDNA libraries and CAAX-box-

deleted RRP17 as bait. 13 of the 186 positive  clones encoded 

the C-terminal region of CAPS1, a regulator of LDCV secretion 

(Walent et al., 1992). CAPS1 contains several functional domains, 

including a C2 domain that binds calcium, a pleckstrin homology 

(PH) domain that binds phosphatidylinositol (4,5)-bisphosphate, 

a Munc homology domain (MHD) found in Munc family pro-

teins, a family of proteins which are involved in secretion, and 

a dense core vesicle-binding domain (DCVD) at the C terminus 

(Speidel et al., 2003).

The longest cDNA identifi ed by the yeast two-hybrid screen 

started immediately after the PH domain at amino acid 648 and the 

shortest cDNA started at amino acid 700 (Fig. 3 A). These results 

were confi rmed by pull-down assays, which showed the associa-

tion of CAPS1 with GST-RRP17 (Fig. 3 B). The specifi city of in-

teraction was demonstrated by the absence of binding of CAPS1 

and GST-RhoA, a close relative of RRP17 (Fig. 3 B and Fig. 1 D), 

suggesting that CAPS1 does not bind every member of the Ras 

family. We observed that individually expressed CAPS1(670–

1372) or RRP17 localized to the supernatant or pellet fraction, 

respectively. Therefore, we designed a cosedimentation assay 

which showed that coexpression of RRP17 and CAPS(670–1372) 

targets CAPS1 to the RRP17-containing pellet fraction (Fig. 3 C). 

Of note, we consistently observed that the presence of RRP17 

increased the total amount of CAPS1 protein in the cell, although 

we do not know the mechanism of this effect.

Figure 3. Interaction of RRP17 with CAPS1. 
(A) Domains of CAPS1 protein. C2, calcium 
binding domain; PH, plextrin homology domain; 
MHD, munc homology domain or DUF1041; 
DCVD, dense-core vesicle binding domain. Bar 
indicates largest yeast-two hybrid clone found 
in screen. (B) GST pull-down assay consisted 
of 35S-methionine-labeled CAPS1(670–1372) 
incubated with GST-RRP17, GST-RhoA or GST, 
with glutathione Sepharose beads. Bound 
CAPS1(670–1372) was detected using SDS-
PAGE and autoradiography. (C) COS-7 cells 
were transfected with Flag-RRP17 and Flag-
CAPS(670–1372) expression plasmids, lysed, 
separated into supernatant and pellet fractions. 
Equal aliquots of each fraction were separated 
on a 10% SDS-PAGE gel and immunoblotted 
with anti-FLAG antibody. (D) HeLa cells were 
transfected with plasmids encoding full-length 
CAPS1 and/or Flag-RRP17. Immunohistochem-
istry was performed using anti-CAPS (green) 
and anti-Flag (red) antibodies. Nuclei were 
counterstained with Hoechst 33238 (blue). 
Cells were visualized using confocal microscopy. 
Bar, 10 μm. 
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Using immunocytochemistry, the interaction of CAPS1 and 

RRP17 was further confi rmed in transfected HeLa cells. Exoge nous 

RRP17 was distributed in a distinct perinuclear pattern whereas 

CAPS1 was distributed throughout the cytoplasm (Fig. 3 D). Upon 

coexpression of CAPS1 and RRP17, CAPS1 protein was redistrib-

uted to colocalize with RRP17, consistent with the interaction of 

the two proteins (Fig. 3 D). Residues 670–1372 of CAPS colocal-

ized with RRP17, whereas CAPS1 deletion mutants lacking this 

region did not colocalize with RRP17 (unpublished data).

Up-regulation of CAPS1 expression during 
cardiac hypertrophy
The interaction of RRP17 with CAPS1 suggested the involve-

ment of RRP17 in regulated secretion. The published expression 

pattern of mouse CAPS1 is similar to that of RRP17, except that 

CAPS1 was not previously detected in heart (Walent et al., 1992). 

Given that the normal adult heart secretes NPs only from the 

atria, we isolated RNA from the cardiac atria and ventricles in-

dependently and analyzed CAPS1 expression. CAPS1 mRNA 

was detected in atrial, but not ventricular RNA (Fig. 4 A).

We speculated that if CAPS1 participated in the secre-

tion of cardiac NPs, then it should be expressed in ventricular 

cardiomyocytes during conditions that enhance NP secretion. 

