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Introduction
The internalization and digestion of particulate materials by 

eukaryotic cells is a complex process that plays important roles 

in host defense against infection, development, and tissue 

homeostasis (Aderem and Underhill, 1999; May and Machesky, 

2001; Segal, 2005; Stuart and Ezekowitz, 2005). In mammals, 

phagocytosis of microbial pathogens by so-called professional 

phagocytes such as macrophages and neutrophils is one of the 

earliest responses in host defense and is critical for controlling 

infl ammation (Aderem and Underhill, 1999; May and Machesky, 

2001; Segal, 2005; Stuart and Ezekowitz, 2005). Phagocytosis 

begins with the attachment of particles to cell surface receptors, 

triggering a reorganization of the plasma membrane and actin 

cytoskeletal components to facilitate particle internalization and 

the formation of a phagosome. The phagosome matures over time 

by sequentially interacting with early, then late endocytic vesicles 

and fi nally lysosomes, culminating in the formation of a phago-

lysosome in which the ingested material is degraded (May and 

Machesky, 2001; Segal, 2005; Stuart and Ezekowitz, 2005). 

The mechanisms that underlie the early steps of particle inter-

nalization and phagosome formation are relatively well under-

stood; however, the molecular machinery regulating phagosome 

maturation, particularly the process of phagolysosome formation, 

remains unclear.

Delineating the mechanism of phagosome maturation is 

critical, as certain intracellular pathogens evade phagolyso-

somal fusion in macrophages by using a variety of strategies to 

alter macrophage signaling (Rosenberger and Finlay, 2003). In 

the case of Mycobacterium tuberculosis (Pieters and Gatfi eld, 

2002; Rosenberger and Finlay, 2003), a number of mechanisms 

have been proposed for lysosome evasion, including the effects 

of ammonia production (Gordon et al., 1980), the close ap-

position between the bacterium and the vacuole membrane 

(de Chastellier and Thilo, 1998), the ability of surface lipids and 

cord factor to inhibit vesicular fusion (Fratti et al., 2001; Vergne 

et al., 2003), and the ability of a eukaryotic-like serine/threonine 

protein kinase G to inhibit phagosome/lysosome fusion in 

infected macrophages (Walburger et al., 2004). Other bacterial 

pathogens are able to alter phagosomal maturation to survive 

in macrophages by residing in various organelles, such as late 

endosomes (S. typhimurium), lysosomes (Coxiella burnetti), 
and rough endoplasmic reticulum (Legionella pneumophila) 

(Rosenberger and Finlay, 2003). The array of interfering strategies 

that are used by pathogens suggest that the molecular mechanisms 
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hagocytosis is crucial for host defense against 

microbial pathogens and for obtaining nutrients in 

Dictyostelium discoideum. Phagocytosed particles are 
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by re-expression of VSK3. We found that the in vivo 

function of VSK3 depends on the presence of the kinase 

domain and vesicle localization. Furthermore, VSK3 is not 

essential for engulfment, but instead, is required for the 

fusion of phagosomes with late endosomes/lysosomes. 

Our fi ndings suggest that localized tyrosine kinase signal-

ing on the surface of endosome/lysosomes represents a 

control mechanism for phagosome maturation.
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regulating phagosome maturation is complex; this point is under-

scored by recent proteomic analyses of phagosome-associated 

proteins in mouse macrophages where more than 160 proteins 

were identifi ed (Garin et al., 2001).

Cellular signaling proteins have been implicated in 

phagosome maturation. For example, activation of the toll-like 

receptor (TLR) signaling pathway by bacteria regulates phago-

cytosis at multiple steps including internalization and phago-

some maturation (Blander and Medzhitov, 2004). In addition, 

lipid-modulating enzymes such as PI3-kinase and sphingosine 

kinase, which alter the lipid composition of phagosomal mem-

branes, as well as the lysosome-associated tyrosine kinase Hck 

(hematopoietic cell kinase) have been shown to regulate phago-

some maturation (Cougoule et al., 2006; Yeung et al., 2006). 

Extensive studies suggest that newly formed phagosomes carry 

signaling molecules that direct them to specifi cally interact 

with endosomes and then lysosomes. In addition to the cell sur-

face receptors (TLRs), small GTPases such as Rab5 (Duclos 

et al., 2000; Fratti et al., 2001) and Rab7 (Rupper et al., 2001), 

and LAMP1 and LAMP2 (lysosome-associated membrane 

proteins) (Chen et al., 1985) play roles in inter-compartment 

communication, mediating the fusion process during phagosome 

maturation. It is likely that the surface of endosomes and lyso-

somes also carry signaling proteins in order to selectively fuse 

with incoming phagosomes. However, such proteins have yet 

to be determined.

The single-cell, soil amoeba Dictyostelium discoideum 

is a professional phagocyte that has proven to be an excellent 

model system for phagocytosis. D. discoideum is a genetically 

tractable organism with mutants often displaying clear phago-

cytosis phenotypes that can be easily screened (Peracino et al., 

1998) and has phagocytosis rates severalfold higher than those 

observed in mammalian macrophages or neutrophils (Thilo, 

1985). D. discoideum and mammalian phagocytes share many 

common molecular components that regulate engulfment and 

phagosome maturation. Like mammalian phagocytes, F-actin 

mediates the formation of the phagocytic cup and the internal-

ization of particles, and the WASP family of actin-regulating 

proteins also plays important roles in regulating phagocytosis. 

Also in common is the localization of small Rab GTPases and 

LAMP proteins in phagosomes and a requirement for Rho and 

Ras family GTPases for regulating phagocytosis (Maniak et al., 

1995; Peracino et al., 1998; Muller-Taubenberger et al., 2001; 

Rupper and Cardelli, 2001). Finally, pathogens that evade death 

in mammalian phagocytes are also able to escape killing by 

D. discoideum, suggesting the existence of common targets in 

both host cell types (Steinert and Heuner, 2005).

