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ABSTRACT

We introduce a non-parametric representation of
transcription factor binding sites which can model
arbitrary dependencies between positions. As two
parameters are varied, this representation smoothly
interpolates between the empirical distribution of
binding sites and the standard position-speci®c
scoring matrix (PSSM). In a test of generalization to
unseen binding sites using 10-fold cross-validation
on known binding sites for 95 TRANSFAC transcrip-
tion factors, this representation outperforms PSSMs
on between 65 and 89 of the 95 transcription factors,
depending on the choice of the two adjustable
parameters. We also discuss how the non-
parametric representation may be incorporated into
frameworks for ®nding binding sites given only a
collection of unaligned promoter regions.

INTRODUCTION

The transcription of a gene is in¯uenced by the binding of a
protein, known as a transcription factor, to a short segment of
DNA, known as a transcription factor binding site, in the
regulatory region of the gene. Though the binding sites for a
given transcription factor are generally composed of similar
sequences of nucleotides, there can be considerable variability.

If the DNA of an organism has been sequenced, and if some
binding sites for a given transcription factor are known, then
one can try to locate additional binding sites computationally,
by scanning the DNA for segments resembling the known
binding sites. Stormo (1) surveyed approaches for doing this,
focusing largely on a representation of binding sites known as
a position-speci®c scoring matrix (PSSM), or a positional
weight matrix (PWM). In a PSSM, each position of a binding
site is modeled as making an independent contribution to the
overall binding af®nity of the site. Experimental evidence
suggests that this assumption of independence is not always
valid (see for example 2±4), but Benos et al. (5) argue that, `in
most cases it provides a good approximation of the true nature
of the speci®c protein±DNA interactions'.

Several representations that relax the assumption of inde-
pendence have recently been shown to outperform PSSMs in
certain tasks (6,7). But the ®rst-order Markov model on
Dirichlet priors used by Xing et al. (6) is limited in the

dependencies it can model, and while the mixtures of trees and
PSSMs described by Barash et al. can model arbitrary
dependencies, they limited their tests to mixtures having two
components, which cannot. [Barash et al. also brie¯y discuss
using Bayesian networks, which can model arbitrary depend-
encies, but the ®gures in their supplementary web data (7;
supplementary material A.2) suggest that the performance of
Bayesian networks was inferior to that of trees, mixtures of
trees and mixtures of two PSSMs. Note that the trees used by
Barash et al. are just Bayesian networks in which each
position is allowed to have at most one `parent' positionÐthis
is similar to the model used by Agarwal and Bafna (8).]

Here we introduce a simple non-parametric representation
of transcription factor binding sites, which can model arbitrary
dependencies and that smoothly interpolates between a PSSM
and the empirical distribution. Our goal in this work is to make
better predictions about the locations of transcription factor
binding sites. False-positive rates can be further reduced by
combining model-based predictions with high-throughput
experimental evidence (9). While the non-parametric model
may not offer as much insight into the nature of the
dependencies between positions as some other models, it has
the virtue of being able to exploit such dependencies despite
our incomplete understanding of their nature.

We tested the ability of our model to generalize using 10-
fold cross-validation on binding sites for 95 TRANSFAC
transcription factors, as in Barash et al. (7). Our model
outperformed PSSMs on between 65 and 89 out of 95
transcription factors, depending on two adjustable parameters.
In a similar test, the three models used by Barash et al.
outperformed PSSMs on between 33 and 59 of the 95
transcription factors (7). Our non-parametric model is also
applicable to other types of data, for example protein
sequences.

MATERIALS AND METHODS

Position-speci®c scoring matrices

Let x1,¼, xm denote the m known binding sites for a
transcription factor F. We assume for now that each binding
site xi = xi1 ¼ xin Î{A,C,G,T}n has the same width n, and that
the binding sites have been aligned without gaps.

By a PSSM for F we shall mean a 4 3 n matrix W, with
rows indexed by nucleotides kÎ{A,C,G,T} and columns
indexed by positions jÎ{1,¼, n}, such that each entry
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W(k,j) is non-negative, and the four entries in each column
sum to 1. The score associated with a DNA segment
y = y1 ¼ yn by the PSSM W is given by:

Pr�y j W� �
Yn

j� 1

W�yj; j�:

The entry W(k, j) can be interpreted as the marginal probability
of nucleotide k appearing in position j in a randomly selected
binding site for F. If we assume that the positions are
independent, the score for y can be interpreted as the
probability that a randomly selected binding site agrees with
y in all n positions. [This explains our use of the notation
Pr(y|W).]