To test this hypothesis, we analyzed ventricular myocytes from 

two different mouse models of cardiac hypertrophy; using the 

α-MHC-CnA transgenic mouse line that overexpresses activated 

calcineurin in the heart (Molkentin et al., 1998) and surgical 

partial occlusion of the thoracic aorta (TAB) (Hill et al., 2000). 

Figure 4. Expression of RRP17 in cardiomyocytes enhances 
secretion of ANP. (A) RT-PCR of heart atria, heart ventricles, and 
brain RNA was performed in the presence of 32P-α-dCTP using 
primers for CAPS1, ANP, and RRP17 transcripts. RT-PCR products 
were normalized to L7, separated on 8% acrylamide gels and 
visualized with a PhosphorImager. (B) RT-PCR of heart ventricle 
RNA isolated from wild-type (control) and α-MHC-CnA mice was 
performed in the presence of 32P-α-dCTP using primers for CAPS1 
transcript. RT-PCR products were normalized to L7, separated on 
8% acrylamide gels, visualized and quantifi ed with a Phosphor-
Imager. (t test; *, P < 0.05; n = 3; error bars show SD). (C) RT-
PCR of heart ventricle RNA isolated from wild-type mice (control) 
and mice subjected to thoracic aorta occlusion (TAB). RT-PCR 
was performed in the presence of 32P-α-dCTP using primers for 
ANP, CAPS1, and RRP17 transcripts. RT-PCR products were nor-
malized to L7 product, separated on 8% acrylamide gels, visual-
ized and quantifi ed with a PhosphorImager. (One-way ANOVA; 
*, P < 0.05 difference of ANP expression between control and 
TAB; †, P < 0.05 difference of CAPS expression between control 
and TAB). (D) Time-line of ANP secretion study. Primary neonatal 
rat ventricular myocytes were infected with recombinant adeno-
virus expressing RRP17 (Ad-RRP17) or β -galactosidase (Ad-lacZ) 
on Day 1. Media was changed on Day 2 and aliquots were col-
lected as indicated. (E) Secreted ANP was measured in the media 
from primary rat cardiomyocytes infected with adenovirus ex-
pressing RRP17 (Ad-RRP17), β-galactosidase (Ad-lacZ), or un-
infected (control) at 3, 12, and 35 h post-infection. (Two-way 
ANOVA, P < 0.05; n = 4; error bars show SD). (F) ANP mRNA 
was determined by Northern blot analysis in cardiomyocytes 
infected with adenovirus expressing RRP17 (Ad-RRP17), β-galacto-
sidase (Ad-LacZ) or uninfected (control) at 35 h after infection. 
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Indeed, the level of CAPS1 mRNA was signifi cantly increased 

in the ventricles of mice with calcineurin-induced cardiac hyper-

trophy (Fig. 4 B). Similarly, cardiac hypertrophy induced by 

increased afterload due to thoracic aorta banding (TAB) caused 

substantial up-regulation of CAPS1 mRNA in parallel with ANP 

mRNA (Fig. 4 C). These fi ndings show that CAPS1 and RRP17 

are coexpressed in the atria and that expression of CAPS1 mRNA 

in the ventricles is augmented by hypertrophic stimuli, suggesting 

that RRP17 and CAPS1 may participate in regulated secre-

tion of NPs in hypertrophic ventricular myocytes. Interestingly, 

the expression level of RRP17 mRNA was unaffected by these 

hypertrophic stimulus (Fig. 4 C, and unpublished data).

RRP17 promotes secretion of ANP 
in primary rat cardiomyocytes
To further explore the potential involvement of RRP17 in NP 