Tyrosine phosphorylation plays a major role in the early 

signaling events of phagocytosis in mammalian phagocytes 

(Aderem and Underhill, 1999; Stuart and Ezekowitz, 2005) and, 

as suggested by recent work (Cougoule et al., 2006), may func-

tion in later steps as well. In general, tyrosine kinases constitute 

a large family of signaling molecules and are key regulators of 

many cellular processes, functioning to transduce signals within 

and between eukaryotic cells. It is possible that certain tyrosine 

kinases also regulate the phagosome maturation process. In the 

present study, we used D. discoideum as a model system to 

elucidate the physiological functions of a novel receptor tyro-

sine kinase (RTK)–like protein we termed vesicle-associated 

kinase (VSK) 3. VSK3 consists of a signal peptide, a single trans-

membrane domain, a C-terminal kinase domain, and one N-

terminal TIG (immunoglobulin-like fold) domain that is found 

in the MET (HGF receptor tyrosine kinase) kinase family of 

higher eukaryotes (Goldberg et al., 2006). This report is the fi rst 

to show that an RTK-like protein localizes to the surface of late 

endosomes/lysosomes and may serve to mediate vesicle fusion 

and phagosome maturation.

Results
Identifi cation of a receptor-like tyrosine 
kinase, VSK3, in D. discoideum
Using a genomic approach to identify receptor-like tyrosine 

kinases and study their functions in D. discoideum, we searched 

the D. discoideum genomic database (www.dictybase.org) and 

found 242 genes that encode proteins containing one of the cat-

alytic domains characteristic of eukaryotic protein kinases. Among 

them, 46 genes encode the peptide sequence of HRDLXXXN, 

which is a signature domain in protein tyrosine kinases (Kim 

et al., 1999). We then analyzed the structure of the 46 putative 

protein kinase sequences (http://smart.embl-heidelberg.de), and 

found three previously uncharacterized proteins we termed 

VSK1, 2, and 3 (see Discussion), which possess a classic receptor 

kinase domain architecture of a signal peptide, a single trans-

membrane domain, and a C-terminal kinase domain. In this 

study, we focused on the function of VSK3 (Fig. 1 A). Recently, 

a comprehensive genomic analysis of the protein kinases in 

D. discoideum also identifi ed the same three receptor-like kinases, 

which were named receptor kinases (rk) 1, 2, and 3, respectively 

(Goldberg et al., 2006). We propose that VSK is a more suitable 

name for these proteins to refl ect their subcellular localization 

and potential function (see Fig. 4 and Discussion).

D. discoideum displays various biological behaviors dur-

ing its life cycle. As free-living amoebae, D. discoideum are 

professional phagocytes capable of internalizing and digesting 

bacteria and yeast (Duhon and Cardelli, 2002). Upon starva-

tion, amoebae enter a developmental program during which 

they aggregate via cAMP-mediated chemotaxis (Mahadeo and 

Parent, 2006). To evaluate functions of the VSK3 protein, we 

determined the expression profi le of the vsk3 gene during dif-

ferentiation using real-time PCR. The mRNA level of the vsk3 

gene was relatively high in vegetative cells in rich medium, 

and gradually declined upon starvation (Fig. 1 B), suggesting 

a requirement for VSK3 in growing cells. Both cAR1 and Gβ 

mRNA showed the expected expression profi le in control am-

plifi cation experiments (Fig. S1, available at http://www.jcb.org/

cgi/content/full/jcb.200701023/DC1).

VSK3 is required for effi cient phagocytosis
vsk3-null (vsk3−) cells were generated through homologous 

recombination of the vsk3 genomic sequence fl anking the blas-

ticidin resistance cassette into the vsk3 open reading frame of 

wild-type (AX2) cells. Disruption mutants were identifi ed by PCR 

and Southern blot analyses (Fig. 1 C; Fig. S2, A and B, available 
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at http://www.jcb.org/cgi/content/full/jcb.200701023/DC1). 

To analyze potential growth and developmental phenotypes, wild-

type and vsk3− cells were grown on bacterial lawns supported 

on an agar substrate. The bacteria provide a food source for 

growing D. discoideum. As bacteria are consumed and cleared, 

circular plaques form on the bacterial lawns, which reflect 

growth and the phagocytic capacity of D. discoideum cells. As 

a response to the loss of nutrients in the center of plaques, cells 

chemotax into multicellular aggregates and ultimately differ-

entiate into fruiting bodies consisting of dormant spore cells 

supported by stalk cells. When grown on bacterial lawns, we 

observed that vsk3− cells form signifi cantly smaller plaques 

(Fig. 1, D and E) relative to wild-type cells, suggesting a de-

fect in growth or phagocytosis. We examined the growth rate 

of vsk3− and wild-type cells in shaking, rich, liquid medium. 

Under these conditions, cells obtain liquid nutrients through 

pinocytosis (Hacker et al., 1997). We found no significant 

 difference in either the growth rate (Fig. 1 F) or the rate of 

pinocytosis between strains (Fig. S3 A, available at http://www

.jcb.org/cgi/content/full/jcb.200701023/DC1), suggesting that 

Figure 1. The predicted structure of VSK3, its expression pattern, and disruption are shown. (A) A schematic depiction of the VSK3 protein is shown, high-
lighting a signal sequence, SS, an N-terminal domain, a transmembrane domain, TM, and a C-terminal kinase domain. (B) The vsk3 mRNA levels decrease 
during development. Total mRNA was harvested from growing cells (0) and from cells developed in nonnutrient DB buffer with cAMP pulses for 2, 4, and 
6 h and vsk3 mRNA levels were assessed by real-time PCR. (C) The predicted molecular weight increase of PCR products from genomic DNA of two vsk3−

clones relative to WT is shown. A marker lane (M) shows the 1-Kb DNA ladder. (D) Clonal plaques of WT and vsk3− cells on bacterial lawns are shown. 
Bars: 5 cm. (E) The diameter of individual plaques formed by WT and vsk3− cells were measured 6 d after cells were plated on bacterial lawns. Means 
and SD are shown (n = 20). A t-test indicated a statistically signifi cant difference (*, P < 0.01). (F) Growth rates of WT and vsk3− cells in D3T media are 
shown. (G) Cells fed TRITC-labeled, heated killed yeast were treated with Trypan blue and processed for fl uorometric analysis at the indicated time points 
to measure phagocytosis rates. Fluorescence intensities were normalized to the maximal value of WT cells. Each measurement was done in triplicate 
and the experiment was performed three times. The mean and SD are shown from one experiment. (H) WT and the two indicated vsk3− strains were 
allowed to take up FITC-dextran by pinocytosis. After washing, FITC fl uorescence was measured in aliquots of total cells at the indicated time points 
by fl uorometry.
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the defect in plaque size on bacterial lawns is due to impaired 

phagocytosis. To test for potential phagocytic defects, phago-

cytosis was measured as the cell-associated fl uorescence intensity 

of TRITC-labeled yeast after washing (Fig. 1 G). Cells lacking 

VSK3 exhibit a clear decrease in yeast uptake in comparison 

to wild-type cells, indicating that the protein is required for 

normal phagocytosis.