Let mj(k) denote the number of sites xi for which nucleotide
k appears in position j, i.e., mj(k) = #{i : xij = k}. We de®ne the
PSSM Wb to be the 4 3 n matrix with:

Wb(k, j) = [mj(k) + bk]/(m + b).

Here the bk are pseudocountsÐsmall sample-size regularizers,
with an interpretation as Dirichlet priors in the Bayesian
context (see for example 10). The total number of pseudo-
counts used is b = bA + bC + bG + bT. We shall call Wb the
standard PSSM constructed from {x1,¼, xm} using b
pseudocounts.

Various choices for b appear in the literature, for example
b = 0.01 (11), b = 1 (12), b = 2 (13), b = 4 (14), b = 5 (7) and
b = Öm (15). Some authors distribute the b pseudoucounts
uniformly (i.e., set bA = bC = bG = bT = b/4), while others
distribute them in proportion to the overall frequency of the
nucleotides in the genome.

Mixtures of PSSMs

A mixture of the s PSSMs W1,¼, Ws takes the form

Pr�y j MIXTURE� �
Xs

t� 1

at Pr�y j Wt�

for some at > 0 with
Ps
t� 1

at � 1 (7). Note that mixtures of

PSSMs can model probability distributions that single
PSSMs cannot; for example the distribution in which
Pr(AA) = Pr(CC) = 0.5 and the other 14 DNA segments of
width 2 have probability 0. In fact, any distribution can be
modeled as a mixture of PSSMs, though the number of
components needed may be exponential in the site width n.

One way to construct a mixture of s PSSMs is to partition
the set of m known binding sites into s subsets, G1,¼, Gs,
according to some criterion, and then to de®ne PSSMt to be
the standard PSSM for the binding sites in Gt with weight
at = #Gt/m. The total number of pseudocounts can be
conserved for various choices of s and various weights at by
using at b pseudocounts for component PSSMt.

The partition can also be into `soft' clusters, where xi

belongs to cluster Gt (with associated matrix PSSMt) with
some probability pi,t. The Expectation Maximization (EM)
algorithm (16) used in Barash et al. (7) proceeds by computing
pi,t µ at Pr(xi|PSSMt), then by recomputing the PSSM for each
cluster based on the new estimates of its members. These two

steps are repeated until convergence is reached. Although each
iteration increases the likelihood of the training data, the EM
algorithm is prone to getting stuck in local maxima; it also
does not address the question of how many clusters to use.

A non-parametric model

Our approach can be viewed as a mixture of PSSMs in which
each Gt is a singleton set consisting of the binding site xt; this
gives a mixture of m PSSMs each with weight at = 1/m. This is
essentially a form of non-parametric density estimation (see
for example 17)Ðwe are placing a small lump of probability
mass in the vicinity of each of the known binding sites. The
shape of the lumps can be important, especially when the
number of training cases, m, is small; using the standard PSSM
Wb/m constructed from xt as the lump around xt gives a poor
estimate of the density for small m, so we reshape the lumps as
follows: let W0

b denote the standard PSSM constructed from
all m binding sites, using b pseudocounts, and let Wt

b/m denote
the standard PSSM constructed from just binding site xt using
b/m pseudocounts. We take our lumps to be PSSMs that are
linearly interpolated between W0

b and Wt
b/m. For b Î[0,1],

de®ne Wt
b,b to be bW0

b + (1 ± b)Wt
b/mÐnote that this is an

entry-wise weighted average of the matrices for W0
b and Wt

b/m

(so is itself a PSSM), not a mixture of W0
b and Wt

b/m. We
de®ne our non-parametric model NONPARb,b to be a mixture
of the m PSSMs Wt

b,b, each with weight 1/m, so that:

Pr�y j NONPARb;b� �
Xm

t� 1

1

m
Pr�y j Wb;b

t �:

Note that when b = 1, NONPAR is just the standard PSSM Wb

constructed from {x1,¼,xm} and when b = 0 it is a mixture of
the Wt

b/m. Setting b = 0 and b = 0 gives the empirical density.