secretion, we infected primary rat neonatal cardiomyocytes with 

recombinant adenovirus expressing either Flag-RRP17 protein 

or β-galactosidase as a control. 16 h after infection, medium 

supplemented with serum was replaced with serum-free medium 

Figure 5. Generation of RRP17−/− mice. (A) Mouse RRP17 protein is schematized on top of the RRP17 genomic loci showing fi ve exons with the fi rst 
two exons being alternatively spliced. The targeting vector, which contains a 1 kb 5′ arm and a 6 kb 3′ arm, replaced a 6 kb region of the gene with 
a lacZ-neo cassette deleting the entire ORF encoded by exons 2, 3, and part of exon 4. White boxes mark the 5′ and 3′ UTR. Probe A and Probe B 
were used in Southern blot genotyping. Primers a, b, and c were used in PCR genotyping. (B) Southern blot analysis of genomic DNA isolated from 
RRP17 knockout mice using the probe B after digestion with Bgl II (top). PCR analysis of the short arm recombination (bottom) using primers a, b, and c. 
(C) RT-PCR of RRP17 transcript from heart RNA isolated from wild-type (+/+), heterozygote (+/−), and homozygote (−/−) mice of the RRP17 allele. 
GAPDH is used as control. (D) Coronal sections of adult RRP17+/− mouse brain stained for lacZ activity and counterstained with eosin. (Cp), caudate 
putamen; (Cc), corpus colosum; (Hp), hippocampus; (Th), thalamus; (Ot) optical tract; (Am), amygdala; (Sc), superior colliculus; (Ph), posterior hypo-
thalamus; (Cr), cerebellum; (4v), fourth ventricle; (7N), facial nucleus; (Cn), cochlear nucleus. Bar, 1 mm. (E) Sections of adult RRP17+/− mouse heart 
(left) and hippocampus (right) were stained for lacZ activity and counterstained with eosin. (GDG) granular level of dental gyrus. Bars: 40 μm (left) and 
100 μm (right). 
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and the amount of secreted ANP was measured 3, 12, and 35 h 

later (Fig. 4 D). Cardiomyocytes infected with adenovirus ex-

pressing RRP17 secreted 2.5- and 3.5-fold more ANP compared 

with uninfected or lacZ expressing cardiomyocytes, respectively 

(Fig. 4 E). The enhancement of ANP secretion by RRP17 was not 

associated with an elevation of ANP mRNA expression (Fig. 4 F). 

These results suggest that RRP17 facilitates release of ANP 

in cardiomyocytes.

Generation of RRP17 knockout mice
To determine the function of RRP17 in vivo, we generated 

RRP17-defi cient mice by targeted disruption of the RRP17 gene. 

The mouse RRP17 gene spans ≈12 kb on chromosome 11 and 

consists of three protein-coding exons and two alternative exons 

in the 5′ untranslated region (UTR) (Fig. 5 A). The ORF starts 

within exon 2 and is not affected by alternative splicing of the 

5′ UTR. To generate mice lacking RRP17, exon 3 and portions of 

exons 2 and 4 were replaced with a promoterless nuclear LacZ 

gene and a neomycin-resistance gene such that the targeted allele 

lacked almost the entire RRP17 ORF (Fig. 5 A). The targeting 

vector was electroporated into 129SV/Ev ES cells and targeted 

clones were identifi ed by Southern blot analysis of genomic 

DNA (Fig. 5 B). Embryonic stem cells heterozygous for the 

RRP17 deletion were injected into C57BL/6 blastocysts, and chi-

meric mice transmitted the mutant allele through the germ line.

Mice homozygous for the mutant RRP17 allele were via-

ble and fertile and were obtained in Mendelian ratios from 

RRP17+/− intercrosses. There was no obvious phenotype ob-

served in null animals when left undisturbed. RT-PCR analysis of 

heart and brain RNA showed diminished expression of the RRP17 

transcript in heterozygous mice and its complete absence in 

homozygous mutant mice (Fig. 5 C, and unpublished data).

The expression pattern of β-galactosidase from the mutant 

allele recapitulated the pattern of RRP17 mRNA expression in the 

central nervous system and heart (Fig. 5, D and E). In adult brain, 

the expression of β-galactosidase from the RRP17 locus was re-

stricted to neurons of the cortex, hippocampus, and cerebellum, 

but was sparse in the brainstem and almost absent in the hypotha-

lamic region (Fig. 5 D). The expression of nuclear lacZ from the 

RRP17 gene was confi ned to neurons and cardiomyocytes and not 

detected in interstitial tissue or vascular cells (Fig. 5 E).

Storage and secretion defect of ANP 
in RRP17−/− mice
Consistent with the involvement of RRP17 in vesicular secre-

tion, electron microscopy of atria of wild-type and RRP17−/− mice 

showed that LDCVs were smaller in the mutant than in wild-

type cardiomyocytes (Fig. 6 A), although the difference in the 

mean of the vesicle size did not reach statistical signifi cance 

(unpublished data). Passive stretch, the major stimulus for ANP 

secretion in the heart (Ruskoaho et al., 1997), can be simulated 

in cell culture by challenging isolated cardiomyocytes with hypo-

tonic buffers. A decrease in the extracellular osmolarity from 

300 to 200 mOsm/kg H2O causes an increase in cardiomyocyte 

volume by 50% and induces secretion of prestored ANP granules 

(Roos, 1986; Greenwald et al., 1989; Jiao et al., 2000). Normally, 

passive mechanical stretch causes prompt translocation of LDCVs 

from the perinuclear area of atrial cardiomyocytes toward the 

cellular membrane (Agnoletti et al., 1989).