To determine if VSK3 affects the acidifi cation of endo-

somal vesicles, we pulse labeled wild-type and vsk3− cells with 

FITC-dextran and measured the change in FITC fl uorescence 

over time. FITC fluorescence is sensitive to pH change and 

FITC-dextran has been used as a probe to measure endosomal 

pH along the fl uid-phase endocytosis pathway (Yamashiro and 

Maxfi eld, 1988). After the cells were loaded with FITC-dextran 

and then washed with phosphate buffer (pH 6.6) the endosomal 

pH dropped rapidly, reaching a minimal value of �pH 5.0 by 

20 min and then returning to the extracellular value of pH 6.6 

(Fig. 1 H), as previously reported (Aubry et al., 1993). We found no 

substantial difference in the kinetics of pH change as measured 

by FITC fl uorescence in two independent vsk3− clones (Fig. 

1 H); these data indicate that VSK3 does not affect endo-

somal acidifi cation.

Finally, vsk3− cells did not display considerable develop-

mental phenotypes. The vsk3− cells form wild-type–like fruit-

ing bodies in plaques on bacterial lawns and on nonnutrient 

agar. In addition, we found that the vsk3− cells exhibit relatively 

normal chemotaxis responses to cAMP using a micropipette 

assay (unpublished data).

Figure 2. Quantitative analyses of phagocytosis. (A) Phagocytosis of TRITC labeled yeast of various cells was measured by FACS. Wild-type (WT) and 
vsk3− cells were incubated with TRITC-labeled, heated killed yeast at room temperature to allow internalization. Samples were collected at the indicated 
times (min) and treated with Trypan blue to quench fl uorescence of the noninternalized yeast. The left peak represents the background autofl uorescence of 
cells and the right peak represents cells that have internalized TRITC labeled yeast particles. (B) vsk3-YFP mRNA levels were assessed by real-time PCR for 
the transformants and normalized to the vsk3 mRNA level in wild-type cells. Each measurement was done in triplicate and the mean and SD are shown. 
(C) VSK3-YFP protein expression in vsk3− cells selected at the indicated levels of G418 was determined by probing Western blots of total cellular protein 
with anti-GFP antibody. (D) Expressing VSK3-YFP at the proper level rescues the phagocytosis defect of vsk3− cells. Cells were incubated with TRITC-labeled 
yeast for 120 min and measured by FACS. vsk3− and wild-type cells expressing VSK3-YFP were selected after transformation with the indicated concentra-
tion of G418 (top right corner). Each measurement was done in triplicate and all experiments were performed three times.
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Quantitative analyses of phagocytosis 
in vsk3 mutants
To further analyze the phagocytic abilities of vsk3 mutants, we 

used a fl ow cytometry assay to measure uptake of heat-killed 

yeast fl uorescently labeled with TRITC (Fig. 2). In this assay, 

the fl uorescence of ingested yeast particles was determined 

after quenching the signal from uningested yeast by the addition 

of Trypan blue. Fig. 2 A shows representative fl ow cytometry 

results of cells incubated with TRITC-labeled yeast over a 2-h 

time course at 22°C. The fi rst peak shows the background auto-

fl uorescence of cells having no internalized TRITC-labeled 

yeast and the appearance of the second peak over time indicates 

the rise in the level of ingested fl uorescent yeast. Relative to 

wild-type, vsk3− cells display a considerable decrease in yeast 

uptake during the time course with only a fraction (35.5%) of 

vsk3− cells containing internalized yeast compared with 82.6% 

for wild-type cells by 2 h (Fig. 2 A).

To rescue the vsk3-null phenotype, we transformed null 

cells with a nonintegrating, extrachromasomal plasmid that con-

stitutively expresses a VSK3-YFP fusion protein (see Fig. 3 A) 

under the control of the actin 15 promoter. Transformants were 

selected with various levels of G418 to control the level of VSK3-

YFP (Comer et al., 2005). As expected, increasing selective 

drug pressure increased the level of VSK3-YFP mRNA and 

VSK3-YFP protein as detected by real-time PCR and Western 

blot analysis, respectively (Fig. 2, B and C). The phagocytosis 

defect observed in vsk3− cells (Fig. 2 A) was substantially res-

cued in transformants selected with the lower concentration 

of drug (Fig. 2 D). Interestingly, selection of transformed vsk3− 

or wild-type cells with a concentration of G418 at 10 μg/ml 

caused a reduction in phagocytic capacity (Fig. 2, B–D). Similar 

negative effects on phagocytosis have been observed for both 

loss- and gain-of-function mutants of RacB (Lee et al., 2003), 

suggesting that a balance of signaling activity is required for 

optimal phagocytosis.

The VSK3 tyrosine kinase domain 
is required for phagocytosis
To measure protein kinase activity and to determine the local-

ization of VSK3 in vivo, we created a VSK3 fusion protein 

tagged at its C terminus with YFP (VSK3-YFP). For controls, 

we deleted the kinase domain from VSK3-YFP (VSK3∆K-YFP), 

deleted the N terminus and transmembrane domain to fused the 

kinase domain to YFP (K-YFP) and mutated a conserved lysine 

to arginine in the presumptive ATP binding site (VSK3K518R-

YFP; Fig. 3 A). The K518R point mutation was based on previous 

Figure 3. VSK3 contains a functional tyrosine kinase 
domain. (A) A schematic depiction of VSK3, VSK3∆K, the 
VSK3 kinase domain, K, and VSK3K518R tagged with 
YFP is shown (SS, signal sequence; TM, transmembrane 
domain). (B) Lysates of cells expressing VSK3-YFP, VSK3∆K-
YFP, K-YFP, and VSK3K518R were mixed with protein G 
beads that were coupled with anti-GFP antibodies (rabbit), 
and bound proteins were analyzed by immunoblotting 
with anti-GFP antibodies (mouse). The lysate of parental 
cells was used as control. (C) The relative levels of VSK3-
YFP, VSK3∆K-YFP, and K-YFP from equivalent cell lysates 
were quantifi ed from band intensities on immunoblots. The 
measurement was done three times and the mean and SD 
are shown. (D) Relative tyrosine kinase activity (counts per 
min, cpm) were measured from immunoprecipitates of 
equal lysates from cells expressing VSK3-YFP, VSK3∆K-
YFP, VSK3K518R, and K-YFP compared with positive (Src) 
and negative kinase controls provided by the SignaTECT 
kit (see Materials and methods). (E) Relative Ser/Thr kinase 
activity was measured from immunoprecipitates of equal 
lysates from cells expressing VSK3-YFP, VSK3∆K-YFP, 
VSK3K518R, and K-YFP compared with positive (MAPK) 
and negative kinase controls provided by the KinEASE FP 
kit (see Materials and methods).
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studies that demonstrated this conversion abrogates kinase ac-