Optimizing parameters globally and locally

The standard PSSM has one adjustable parameter, b, and
NONPAR has two adjustable parameters, b and b. We can
regard these parameters as either global (applying to all
transcription factors) or local (applying to one transcription
factor). Let W = {F1,¼, Ft} denote a collection of transcrip-
tion factors, and let B(Fi) denote a collection of binding sites
for Fi. Let q denote the vector of parameters we are trying to
tune. Using a slightly modi®ed version of maximum-
likelihood estimation, we take our tuned parameters q¢ to be
those for which:

q0 � argmaxq

X
Fi 2W

X
x2B�Fi�

dj�i�
width�x� log Pr�x j MODELq

i;x�:

Here MODELq
i,x is the model (PSSM or NONPAR) built with

parameters q from all binding sites in B(Fj) aside from x, to
control over®tting. The factor 1/width(x) normalizes for the
variability of the widths of binding sites for different
transcription factors. When tuning the parameters globally
we set dj(i) = 1 for all i and j; when tuning the parameters
locally for transcription factor Fj we set dj(j) = 100 and
dj(i) = 1 for i ¹ j (this gives the binding sites for transcription
factor Fj 100 times the weight of the binding sites for other
factors, which act as regularizers; the choice of the weight 100
was ad hoc).
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We con®ned b to take 10th-integer values and con®ned b to
take 100th-integer values. In the case of PSSMs, we optimized
b by evaluating the objective function for all 10th-integer
values of b between 0 and 10. For NONPAR, we alternately
clamped one parameter and set the other parameter to the best
value in an 11-value window centered around its current value,
and repeated these two steps until convergence was reached.
While there is the possibility that this algorithm converges to a
local rather than global maximum, in tests in which we
exhaustively evaluated all 101 3 101 pairs of discretized
values for b and b, we arrived at the same parameters as we did
with the iterative algorithm. Thus, for the sake of ef®ciency we
used the iterative algorithm in the experiments we describe
below.

Remarks on parametric, non-parametric and
semiparametric models

The distinction between parametric, non-parametric and
semiparametric models, though perhaps more acute for
densities on continuous spaces than on ®nite spaces (on
which any function may be speci®ed by a ®nite number of
parameters), is nonetheless relevant for transcription factor
binding sites.

A characteristic of parametric models is that the number of
parameters does not increase when the number m of training
cases increases, as is the case for PSSMs. For non-parametric
models, the size of the model often grows linearly with m, as
all the training cases are retained. This is true for our model
NONPAR, although since there are only 4n distinct possible
training sequences of width n, one could eventually arrest the
growth of the model by accounting for the multiplicity of the
training sequences that occur more than once. In some
applications, retaining all the training cases is undesirable due
to the increase in storage space and running time, but for our
application it is not such a nuisance, since the number of
known binding sites seldom exceeds 100. Mixture models are
sometimes regarded as semiparametric, since the number of
components in the mixture may increase as a sublinear
function of m (see for example 17).

RESULTS

Test data

To facilitate comparison with the results in Barash et al. (7),
we evaluated our method on the same set of aligned binding
sites for 95 TRANSFAC (18) transcription factors that they
used (7; supplementary material A.1). There were at least 20
binding sites for each of these 95 transcription factors. For 39
of these transcription factors, there is at least one missing
value (denoted by a question mark) for at least one of the
aligned binding sites.

We imputed the missing data as follows. (i) Some positions
in the alignments consist mostly (sometimes entirely) of
missing values. We trimmed the aligned sites so that they
included only those positions in which at least half of the sites
had non-missing values. (ii) We replaced any remaining
missing value with the most frequently occurring nucleotide in
that position for the other aligned binding sites. (For
concreteness, the 15 ties were broken in favor of A over C
over G over TÐthough this is arbitrary, it has little effect on

the results.) Note that this is a maximum-likelihood comple-
tion of the data for the PSSM model. We used the same
completion of the data when assessing both the PSSM and
NONPAR models, so that when NONPAR outperformed
PSSM it was not due to there being a better completion of the
missing data in NONPAR than in PSSM. [It should be noted
that due to the non-uniform way in which different genes have
been investigated, the binding sites listed in TRANSFAC may
not exactly be coextensive with the true binding sites of a
transcription factor. Although high-throughput in vitro tech-
nologies for ®nding binding sites, such as SELEX (19), can
avoid some of this discovery bias, in vitro binding af®nities
may differ from in vivo binding af®nities (20).]