Challenging atrial cardiomyocytes isolated from wild-type 

mice with hypotonic buffer resulted in secretion of 50 to 60% of 

stored ANP during the fi rst 10 min, with no appreciable secre-

tion of ANP for the next 50 min (Fig. 6 B). RRP17-defi cient 

myocytes also responded within the fi rst 10 min; however, they 

secreted only 10 to 20% of stored ANP (Fig. 6 B).

Hemodynamic measurements showed that the anesthe-

tized RRP17−/− mice displayed a signifi cantly higher systolic and 

diastolic blood pressure, refl ected in the mean arterial pressure, 

and a higher heart rate (Fig. 6 C). Consistent with their impaired 

ability to secrete ANP, the amount of ANP in the atria was sig-

nifi cantly higher in RRP17−/− mice compared with wild-type 

mice (Fig. 6 D).

Discussion
LDCVs mediate secretion of many biologically active sub-

stances from cardiomyocytes, neurons, and endocrine cells. 

Small GTPases are known to be involved in regulation of multi-

ple steps of LDCV secretion with functions ranging from vesicle 

formation to vesicle transport, tethering to the cellular membrane 

and fusion steps (Burgoyne and Morgan, 2003; Aizawa and 

Komatsu, 2005). In this study, we describe a previously unknown 

Ras-like protein, RRP17, which regulates secretion of ANP 

from cardiomyocytes and interacts with CAPS1, a protein in-

volved in biogenesis and storage of LDCV.

Classifi cation of members of the Ras superfamily is based 

on similarity of amino acid sequence (Wennerberg et al., 2005). 

At a level of identity of 30%, fi ve major Ras families have been 

identifi ed, Ras, Rho, Arf, Ran, and Rab. RRP17 and RRP22 pro-

teins differ from other members of the Ras-superfamily within 

the Switch I and II regions, which bind and hydrolyze GTP 

and interact with regulators and effectors of G protein signal-

ing (Sprang, 1997). The glycine residue of the Switch II region, 

which coordinates the positioning of Mg2+ ion and γ-phosphate 

of GTP, is substituted by a proline residue in RRP17. In addi-

tion, the Switch II region of RRP17, predicted to adopt an α-helix 

structure, is 12 amino acids longer than the corresponding region 

of other members of the Ras superfamily (Sprang, 1997). These 

differences suggest that RRP17 utilizes a distinct mechanism 

of coordination and hydrolysis of GTP, and imply that RRP17 

interacts with a unique set of effectors and regulators.

RRP17 binds to CAPS1, a MUN domain protein involved 

in biogenesis and storage of LDCVs in neuronal and endocrine 

cells (Basu et al., 2005; Speidel et al., 2005). Interestingly, 

Munc13-4, another MUN domain–containing protein, interacts 

with Rab27 to regulate dense core granule secretion in plate-

lets (Shirakawa et al., 2004). Although the exact domain of 

Munc13-4 that binds Rab27 has not been identifi ed, the RRP17-

interacting domain of CAPS1 spans most of the sequence be-

tween the PH and DCVD domains (unpublished data) and roughly 

corresponds to the MUN domain of the Munc13 protein (Basu 

et al., 2005).

The MUN domains of Munc13 (Basu et al., 2005) and 

CAPS1 (unpublished data) have a predicted tertiary structure 
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similar to that of importin β. Of note, importin β interacts with 

Ran GTPase through three binding regions, Switch I, Switch II, 

and the C-terminal α-helix. Co-crystallization of importin β and 

Ran-GTPase showed that importin β forms a right-handed super-

helix that serves as a binding pocket for RanGTP (Lee et al., 

2005). Based on structural analysis, RanGTP has been proposed 

to insert itself into a cylinder formed by the importin β super-

helix, thereby discharging importin β’s cargo. Further studies 

are needed to determine whether RRP17 interacts with CAPS1 

in a similar fashion.

We show that RRP17 is expressed in atria and ventricles 

of mice, whereas CAPS1 is present only in the atria. However, 

upon induction of cardiac hypertrophy, CAPS1 appears in ven-

tricular myocytes. This fi nding suggests that ventricular myocytes 

may use the regulated secretion pathway during hypertrophy. 

It is known that atrial and ventricular myocytes secrete ANP and 

BNP via the regulated and constitutive secretion pathways, re-

spectively (Bloch et al., 1986). However, several reports suggest 

that ventricular myocytes concurrently display constitutive and 

regulated secretion pathways (Irons et al., 1993). Our fi ndings 

suggest that during cardiac hypertrophy ventricular myocytes 

activate the regulated secretion pathway, in addition to the con-

stitutive secretion pathway.