tivity (Kamps and Sefton, 1986; Weinmaster et al., 1986; Ebina 

et al., 1987). As shown above, VSK3-YFP rescues the phagocy-

tosis defect of vsk3− cells (Fig. 2 A), indicating that YFP moiety 

does not interfere with VSK3 function in vivo. In contrast, ex-

pressing VSK3∆K-YFP or VSK3K518R-YFP in vsk3− cells 

does not rescue the defect (Fig. S3, B and C), showing that the 

kinase domain is required for VSK3 function.

To assay VSK3 kinase activity, VSK3-YFP, VSK3∆K-

YFP, K-YFP, and VSK3K518R-YFP were partially purifi ed 

by immunoprecipitation from equal numbers of transformed 

D. discoideum cells selected with 10 μg/ml of G418. Western 

blot analyses of immunoprecipitates showed that the level of 

VSK3-YFP protein was consistently fourfold lower than that of 

K-YFP and VSK3∆K-YFP expressed in the same parental cells 

(Fig. 3, B and C). Both VSK3-YFP and K-YFP were able to phos-

phorylate the tyrosine kinase–specifi c peptide substrate 60% as 

well as the control mammalian Src tyrosine kinase (Fig. 3 D), but 

did not show any detectable activity in a similar Ser/Thr kinase 

assay (Fig. 3 E). We are unable to offer a simple explanation as 

to why immunoprecipitates from cells expressing K-YFP did not 

yield more kinase activity relative to the amount of input pro-

tein when compared with the full-length VSK3-YFP; synergism 

from the N-terminal domain or associated proteins may account 

for the relative higher level of kinase activity from VSK3-YFP 

immunoprecipitates. As expected, neither VSK3∆K-YFP nor 

Figure 4. Cellular localization and topology of the 
VSK3 protein. Bar is 5 μm. (A) Cells expressing VSK3-
YFP, VSK3∆K-YFP, VSK3K518R-YFP, and K-YFP were 
incubated with TRITC-dextran to label lysosomes (Lyso) 
and were plated in 1-well chambers. Shown are repre-
sentative cells imaged simultaneously for YFP, TRITC, 
and DIC by confocal microscopy. Merged images show 
colocalization of the YFP and TRITC signal. (B) Cells 
expressing VatM-GFP or VSK3-YFP were briefl y incu-
bated in the presence of 2.5 mM neutral red in DB buffer, 
washed, and visualized by confocal microscopy. Arrow 
indicates contractile vacuole. (C) The fl uorescence pro-
tease protection (FFP) assay reveals the topology of the 
lysosomal membrane protein VSK3. Cells expressing 
VSK3∆K-YFP (green) and labeled with TRITC-dextran 
(red) were treated with digitonin and trypsin at time 0 
and were imaged simultaneously for YFP and TRITC-
dextran over time. Time in seconds after addition of 
digitonin and trypsin is indicated at the top right cor-
ner of each image. (D) Mean and SD (n = 8) of fl uores-
cence intensity change for YFP and TRITC-dextran after 
digitonin and trypsin treatment within individual cells 
are shown. (E) Cartoon of the FPP assay. Enlarged on 
the far left, is a lysosome (black circle) fi lled with TRITC-
dextran (red) illustrating the deduced topology of 
VSK3-YFP with an inwardly facing N-terminal domain, 
and an outwardly facing C-terminal kinase domain 
(fi lled gray circle), and YFP moiety (fi lled green circle). 
The time course illustrates the selective permeabilization 
of the plasma membrane (gray circle) by digitonin 
(D) and the destruction of the YFP moiety (green circle) 
by the protease (P) trypsin, which leaves lysosomal 
membranes intact.
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VSK3K518R-YFP showed detectable protein kinase activity in 

either assay (Fig. 3, D and E; Fig. S4, available at http://www

.jcb.org/cgi/content/full/jcb.200701023/DC1). Together, these 

results demonstrate that VSK3 contains an active tyrosine kinase 

domain that is required for its normal function.

VSK3 resides in late endosomal/lysosomal 
membranes with its kinase domain facing 
the cytoplasm
To study the subcellular distribution of VSK3 in live cells, we 

separately expressed VSK3-YFP, VSK3∆K-YFP, VSK3K518R-

YFP, and K-YFP in both wild-type and vsk3− cells, and examined 

fl uorescence in growing cells using confocal laser scanning mi-

croscopy (Fig. 4). VSK3-YFP, VSK3∆K-YFP, and VSK3-K518R-

YFP were observed at the periphery of intracellular vesicles, while 

K-YFP was seen in the entire cytosol. These fi ndings indicate 

that sequence determinants outside of the kinase domain dictate 

VSK3 localization. We incubated these cells with TRITC-dextran, 

which is taken into cells by pinocytosis and selectively labels 

late endosomes and lysosomes (Padh et al., 1993; Rodriguez-Paris 

et al., 1993), and found that VSK3-YFP, VSK3∆K-YFP, and 

VSK3-K518R-YFP localize to the surface of dextran-labeled 

vesicles (Fig. 4 A). Together, these data suggest that both VSK3 

localization and kinase activity are required together for its 

normal functions (Fig. 3 and Fig. 4 A; Fig. S3, B and C; unpub-

lished data).