Average log-probability

As in Barash et al. (7), we ®rst assessed our model by
performing 10-fold cross-validation on known binding sites to
measure the ability of the model to generalize to unseen
binding sites. For each of the 95 TRANSFAC transcription
factors F in our test set, the following procedure was used.
(i) The m binding sites for F were randomly divided into 10
pools P1,¼, P10 of equal size (61). (ii) For i = 1,¼, 10,
models PSSMb and NONPARb,b were built from all the
binding sites in the nine pools other than Pi. The parameters b
and b were (optionally) tuned, using all of the binding sites for
all of the 95 transcription factors, except for the binding sites
in Pi. These models were used to compute log Pr(x|PSSMb)
and log Pr(x|NONPARb,b) for each binding site x Î Pi.
(iii) The average of the log-probabilities from step (ii), taken
over all m binding sites, was computed for PSSM and also for
NONPAR. (Note that the log-probability for each site x was
computed using a model constructed from the nine pools that
did not include x.) Two one-sided paired t-tests were
performed on the collection of m paired differences log
Pr(x|PSSM) ± log Pr(x|NONPAR) of log-probabilities. As in
Barash et al., we will say that a model is better than another for
transcription factor F if its average log-probability is higher,
and that it is signi®cantly better if the corresponding paired
t-test is signi®cant at the 0.05 level. [The paired t-test is
appropriate when the paired differences are normally distribu-
ted. In our tests, roughly half the transcription factors fail
Lilliefors' test for normality at the 0.05 level. We report
P-values for one-tailed paired t-tests for ease of comparison
with the results in Barash et al.; one sees the same general
trends using the (non-parametric) sign-test for differences in
medians, however.]

In the results reported in Barash et al., ®ve pseudocounts
were used for the PSSM models, distributed uniformly. In step
(ii), we had the option of ®xing or tuning the parameter b,
and of tuning the parameter b either globally or locally.
Tuning parameters locally usually gives better average log-
probabilities, but tuning them globally provides `default'
parameters that work reasonably well for a range of
transcription factors. (Since we left out some of the data
each time we tuned the parameters globally, the resulting
parameters varied slightly for different transcription factors or
different folds of the cross-validation for a single transcription
factor, but never by >0.1 for b or >0.01 for b; in what follows,
we precede globally-tuned parameters with tildes to indicate
this minor variability.) We distributed the pseudocounts for
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both PSSM and NONPAR uniformly in all our tests, following
Barash et al. (7).

First we set b = 5 for PSSM, and tuned both b and b locally
for NONPAR; NONPAR was better than PSSM for 89 of the
95 transcription factors (signi®cantly better for 59, signi®-
cantly worse for one). Next we set b = 5 for PSSM, and tuned
both b and b globally for NONPAR. (The globally tuned value
for b was ~1.7, and for b it was ~0.54.) NONPAR was better
than PSSM for 84 of the 95 transcription factors (signi®cantly
better for 59, signi®cantly worse for three).

These two comparisons were between versions of our
model with tuned parameters and the same PSSM model with
b = 5 used as a baseline for the comparisons in Barash et al.
(7). As it may seem unfair to tune b for NONPAR but not for
PSSM, we also did comparisons in which b was set to 5 in both
models, and in which b was tuned either locally or globally in
each model. The results of the comparisons are summarized in
Table 1, with numbers of signi®cant differences enclosed in
parentheses. (As above, parameters preceded by tildes were
tuned globally.)

We also note that a PSSM with b tuned globally (to ~1.6)
was better than a PSSM with b = 5 for 75 of the 95
transcription factors (signi®cantly better in 43 cases, signi®-
cantly worse in ®ve). But the differences in average log-
probabilities were much less pronounced here than in the
comparisons between PSSM and NONPAR, and NONPAR
outperformed the tuned PSSM (Fig. 1).