Although our results demonstrate a clear role for RRP17 

in LDCV secretion, we acknowledge that RRP17 is also expressed 

in tissues that do not possess LDCV secretion (e.g., skeletal 

muscle). These fi ndings suggest that RRP17 may have additional 

functions yet to be determined.

Overexpression of RRP17 in cardiac myocytes enhances 

secretion of ANP, whereas loss-of-function studies showed that 

hypertonic-stretched atrial myocytes isolated from RRP17−/− 

mice were defective in ANP release. The exact mechanism of 

the decrease of ANP secretion in RRP17−/− mice is not entirely 

clear and may be explained by a reduced rate of secretion or a 

packaging defect. Consistent with these fi ndings, electron mi-

croscopy showed smaller than normal LDCVs in RRP17−/− 

atrial myocytes. Notably, deletion of one allele of CAPS1 also 

results in perturbation of LDCV intracellular distribution (Speidel 

et al., 2005), which may refl ect a defect in vesicle traffi cking 

(Sudhof, 2005).

ANP plays an important role in regulation of blood pres-

sure via direct action on renal function and the peripheral 

vasculature, as well as via inhibition of the renin–angiotensin 

system and suppression of release of endothelin-1 (Silver, 2006). 

Therefore, dysregulation of ANP release may cause elevation 

of blood pressure, as seen in mice lacking the ANP receptor 

Figure 6. Cardiac phenotype of RRP17−/− mice. 
(A) Electron microscopy of atrial cardiomyocytes from 
wild-type (WT) and RRP17−/− (KO) mice. Asterisk de-
notes large dense-core vesicle (LDCV) containing ANP. 
Bar, 500 nm. (B) Atrial cardiomyocytes isolated from 
wild-type (WT) or RRP17−/− (KO) were subjected to 
stretch using hypotonic buffer. Media was collected at 
various time-points after stretch. The amount of ANP 
secreted into the medium was measured using RIA 
and expressed as a fraction of the total amount of 
ANP in the medium and cells. Data are expressed as 
means ± SE (two-way ANOVA, P � 0.05; n � 6; 
error bars show SD). (C) The carotid arteries of isofl u-
rane-anesthetized wild-type (WT) and RRP17−/− (KO) 
mice were catheterized and the heart rate (left) and 
mean arterial blood pressure (MAP) (right) were di-
rectly measured (t test; *, P � 0.05; n � 7 for WT and 
n � 9 for KO; error bars show SD). (D) ANP was 
measured in the atria of wild-type (WT) and RRP17−/− 
(KO) mice (t test; *, P � 0.05; n � 7 for WT and n � 9 
for KO; error bars show SD).
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(Lopez et al., 1995). Deletion of RRP17 in mice increased atrial 

ANP content and was associated with arterial hypertension and 

tachycardia in anesthetized mice. Of note, the elevation of mean 

arterial blood pressure in unconscious RRP17−/− mice is in the 

same range as seen in the ANP−/− mice (Melo et al., 1998). 

However, the pathophysiological basis of the elevation of blood 

pressure in RRP17−/− mice is, in all likelihood, more complex 

than in ANP−/− mice due to expression of RRP17 in other endo-

crine organs and the central nervous system.

The discovery of RRP17 and its role in the secretion of 

cardiac NPs provides new insights into the molecular mecha-

nisms underlying the endocrine infl uences of the heart and may 

ultimately contribute to an understanding of the pathophysiol-

ogy of cardiovascular diseases as well as the molecular basis of 

unresolved heterogeneity of BNP levels among different indi-

viduals with heart failure.

Materials and methods
cDNA and bioinformatics
EST (AA624579), obtained previously by microarray analysis (Rybkin 
et al., 2003), was analyzed using the NCBI BLAST server. This EST, shown 
to belong to the UniGene Mm.66275 cluster, was designated as a putative 
novel Ras-like protein-10B, Rasl10B. The complete cDNA of the RRP17 
gene was constructed by alignment of partial human and mouse cDNAs 
and ESTs deposited in NCBI, followed by RT-PCR verifi cation. The structure 
of the RRP17 gene was determined via alignment of cDNA sequences 
(three splice variants of RRP17 cDNA were observed) to the mouse and human 
genomes in the NCBI database followed by human to mouse comparison 
using VISTA server (http://genome.lbl.gov/vista/index.shtml).