To further characterize VSK3-containing vesicles, we 

loaded wild-type cells expressing VSK3-YFP and, as a control, 

cells expressing VatM-GFP with neutral red, which accumu-

lates in acidic vesicles (Clarke et al., 2002). VatM is the 100-kD 

transmembrane subunit of the vacuolar H(+)-ATPase and lo-

calizes to both contractile vacuoles and acidic endosomal vesi-

cles that fuse with phagosomes (Clarke et al., 2002). As expected, 

neutral red colocalizes with VatM-GFP in endosomal vesicles 

(Fig. 4 B), with the exception of contractile vacuoles (Fig. 4 B, 

arrow). We found that neutral red also accumulates in VSK3-

YFP labeled vesicles, indicating that VSK3 resides in acidic 

compartments (Fig. 4 B).

It seemed likely that VSK3′s N terminus would be oriented 

toward the interior of vesicles given the existence of a putative 

Figure 5. Loss of vsk3 doss not incur ultrastructural 
change in vesicles. Vegetative wild-type cells (WT-control), 
WT cells expressing VSK3∆K-YFP (VSK3∆K/WT), and 
vsk3− cells expressing VSK3∆K-YFP (VSK3∆K/vsk3−), 
which does not rescue the null phenotype, were fi xed, 
probed with a rabbit anti-GFP antibody followed by a 
gold-conjugated secondary antibody to reveal VSK3-
containing vesicles in electron micrographs. Arrows indi-
cates the vesicles. Low and high magnifi cations are shown.



JCB • VOLUME 178 • NUMBER 3 • 2007 418

N-terminal signal peptide and a single transmembrane domain, 

thus enabling the kinase domain to reside in the cytoplasm where 

ATP is plentiful. To test this prediction, we used a recently estab-

lished fl uorescence protease protection (FPP) assay used to 

study the topology of transmembrane proteins within live cells 

(Lorenz et al., 2006). Cells expressing VSK3-YFP and labeled 

with TRITC-dextran were exposed to digitonin, which specifi -

cally permeablizes the plasma membrane but not membranes of 

intracellular organelles, and were then treated with trypsin to de-

grade unprotected proteins and protein moieties within the cytosol 

(Lorenz et al., 2006). After digitonin and trypsin treatment, 

TRITC-dextran fl uorescence persisted (Fig. 4, C and D), indicating 

that lysosomes remained intact. If VSK3-YFP were oriented in 

the membrane such that the YFP moiety was inside the vesicle, it 

would be protected from trypsin digestion and its fl uorescence 

would persist. However, we observed that the YFP fl uorescence 

was rapidly lost after digitonin and trypsin treatment (Fig. 4, 

C and D), showing that VSK3 is oriented with its N terminus 

within late endosomes/lysosomes and its C-terminal tyrosine 

kinase domain facing the cytosol (Fig. 4 E).

To determine if loss of VSK3 incurs ultrastructural 

changes in cells, we imaged wild-type and vsk3− cells expressing 

VSK3∆K-YFP by transmission electron microscopy (TEM). 

VSK3∆K-YFP could be used as a marker for VSK3 containing 

vesicles in both wild-type and vsk3− cells as our data indicate 

it does not rescue the null phenotype (see Fig. S3 B; unpub-

lished data). The YFP epitope was detected with an anti-GFP 

primary and a gold-conjugated secondary antibody. In control 

experiments, some nonspecifi c nucleation of the enhance-

ment reagent occurred on material other than gold during the 

particle enhancement step (unpublished data) and nonspecifi c 

staining was observed throughout wild-type cells not expressing 

VSK3∆K-YFP when both primary and secondary antibodies 

were used (Fig. 5). In cells expressing the VSK3 marker, gold 

particles were found in high density around intracellular ves-

icles in bold wild-type and null cells well above background 

staining (Fig. 5). These data are consistent with VSK3∆K-YFP 

localization as determined by epifl uorescence microscopy (see 

Fig. 4 A). The morphology of positively staining vesicles varied 

in shape and size, ranging from 0.1 to 1 μm, but no striking dif-

ferences were apparent between vesicles observed in wild-type 

and vsk3− cells. Finally, in support of our FPP assay results (see 

Fig. 4 C), high magnifi cation images of individual vesicles re-

vealed that gold particles accumulated on the outside of vesicles 

(Fig. 5), confi rming that the C terminus of VSK3 is positioned 

toward the cytoplasm.

Figure 6. Dynamic formation of actin-dependent phagocytic cups in wild-type (WT) and vsk3− cells. WT and vsk3− cells expressing coronin-GFP were fed 
with TRITC-labeled, heat-killed yeast. Individual cells were imaged simultaneously for GFP and TRITC fl uorescence during a time course by confocal micros-
copy shown left to right at 30-s intervals. See Videos 1 and 2 (available at http://www.jcb.org/cgi/content/full/jcb.200701023/DC1).
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Formation of the actin-dependent 
phagocytic cup is normal in vsk3− cells
To determine whether VSK3 is involved in actin-mediated inter-

nalization during the early steps of phagocytosis, we visualized 

the formation of the phagocytic cup around TRITC-labeled 

yeast particles in wild-type and vsk3− cells expressing coronin-

GFP, which is known to colocalize with F-actin during particle 

engulfment (Maniak et al., 1995). At the point of attachment, the 

formation of phagocytic cup can be seen as an accumulation of 

coronin-GFP around the yeast. Once internalized, coronin-GFP 

rapidly dissociates from the newly formed phagosome. In vsk3− 

cells, as in wild-type cells, coronin-GFP rapidly accumulates at 

the site of attachment of yeast and remains in association through-

out the engulfment process, and then disappears once the yeast 

is internalized in the newly formed phagosome (Fig. 6). We re-

corded and quantifi ed the time from the formation of phagocytic 

cup to the formation of the phagosome in both wild-type (107 s, 

SD = 14.8 s; n = 10) and vsk3− (102 s, SD = 10.3 s, n = 10) cells, 

and found that there was no considerable difference between 

them. Based on these observations, we conclude that VSK3 is not 

essential for this step of phagocytosis.

VSK3 plays a role in fusion between early 
phagosomes and lysosomes
To further explore VSK3′s function in phagocytosis, we tracked 

the dynamic localization of VSK3-containing vesicles as cells 

were fed heat-killed, Texas red–labeled yeast with confocal 

microscopy. We used VSK3∆K-YFP as a marker because the 

expression of full-length VSK3-YFP to detectable levels for 

epifl uorescent microscopy exerts a dominant-negative effect on 

phagocytosis (see Fig. 2 D), while VSK3∆K-YFP has no effect 

on phagocytosis and localizes to the same vesicles (see Fig. S3 A 

and Fig. 4 A). VSK3∆K-YFP is not detected around yeast parti-

cles during the early phase of phagocytic cup formation, but 

within a minute of full engulfment, VSK3∆K-associated late 

endosomes/lysosomes began to surround the yeast-containing 

phagosome and by fi ve minutes complete fusion occurred (Fig. 