We cannot compare our average log-probabilities directly
to those in Barash et al. (7) because the precise numbers
depend on how one randomly divides the transcription factors
into 10 pools during cross-validation. But we can compare
them indirectly, based on their performance relative to a
PSSM with ®ve pseudocounts. (One caveat is that Barash et al.
used EM to get different completions of the missing data for
different models, while we used a maximum-likelihood
completion for PSSM when evaluating both PSSM and

Table 1. Comparison of NONPAR and PSSM for various parameters

NONPAR PSSM NONPAR PSSM
b, b b better (sig) better (sig)

local, local 5.0 89 (59) 6 (1)
~1.7, ~0.54 5.0 84 (59) 11 (3)
5.0, local 5.0 71 (45) 24 (3)
5.0, ~0.48 5.0 67 (44) 28 (7)
local, local local 68 (43) 27 (3)
~1.7, ~0.54 ~1.6 65 (41) 30 (7)

Figure 1. Comparison of average log-probabilities for PSSM and NONPAR
for various choices of parameters b and b. Parameters preceded by tildes
were tuned globally, and parameters called `local' were tuned locally.
Listed above each graph are two models. The vertical axis shows the
average log-probability for the ®rst model minus the average log-probability
for the second model, for each of the 95 transcription factors. (Differences
are sorted from smallest to largest.) A dot above a bar indicates that the
difference in averages is signi®cant at the 0.05 level using a one-tailed
paired t-test. These graphs are in the same style as those by Barash et al. (7;
supplementary material A.2), except that we also include dots below bars to
indicate when the second method is signi®cantly better than the ®rst using
the complementary one-tailed paired t-test.
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NONPAR.) In Barash et al., the tree network was better than
PSSM for 33 of the 95 transcription factors (signi®cantly
better for 22), the mixture of two PSSMs was better than
PSSM for 59 of the 95 transcription factors (signi®cantly
better for 33) and the mixture of two trees was better than
PSSM for 57 of the 95 transcription factors (signi®cantly
better for 35) (7).

Barash et al. also note that at least one of the three
dependency models is better than PSSM for 69 of the 95
transcription factors, with 14 ties and 12 losses (7). But this
result is not comparable to the one-on-one comparisons, since
they do not have a way of automatically selecting which of the
three dependency models is most appropriate based only on
the training data.

Scanning synthetic sequence

Let BIND denote a model, for example PSSM or NONPAR,
for the probability distribution of the binding sites for some
transcription factor. When scanning a collection of promoter
regions for additional binding sites, those segments y for
which Pr(y|BIND) is largest are not necessarily the best
candidates. This is because some y are more likely than others
to appear by chance in promoter regions, and because some
promoter regions may be more likely a priori to harbor binding
sites than others, based for example on microarray expression-
levels (see for example 21) or ChIP localization data (see for
example 22).

Combining high-throughput experimental evidence with
model-based predictions of binding sites can help to reduce
false-positive rates to acceptable levels (9). Having an
accurate estimate of Pr(y|BIND) is valuable because prob-
ability theory provides a principled way of combining various
sources of data. A common approach is to train an r-th-order
Markov model, BG, on intergenic DNA, and to score sites on
the basis of the odds Pr(y|BIND)/Pr(y|BG), or the posterior
odds:

Pr�BINDjy�
Pr�BGjy� �

Pr�BIND�Pr�yjBIND�
Pr�BG�Pr�yjBG�

if a prior estimate Pr(BIND) of the probability that y is a
binding site is available. [Here Pr(BG) = 1 ± Pr(BIND).] One
can then control the number of false-positives by choosing a
cutoff on posterior odds and considering only candidate
binding sites for which this threshold is exceeded. [In an r-th
order Markov model BG, each nucleotide, given its r
immediate predecessors, is conditionally independent of its
other predecessors. Thus a 0th-order Markov model is just a
speci®cation of mono-nucleotide frequencies fA, fC, fG and fT.
In this case the log of the odds for y = y1,¼,yn is given byPn
j� 1

M�yj; j� with M(k,j) = log W(k,j) ± log fk for the standard

PSSM W; M is the (additive) weight matrix for the log-
likelihood model in Heumann et al. (23).]

A less demanding task is just to scan for the sites with the
highest posterior oddsÐhere the exact probabilities are not
important, only the rankings. Since PSSMs are essentially so-
called `naive' Bayes models (24), which can sometimes serve
as good classi®ers even when their probability estimates are

inaccurate (25), we wanted to test whether the NONPAR
model gave better rankings than PSSMs.