The prediction of the secondary structure of RRP17 protein and 
alignment to other Ras-like proteins were performed using ClustalW Align-
ment Algorithm on MacVector 6.5.3 software, and PBIL server (http://pbil
.univ-lyon1.fr). A phylogenetic tree was constructed using Cluster and Topo-
logical algorithms via GeneBee Database Service (http://www.genebee
.msu.su/genebee.html). Three-dimensional prediction and alignment of RRP17 
to small G proteins of determined crystal structure were performed using 
3D-PSSM (http://www.sbg.bio.ic.ac.uk/~3dpssm), Cn3D 4.1 software 
(NCBI), and DeepView/Swiss-Pdb Viewer software (GlaxoSmithKline).

Northern blot analysis and RT-PCR
Isolation of RNA from brain, heart, skeletal muscle, and cells for Northern 
blot analysis and RT-PCR was performed using TRIzol according to the 
manufacturer’s protocol (Invitrogen). Human and mouse multiple tissue 
Northern blots were purchased from CLONTECH Laboratories, Inc. DNA 
probes to detect human or mouse RRP17 transcripts were derived from 
heart cDNA using species-specifi c primers.

For semi-quantitative PCR, cDNA was generated from 2 μg of total 
RNA with random-hexamer primers using the Superscript III kit (Invitrogen). 
To perform semi-quantitative PCR, 0.1 μl of 32P-dCTP (10 μCi/μl) was 
added per 25-μl reaction and the PCR product was resolved on an acryl-
amide gel. The radioactive signal was detected and quantifi ed using a 
PhosphorImager (GE Healthcare) and X-ray fi lm (Kodak). To ensure that 
equal amounts of cDNA were added to each reaction sample, L7 primers 
were initially used to determine the amount of cDNA per sample. Amplifi -
cations with L7 primers were performed at different numbers of cycles to 
ensure that densitometry was performed within linear range. Based on 
these results, calibrated amounts of cDNA were used in the PCR reactions. 
Primer sequences are available upon request.

In situ hybridization and lacZ staining
Mouse embryos at ages ranging from E7.5 to E15.5 were dissected and 
fi xed in 4% paraformaldehyde in PBS treated with diethylpyrocarbonate. 
Whole-mount and section in situ hybridizations were performed as de-
scribed previously (Nakagawa et al., 1999), using sense and antisense 
probes prepared from RRP17 cDNA. Images of whole-mount in situ hybrid-
ization were captured by a microscope (M420; Leica) using a 3CCD camera 
(C5810; Hamamatsu). Images of radioactive in situ hybridization were 
captured using a microscope (DM2000; Leica) with a camera (VI470; 

Optronic) using 2.5× and 10× objectives. Images were processed using 
Adobe Photoshop 7.0.

LacZ staining was performed on heart and brain sections of adult mice 
using β-gal staining solution (5 mM potassium ferrocyanide, 5 mM potassium 
ferricyanide, 2 mM Mg2Cl, and 1 mg/ml X-gal in PBS) overnight at room tem-
perature. Images were captured on a Stemi SV11 microscope (Carl Zeiss 
MicroImaging, Inc.) with Apochromatic optics and a Macrofair camera 
(Optronics) (Fig. 5 C) and a DM2000 microscope (Leica) with VI470 camera 
(Optronics) (Fig. 5 D) using 10× and 40× objectives. Captured images were 
exported as 8-bit TIFF fi les and processed using Adobe Photoshop 7.0.

Generation of constructs
RRP17 expression constructs were generated by PCR-based cloning using 
mouse RRP17 cDNA as a template and were subcloned into pcDNA3 vectors 
(Invitrogen) with N-terminal Flag tag. Full-length rat HA-CAPS1 was pro-
vided by Thomas F.J. Martin (University of Wisconsin). C-terminal frag-
ments of CAPS1 (amino acid residues are indicated in the results section) 
were generated by PCR using the Y2H prey as a template. All PCR prod-
ucts were verifi ed by sequencing.

Yeast two-hybrid screen
To generate “bait” for a yeast two-hybrid screen, the RRP17 wild-type 
cDNA lacking the sequence encoding the CAAX box was subcloned into 
pGBKT7 vector (CLONTECH Laboratories, Inc.) in frame with the GAL4 
DNA-binding domain at the C-terminus. The CAAX box of RRP17 was omitted 
from the fusion protein to prevent targeting of the protein to the cellular 
membrane due to prenylation. Adult heart and brain cDNA libraries, 
subcloned into pACT2 vector, were fused to the C terminus of the GAL4 
trans-activation domain (CLONTECH Laboratories, Inc.). The “bait” was 
cotransfected with the indicated cDNA library into AH109 yeast cells and the 
assay was performed according to the M A T C H M A K E R  GAL4 Two-Hybrid 
System 3 protocol (CLONTECH Laboratories, Inc.).