7 A). The kinetics of vesicle fusion we observed is consistent 

with previously reported rates of phagosome–lysosome fusion 

in D. discoideum (Souza et al., 1997). These results suggest that 

VSK3 may be involved in the fusion process between phago-

somes and late endosomes/lysosomes. Finally, images captured 

20 min after feeding show that VSK3∆K-YFP still surrounds 

yeast containing phagosomes, again consistent with late stage 

localization (Fig. 7 B).

We then compared the percentage of phagosome–lysosome 

fusion between wild-type and vsk3− cells. We monitored the 

maturation of phagosomes containing Texas red–labeled yeast 

(red) by their ability to colocalize with lysosomes labeled with 

FITC-dextran (green) over time (Fig. 8). In wild-type cells, 

most internalized yeast colocalized with FITC-dextran by 1 h 

(Fig. 8 A). In vsk3− cells, fewer yeast were internalized, and 

those that were rarely colocalized with FITC-dextran (Fig. 8 A). 

Fig. 8 B shows a quantitative analysis of colocalization of yeast 

and FITC-dextran images of wild-type and vsk3− cells as a scatter 

diagram, demonstrating a high degree of colocalization (linearity) 

in wild-type but not in vsk3− cells. We also quantified the 

percentage of phagosome-lysosome fusion by counting the per-

centage of colocalized Texas red–yeast and FITC-dextran in wild-

type and vsk3− cells using fl uorescence microscopy (Fig. 8 C). 

Figure 7. Late endosomes/lysosomes containing VSK3𝚫K-YFP fuse with 
phagosomes containing newly ingested yeast. (A) Wild-type (WT) cells 
expressing VSK3∆K-YFP were fed heat killed, TRITC-labeled yeast and were 
imaged over time by confocal microscopy to capture the engulfment process, 
the formation of a phagosome, and phagosome-late endosome/lysosome 
fusion. The fi rst nine panels show a merged YFP (green), TRITC (red), and DIC 
time series of a cell ingesting a yeast particle; time in seconds is indicated. The 
last three frames (time points indicated) are from the same time series without 
the DIC channel. See Video 3 (available at http://www.jcb.org/cgi/content/
full/jcb.200701023/DC1). (B) Higher resolution image of cells in (A) 20 min 
after feeding showing VSK3∆K-YFP surrounding yeast fi lled phagosomes.
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Consistently, vsk3− cells had signifi cantly fewer yeast colocalized 

with lysosomes, demonstrating that without functional VSK3, 

cells are defective in the fusion of phagosomes and lysosomes.

Discussion
Although intense study of mammalian phagocytes and D. dis-
coideum has uncovered numerous molecules that regulate the 

early events of phagocytosis, signaling pathways that mediate 

the later events of phagosome maturation have yet to be clearly 

defi ned. In this study, we have identifi ed and characterized a 

novel RTK-like kinase, VSK3, that localizes to late endosomes/

lysosomes (see Fig. 4). VSK3 has a characteristic RTK topology, 

spanning the membrane of intracellular vesicles once with 

a lumenal N-terminal domain and a cytoplasmic C-terminal 

kinase domain (see Fig. 1 A, Fig. 4, and Fig. 5). The kinase 

 domain actively phosphorylates tyrosine residues (see Fig. 3), 

consistent with a localized signaling role for VSK3 on the cyto-

solic face of vesicles. VSK3 is required for normal phagocytosis 

but the defect lies in the number of cells in a population that can 

ingest particles (see Fig. 1 G and Fig. 2). It is possible that vsk3− 

cells cannot effi ciently bind to particles, but once attachment 

occurs, actin-mediated phagocytic cup and phagosome forma-

tion are indistinguishable from that observed in wild-type cells 

(see Fig. 6). VSK3 does not appear to regulate fl uid phase 

uptake or processing (Fig. 1 H; Fig. S3 A); however and most 

signifi cantly, in null cells that do ingest particles, it appears that 

VSK3 is required for phagosome maturation as phagosome 

and late-endosome/lysosome fusion is signifi cantly impaired 

(see Fig. 8).

In mammalian cells, tyrosine phosphorylation plays an 

essential role during the earliest stages of phagocytosis in the 

clustering of Fcγ receptors during particle recognition and up-

take and is accomplished by Src and Syk families of tyrosine 

kinases (Aderem and Underhill, 1999; Kwiatkowska and Sobota, 

1999). In addition to these early functions, another Src-family 

tyrosine kinase, Hck, was shown to be involved in phagosome 

maturation in macrophages (Astarie-Dequeker et al., 2002). Hck, 

although not an RTK-like molecule, localizes to a subset of lyso-

somal vesicles that specifi cally fuse with phagosomes containing 

particles whose entry is mediated by Fcγ receptor signaling, 

implicating a general role for tyrosine kinase signaling throughout 

the phagocytic pathway.