For this test we used a subset of the 95 transcription factors
used above, consisting of those 60 that TRANSFAC associates
with humans. We used a third-order Markov model trained on
human promoter regions for BG (7), and generated a synthetic
background sequence 2.5 million nucleotides long from this
model. As above, we used 10-fold cross-validation on each
transcription factor to compute Pr(y|BIND) for each known
binding site y. We also computed the odds by dividing by
Pr(y|BG) for each y. We then scanned the synthetic back-
ground sequence and counted the number of segments that had
higher odds than yÐthis is the number of false-positives one
would encounter in a list ranked by odds before getting to y,
which we denote by FP(y). This is basically the same as
embedding the known site into simulated background
sequence as described in (6) and (7), except that it does not
score those sites that overlap the embedded site. The rationale
for embedding known sites in simulated background sequence
instead of actual promoter regions is that the actual promoter
regions may include additional binding sites not listed in
TRANSFAC, making them less suitable as a negative
control (6).

We computed FP(y) for each y using both PSSM and
NONPAR as binding models. But averaging the number of
false-positives over all binding sites for a given transcription
factor does not always give a useful measure of performance,
since these averages tend to be dominated by the single
binding site with the most false-positives. We de®ne FPt to be
the average of the smallest t percent of the false-positive
counts FP(y). To assess performance over a range of
sensitivity levels, for each of the 60 transcription factors we
computed FPt for both PSSM and NONPAR at each
sensitivity level t = 5, 10, 15,¼, 100. Then for each t we
counted the number of transcription factors for which FPt for
NONPAR was less than FPt for PSSM, the number for which
FPt for PSSM was less than FPt for NONPAR, and the number
for which they were equal. (Some of the ties might have been
broken if we had scanned more than 2.5 million nucleotides.)

Figure 2 shows these counts as a function of t, for PSSM and
NONPAR models both tuned globally. For every value of t,
NONPAR beat PSSM more often than PSSM beat NONPAR.
This was also true with parameters tuned locally for both
models, and with b clamped to 5 for both models. To
demonstrate that the average log-probability comparisons in
the previous section were not dominated by a few outliers, we
have also included in Figure 2 graphs showing the number of
times NONPAR beats PSSM as a function of t, using the
average of the smallest t percent of log-probabilities as the
yardstick. (In these graphs we just consider the 60 human
transcription factors.)

Finally, we did a test to assess the sensitivity and speci®city
one obtains by classifying a DNA segment y from a promoter
region as a binding site whenever the posterior probability
Pr(BIND|y) is >0.5. For this test we set the prior Pr(BIND) to
be 30/(30000 3 500) = 1/500 000; this corresponds to a
scenario in which there are ~30 000 promoter regions, of
average width ~500, and a given transcription factor may bind
to about 30 sites in total. In the course of the cross-validation
described above, with parameters tuned globally for both
PSSM and NONPAR, PSSM correctly classi®ed 405 of the
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2759 TRANSFAC binding sites as such, and on average
misclassi®ed fewer than one (0.34) of the 2.5 million synthetic
background segments as binding sites; NONPAR correctly
classi®ed 450 of the 2759 TRANSFAC binding sites as such,
and on average misclassi®ed fewer than one (0.41) of the 2.5
million synthetic background segments as binding sites.

DISCUSSION

Tree networks (6,8) [and subclasses, di-nucleotide weight
matrices (26,27) and ®rst-order Markov models] offer a
limited increase in expressiveness over PSSMs without too
great an increase in the number of parameters that must be
estimated. But for more expressive models such as higher-
order Markov models or Bayesian networks, the paucity of
training data makes it important to use sensible smoothing
when estimating the parameters. We address this problem by
using b to bias each component of NONPAR in the direction
of a standard PSSM. For Bayesian networks and mixtures of
PSSMs there is the additional problem that even if one has a
criterion for model selection, it may be computationally
unfeasible to ®nd the best model relative to this criterion (7).
Although NONPAR may be viewed as a mixture model, by
building one component from each known binding site we
side-step both the problem of getting stuck in local maxima
with the EM algorithm, and the problem of choosing the
number of components.