GST protein binding assay
GST-tagged RRP17 cDNA was subcloned into pGEX-KG vector (GE Health-
care) and expressed in BL21(LysS) Escherichia coli grown in LB supple-
mented with 0.5 M sorbitol and 2.5 mM betaine. Protein expression was 
induced by the addition of 250 mM isopropylthio-β-D-galactoside (IPTG) 
for 4 h at room temperature. Protein purifi cation was performed according 
to published protocols with some modifi cations (Novagen Manual).

CAPS1 protein was in vitro translated using TNT kit (Promega) in the 
presence of 35S-methionine followed by incubation with equal amounts of 
recombinant GST-RRP17, GST-RhoA, or GST in 50 mM Hepes-KOH (pH 7.4), 
100 mM NaCl, 1.5 mM MgCl2, 0.1% NP-40, 10 μM GDP, and complete 
EDTA-free protease inhibitors (Roche) for 1 h at 4°C. Concentrations of re-
combinant proteins were estimated on SDS-PAGE using serial dilutions. 
Glutathione Sepharose (GE Healthcare) was added and incubated for 15 min 
followed by four washes with centrifugation at 2,000 g. The pellet resulting 
from the fi nal wash was boiled in SDS-loading buffer and resolved on a 
4–15% gradient SDS-PAGE gel. The gels were dried and exposed to X-ray 
fi lm for autoradiography.

Cell culture and transfection
Cells (HeLa and COS-7) were cultured in DME supplemented with 10% 
FBS, L-glutamine, and penicillin/streptomycin at 37°C. Cell transfections 
were performed using FuGene6 reagent (Roche) according to the manufac-
turer’s instructions.

Rat neonatal cardiomyocytes were isolated and infected with recom-
binant adenovirus as previously described (Song et al., 2006). Samples of 
media were collected at indicated intervals and processed by radioimmuno-
assay (RIA). At the end of the experiment, one half of plates were used for 
protein isolation and other half for RNA isolation to determine the level of 
ANP peptide and mRNA, respectively.

Generation of recombinant adenovirus and infection
Recombinant adenovirus expressing full-length RRP17, and �-galactosi-
dase proteins were generated using a Cre-loxP in vitro recombination sys-
tem as previously described (Rybkin et al., 2003). Cardiomyocytes were 
infected at a multiplicity of infection (MOI) of 10 for 3 h in plating medium, 
after which the medium was replaced with fresh growth medium.

Radioimmunoassay (RIA) for ANP
The amount of ANP secreted into the cell culture media of primary neonatal 
cardiomyocytes was measured using a commercially available ANP RIA 
kit (Peninsula Labs) according to the manufacturer’s instructions. Collected 
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media was titered to ensure that the radioactive counts were within the 
slope of the standard curve. Each sample was measured in duplicate.

To measure ANP in atria, isolated atria were snap frozen in liquid 
nitrogen, weighed, and homogenized in 10� volume of 0.1 M CH3COOH 
using a Dounce homogenizer. Homogenates were centrifuged at 30,000 g 
for 30 min at 40°C. Supernatants were stored at −80°C until processed by 
RIA. Each sample was measured in duplicate.

To measure ANP in plasma, whole blood samples were collected via 
direct cardiac puncture on 3.8% EDTA (9:1 blood/EDTA) and aprotinin 
(50 KIU/μl). Blood samples were kept on ice until the completion of the 
study and then centrifuged at 1,000 g for 10 min at 4°C. Plasma was then 
removed and then snap frozen in liquid nitrogen.

Immunocytochemistry
Cells were fi xed for 10 min with either �20°C methanol or 4% paraformal-
dehyde, blocked with 10% normal goat serum (NGS) in PBS containing 
0.1% Triton X-100 for 30 min followed by incubation with primary anti-
bodies in 5% NGS/PBS for 1 h at room temperature. Working dilutions of 
primary antibodies used were as follows: polyclonal anti-Flag (1:300; 
Sigma-Aldrich), and monoclonal anti-CAPS (1:100; BD Transduction Labo-
ratories). The cells were washed three times with 0.1% Triton X-100/PBS 
before the addition of secondary antibodies conjugated to either FITC or 
Cy3 (1:400, Jackson ImmunoResearch Laboratories) and counterstained 
with Hoechst 33238. Coverslips were mounted on glass slides using Vecta-
shield (Vector Laboratories). Images were captured on a confocal laser 
scanning microscope with 63× oil immersion objective lens (model LSM 
510-V3.2; Carl Zeiss MicroImaging, Inc). Captured images were exported 
as 8-bit TIFF fi les and processed using Adobe Photoshop 7.0.