Metazoans encode a wide variety of single-pass, transmem-

brane tyrosine kinases. These prototypic RTKs localize to the 

plasma membrane and function to transduce extracellular sig-

nals to intracellular pathways, and only a few have been impli-

cated in phagocytosis. Distinct from mammalian RTKs, VSK3 

localizes to intracellular vesicles, but contains an N-terminal, 

immunoglobulin-like fold TIG domain (Goldberg et al., 2006), 

which, according to our work (see Fig. 5), would face the lumen 

of vesicles. The presence of TIG domain makes VSK3 most 

similar to the MET family of mammalian RTKs (Goldberg 

et al., 2006), which includes RON kinase, an RTK expressed in 

macrophages that functions, among other roles, in attenuating 

the infl ammatory response (Correll et al., 1997). In comparison 

Figure 8. Phagosome–lysosome fusion in 
wild-type (WT) and vsk3− cells. (A) WT and 
vsk3− cells were incubated with FITC-dextran 
(green) for 3 h to label lysosomes and were fed 
Texas red–labeled, heated killed yeast (red). 
After washing away uningested yeast, cells 
were imaged for lysosomes, yeast and DIC using 
confocal microscopy. Merged images show co-
localization of yeast and FITC-dextran in WT 
but not in vsk3− cells. Bars: 10 μm. (B) Quanti-
tative analysis of colocalization of FITC-dextran 
and Texas red–yeast images as a scatter diagram 
(LSM 510META software; Carl Zeiss Micro-
Imaging, Inc.). The scatter diagram shows three 
fl uorescence positive regions: region 1: FITC 
positive and Texas red negative; region 2: FITC 
negative and Texas red positive; and region 3: 
FITC and Texas red positive. In region 3, FITC-
dextran and Texas red–yeast display a high de-
gree of colocalization in WT but not vsk3− cells. 
The color bar shows colocalization frequency 
between the two channels. (C) Phagosome–
lysosome fusion is signifi cantly reduced in vsk3− 
cells. Lysosomes were prelabeled with FITC-
dextran in WT and vsk3− cells and cells were 
fed Texas red–labeled yeast as in (A). 100 cells 
with internalized yeast were imaged by confo-
cal microscopy and the percentage of intra-
cellular yeast that colocalized with FITC-dextran 
was calculated and expressed as mean and 
SD for six independent experiments. Asterisk 
indicates a signifi cant difference relative to WT 
(P < 0.01).
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to higher eukaryotes, D. discoideum encodes a limited number 

of potential RTK-like molecules (Goldberg et al., 2006). Includ-

ing this report, functions have been attributed to seven of the 

nine putative kinases (Zeng et al., 2000; Chibalina et al., 2004). 

Although the role of two potential single pass RTKs we term 

VSK1 and 2 (rk1 and rk2 in Goldberg et al., [2006]) remain to 

be determined, it is interesting to note that when expressed as 

GFP fusion proteins, VSK2 localizes on the membrane of late 

endosomes/lysosomes like VSK3, while VSK1 is distributed in 

membranes of other vesicles (unpublished data), suggesting that 

tyrosine kinase signaling may play additional roles in vesicle 

traffi cking and phagosome maturation.

It has long been recognized that certain pathogenic orga-

nisms escape destruction and grow in both D. discoideum and 

mammalian phagocytes by undermining phagosome maturation 

(Steinert and Heuner, 2005). Death avoidance strategies uncov-

ered thus far indicate that different microorganisms have adapted 

specialized means to subvert the completion of phagocytosis. 

For example, M. tuberculosis disrupts early endosome auto-

antigen and PI3K function, thus inhibiting traffi cking downstream 

of Rab5 (Fratti et al., 2001), whereas Salmonella inhibits the 

traffi cking of NADPH oxidase and nitric oxide synthase, two 

antimicrobial enzymes (Vazquez et al., 2000). Due to its role in 

phagosome maturation, it is intriguing to speculate that VSK3 

may serve as a potential target by an invading pathogen to pre-

vent late endosome/lysosome fusion.

In conclusion, our work shows for the fi rst time that an 

RTK-like molecule, which resides in late endosomes/lysosomes, 

functions to mediate phagosome maturation. It has become 

increasingly clear that receptor signaling occurs not only at 

the plasma membrane but also along the endocytic pathway 

(Miaczynska et al., 2004). It may be possible that VSK3 func-

tions like a typical receptor generating specifi c signals in these 

cytoplasmic compartments. One of numerous scenarios that can 

be envisaged is that signals generated in phagosomes by an en-

gulfed particle activate VSK3 in vesicles as they fuse. In turn, 

activated VSK3 may regulate the downstream fate of the matur-

ing phagosome, similar to the function of TLR9 in the response 

to bacterial DNA in endosomes of macrophages (Ahmad-Nejad 

et al., 2002). Although such functions remain to be tested, it will 

be interesting to determine in the future whether localized tyro-

sine kinase signaling represents a control mechanism for phago-

some maturation in other phagocytes besides D. discoideum.

Materials and methods
Bioinformatic analysis
Tyrosine and serine/threonine kinase domains were verifi ed according to 
Kim et al. (1999) in putative protein kinases as identifi ed by the Dictyoste-
lium Sequencing Project (Eichinger et al., 2005). Protein structural motifs 
were identifi ed using DNASTAR and sequence analysis tools found at http://
smart.embl-heidelberg.de/ and http://www.cbs.dtu.dk/services/SignalP/.

Cell culturing and development
For development, D. discoideum were grown in D3-T nutrient media (KD-
Medical) to log phase (1–3 × 106 cells/ml) and harvested by low speed 
centrifugation (2000 g) for 3 min. Cells were washed in Development Buffer 
(DB; 7.4 mM NaH2PO4·H2O; 4 mM Na2HPO4·7H2O; 2 mM MgCl2; 
0.2 mM CaCl2; pH 6.5), centrifuged and resuspended in DB to 2 × 107 
cells/ml (Xu et al., 2005). For synchronous development in shaking suspension, 

cells were rotated at 100 rpm on a platform shaker at 22°C in DB and re-
ceived exogenous 75-nM pulses of cAMP every 6 min. Development and 
the ability to phagocytose bacteria were assessed on bacterial lawns of 
Klebsiella aerogenes grown on SM-agar plates.

Real-time PCR
Cells were differentiated by exogenous cAMP pulses in DB and 108 cells 
were harvested at various times. Total RNA was isolated using TRIzol re-
agent (Invitrogen) according to manufacturer’s instructions. 1 μg of DNase-
treated RNA was converted to cDNA using the SuperScript fi rst-strand 
synthesis system (Invitrogen). A 5% volume of the cDNA reaction was used 
as template for real-time PCR using a Light-Cycle thermal cycler (Roche 
Applied Science) and PCR products were detected with SYBR Green I. 
Real-time PCR conditions were according to the QIAGEN protocol except 
the extension temperature was 60°C. cDNA copy number was determined 
by using QuantiTect SYBR Green PCR kit (QIAGEN). The primers used to 
amplify experimental and control cDNAs are as follows: vsk3: 5′-T G A C C-
C A T A T A C T G A G A A A G -3′ and 5′-G A C G T G T G A A T G G A G C G A T A C T -3′; 
cAR1: 5′-T G G G C A T C T G T C A C A T T T A T C T -3′ and 5′-G G A A C T A C A T T G C-
A C A T C A T C A C -3′; Gβ subunit: 5′-C A G T G G T G C T T G T G A T G C T A -3′ and 
5′-A T G T T G T C G T G G G T G T A T T G -3′.