We have focused in this paper on the problem of ®nding
additional binding sites for a transcription factor when a
collection of aligned known binding sites is already available.
Another important problem is to detect binding sites given
only a collection of unaligned promoter regions for genes that
are suspected of being co-regulated [see (1) for an overview].
Several algorithms for doing this, such as MEME (28),
BioProspector (29) and AlignAce (12), use PSSMs to score
different local alignments of the promoter regions when
searching for binding sites. As was done with the models in
Barash et al. (7), the model NONPAR can be swapped into a
MEME-like framework in place of the PSSM. (Note that when
using NONPAR to compute the score for a collection of
aligned candidate binding sites, one should compute the score
for each binding site using a NONPAR model built from just
the other aligned sites.) In an EM-based framework such as
MEME, using NONPAR would cause the running time to
increase by a factor proportional to the number of candidate
promoter regions being examined, since a model is built using
a weighted average of all promoter regions. But by using a
Gibbs-sampler based approach such as AlignAce, in which a
model is built using only a small stochastic subset of these
promoter regions at each step, the penalty in running time is
less of a concern.

Figure 2. (Top) The number of the 60 human transcription factors for
which the average false-positive rate at t-percent sensitivity for NONPAR
was lower than for PSSM (heights of black bars) and vice versa (heights of
white bars). Heights of gray bars indicate the number of ties. (Middle) The
number of the human 60 transcription factors for which the average log-
probability at t-percent sensitivity for NONPAR was higher than for PSSM
(heights of black bars) and vice-versa (heights of white bars). (Bottom) As
in the middle graph, but with b = 5 pseudocounts used for PSSM, and with
the parameters for NONPAR tuned locally. (In the upper two graphs, the
parameters for PSSM and NONPAR were tuned globally.)
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The model for binding sites described by Xing et al. (6) has
an advantage over standard PSSMs, the models used by
Barash et al. and NONPAR, in that it uses stronger prior
biological knowledge about binding sites to avoid ®nding
irrelevant conserved patterns in unaligned sequences. The
basic idea is that in binding sites there can be positions that are
strongly conserved and positions that are weakly conserved,
and for most transcription factors the strongly conserved
positions tend to occur in clusters rather than in isolation. Thus
a ®rst-order hidden Markov model with hidden states corres-
ponding to strongly and weakly conserved positions, when
trained on known transcription factors, will tend to prefer
patterns having this characteristic clustering of strongly
conserved positions over patterns in which the strongly
conserved positions are interspersed randomly with weakly
conserved positions.

Xing et al. use eight prototype Dirichlet-multinomial
distributions, some strongly conserved and some weakly
conserved, as their hidden states. Because their Markov model
operates at the level of the Dirichlet priors for the multinomial
distributions of nucleotides in each position and not on the
multinomial distributions themselves, it can be used to
produce a PSSM in which the number and distribution of
pseudocounts in each position varies based on the estimates of
the hidden states. We could in principle incorporate stronger
biological prior knowledge into NONPAR by using this PSSM
instead of the standard PSSM W0

b when we form each mixture
component Wt

b,b = bW0
b + (1 ± b)Wt

b/m. Finally, we note that
we get similar results by taking Wt

b,b = bW0
b + (1 ± b)Wt

0, i.e.,
using no pseudocounts in the rightmost term, although in this
case the optimal parameters change. A reason for using b/m is
that then when b = 1, NONPAR reduces to a standard PSSM
with b pseudocounts; and when b = 0, NONPAR reduces to
mixture of m standard PSSMs each with b/m pseudocounts, for
a total of b pseudocounts. Thus in some sense b can be
interpreted as the number of pseudocounts used in NONPAR,
regardless of which value of b is used to interpolate between
these two extremes. [Note that the globally tuned value of b
for PSSMs (~1.6) is very nearly the same as the globally tuned
value of b for NONPARs (~1.7).] But if we use no
pseudocounts in the rightmost terms, then in some sense the
total number of pseudocounts is b´b. This variant of NONPAR
has another interpretation, though: it is the mixture of m
standard PSSMs, where the t-th PSSM is built from all the
training sites {x1,¼, xm} with d extra copies of xt thrown in.
[Taking d = (m + b)(1 ± b)/b gives the equivalence.]

This also suggests a generic strategy for getting arbitrary
parametric probabilistic models to look more like empirical
distributions, although for models that are not easily adapted
to fractionally weighted data points one may need to take d to
be an integer. This ®ts into the framework for designing
`committees of models' described by Christensen et al. (30).
With d = 1, this gives what might be called an `inverse-jack
knife' approach, since it involves adding an extra copy of each
data point in turn, rather than removing each data point in turn
as with the usual jack-knife (31).
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