Gene targeting
An RRP17 targeting vector was constructed to delete most of the coding re-
gion, including the starting ATG codon, by using a pN-Z-TK2 vector (a gift 
of R. Palmiter, University of Washington, Seattle, WA). The targeting vector 
contains a nuclear LacZ (nLacZ) cassette and a neomycin resistance gene 
under the control of the RNA polymerase II promoter fl anked by cloning 
sites and thymidine kinase (TK) gene cassettes. Both arms of the targeting 
vector were obtained by PCR from a mouse 129SvEv genomic library us-
ing High Fidelity PCR kit (Roche), sequenced and verifi ed against the NCBI 
database. The short arm comprises sequences from 1009 to 80 bp up-
stream of the fi rst ATG codon. The long arm comprises sequences starting 
from the nucleotide coding amino acid 145 and continuing 6 kb down-
stream. The targeting vector was electroporated into 129SvEv-derived 
ES cells, and targeted cells were selected with G-418 and FIAU. 500 ES 
clones were isolated and analyzed by Southern blot analysis for homol-
ogous recombination. Three targeted clones were injected into 3.5-d 
C57BL/6 mouse blastocysts. The resulting chimeric mice were bred to 
C57BL/6 females to achieve germline transmission of the mutant allele. 
Only mice of the 129SV/Ev � C57Bl6 mixed background were character-
ized in this study.

Hypotonic stress of primary mouse cardiomyocytes
Primary atrial cardiomyocytes were isolated essentially as described for rat 
neonatal cardiomyocytes, with some modifi cations. In brief, the left and 
right atria from 10 to 15, 2–4 day-old mice were isolated under a dissec-
tion scope. Dissected tissues were minced and digested with 0.08% Colla-
genase Type II and 0.025% DNase Type I (Worthington). Cells were plated 
onto 24-well Primaria plates (Fisher Scientifi c) with fresh DMEM/F12 me-
dium containing 5% horse serum (measured osmolarity �315 mOsm/
kgH2O) being replaced the next day. The cells were used 2 d after isola-
tion. The medium was replaced with hypotonic buffer (100 mM NaCl, 5 mM 
KCl, 1 mM CaCl2, 1.5 mM MgCl2, 10 mM glucose, and 10 mM Hepes-
NaOH, pH 7.3) at time “0” followed by 10-, 20-, 30-, and 60-min time 
points. Osmolarity of buffer (�232 mOsm/kgH2O) was confi rmed by 
freezing-point depression osmometry using a Fiske Micro-Osmometer 
Model 210. All fractions were collected into siliconized Eppendorf tubes 
for further analysis by RIA. Cells remaining on the plates were harvested 
into hypotonic buffer (as above), freeze-opened, and used for ANP RIA 
and DNA content estimation (for normalization). To estimate the amount of 
DNA in each well, aliquots of cell lysates were mixed with 0.1 mg/ml 
Hoechst 33238 solution at a 1:4 ratio and the samples were analyzed 
using a FLUOstar Optima plate reader (excitation at 365 nm, emission at 
458 nm). The amount of ANP secreted into the medium was expressed as 
a fraction of the total amount of ANP in the medium and cells. Data are ex-
pressed as means ± SE, with each experiment (consisting of 5–6 samples) 
being presented as an individual line on the graph.

Thoracic aortic banding
To induce left ventricular hypertrophy, 6-wk-old mice were subjected to either 
thoracotomy (sham) or thoracotomy with partial occlusion of transverse aortic 
arch using a 27-gauge needle as previously described (Hill et al., 2000).

Hemodynamic measurements
To measure systemic hemodynamics, mice were anesthetized via isofl urane 
inhalation and transferred to a heat-controlled pad to maintain constant 
body temperature. The right carotid artery was exposed via direct midline 
neck incision, the distal end ligated, and the proximal end of the artery 
was catheterized with 1.4F Millar catheter (Millar Instruments). After allow-
ing the animal a minimum of 30 min for stabilization, a minimum of 15 min 
of steady-state data were obtained.

Online supplemental material
The supplement shows the multiple alignment of GTP binding domains of 
representatives of the Ras family. The blue box highlights members of the 
RRP17 family. Online supplemental material is available at http://www
.jcb.org/cgi/content/full/jcb.200707101/DC1.
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