Plasmid constructs and transformation
The vsk3 disruption construct was generated by inserting the blasticidin 
resistant (BSR) cassette into the vsk3 cDNA 951 nucleotides from the 
translation start codon and was cloned into pBluescript KS+. To create 
vsk3-null strains, the vsk3-BSR construct was cut and purifi ed from the 
carrier plasmid and transformed into D. discoideum. Transformants 
were grown and selected in D3-T media containing 10 μg/ml blasticidin 
in 10-cm cell culture dishes. Individual colonies were picked 5–7 d later 
and homologous recombinants were identifi ed by PCR and confi rmed by 
Southern blot.

To fuse YFP to the C terminus of VSK3, the vsk3 coding sequence 
was amplifi ed from cDNA with oligonucleotides that provided 5  BglII 
and 3 AgeI restriction sites. The amplifi ed product was cloned into the 
pEYFP-N1 (CLONTECH Laboratories, Inc.) to create pVSK3-YFP. To engineer 
VSK3∆K-YFP and K-YFP, phosphorylated primers were designed to anneal 
at locations fl anking the sequence in pVSK3-YFP to be deleted and amplify 
the remaining plasmid. The PCR product of each reaction was ligated and 
transformed into TOP10 cells for propagation. For VSK3∆K-YFP, the follow-
ing sense and antisense primers were used for the deletion of aa 492–740 
from VSK3: aatctctgatatatcaattggttT and gaaatcgttaaaagattgga. For K-YFP, 
the following primers were used delete the N-terminal domain (aa 1–481), 
which includes the transmembrane domain, from VSK3: cattttttaataagatct-
gagtccggtagcgctagc and tttgaaattaaaccaattgatatatcag. PCR fi delity was 
confi rmed by DNA sequencing. The wild-type and mutant VSK3-YFP cod-
ing sequences were subsequently cloned into the D. discoideum expression 
vector pYU20, containing the G418 resistant cassette. Cells were trans-
formed, grown and selected in D3-T media containing 20 μg/ml G418. 
The predicted molecular weight of the VSK3-YFP fusion protein expressed 
in cells was confi rmed by Western blot with anti-GFP antibodies.

The invariant lysine in the predicted ATP binding site of VSK3 was 
mutated to arginine by a two-step fusion PCR mutagenesis. Primer 1 an-
neals to the 5′ end of the VSK3-YFP cDNA and includes a BglII site for 
subcloning and a ribosome binding site (underscored). Primer 4 anneals 
to the 3′ end and includes a NotI site for subcloning (underscored). Prim-
ers 2 and 3 target the invariant lysine on opposite strands of the cDNA. 
A single nucleotide was changed from A to G to encode the lysine to 
arginine conversion and a neighboring alanine (GCA) was mutated to 
leucine (CTT) to create a HindIII site to screen for positive mutants (under scored). 
For the fi rst round of PCR, primers 1 and 3 or primers 2 and 4 were mixed with 
VSK3-YFP cDNA and the resulting amplifi cation products of each reaction 
were gel purifi ed. For the second, fusion PCR reaction, the purifi ed amplifi cation 
products were mixed together with the fl anking primers 1 and 4. The resulting 
VSK3-YFP arginine mutant was subcloned into a bacterial shuttle vector and 
fi nally placed into the D. discoideum expression vector pCV5 using the BglII 
and NotI sites. Primer1: A C A G A T C T T A T T A A A A A A T G A T A A T A A T A A A T A A A T-
A T A T A C G G A T G ; primer 2: T A T T G T T G C A A T T A G A A A G C T T A A A T T A T T G A A T-
G A A G A C ; primer 3: T C A A T A A T T T A A G C T T T C T A A T T G C A A C A A T A A T A C C ; 
primer 4: C C G C G G C C G C T T A C  T T G T A C A G C T C G T C C .

Endosomal pH determination
Cells were loaded with FITC-dextran for 10 min at 22°C with 2.5 mg/ml 
FITC-dextran in phosphate buffer, pH 6.6, and washed with ice-cold phos-
phate buffer. Cells were then incubated at 22°C and the evolution of 
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pH change in endosomes was monitored in aliquots over time by measuring 
the change in the ratio of FITC fl uorescence at 518 nm when excited with 
450-nm light to fl uorescence at 518 nm when excited with 494-nm light. 
Endosomal pH values were calculated from a standard curve generated 
from the resulting fl uorescence of FITC-dextran at differing pH values.

Phagocytosis and pinocytosis assays
Quantitative phagocytosis assays were conducted as described previously 
(Maniak et al., 1995). In brief, cells grown to log-phase (1–3 × 106 cell/ml) 
were washed and suspended to 2 × 106 cells/ml in phosphate buffer with 
magnesium (PM; 7.4 mM NaH2PO4-H20; 4 mM Na2HPO4-7H2O; 2 mM 
MgCl2) and fed TRITC-labeled, heat-killed yeast in shaking suspension 
(150 rpm) at 22°C. Samples were taken at indicated times and the fl uores-
cence of noninternalized yeast was quenched by the addition of Trypan 
blue. Fluorescence was measured with a Perkin-Elmer spectrophotometer 
using 544-nm excitation and 574-nm emission fi lters. In addition, a fl ow-
cytometry method was used to determine the phagocytosis rates as previ-
ously described (Ramet et al., 2002). In brief, cells grown to log-phase 
were fed TRITC-labeled, heat-killed yeast in PM in shaking suspension at 
22°C over a time course. After incubation, the cells were quenched and 
fl ow cytometry was performed on 10,000 cells for each sample. Fluores-
cence data were analyzed with FlowJo software. Quantitative pinocytosis 
assays were performed as described previously (Hacker et al., 1997) by 
incubating log-phase cells with TRITC-dextran in suspension culture at 
22°C. At various times, aliquots were obtained and extracellular fl uores-
cence was quenched with Trypan blue. Internalized fl uorescence was mea-
sured with a spectrophotometer as above.

Quantitation of phagosome–lysosome fusion
Quantitation of phagosome and lysosome fusion was performed as de-
scribed previously (Gildea et al., 2005) with some modifi cation. Log-phase 
cells were incubated with FITC-dextran (1 mg/ml) in D3-T medium for 3 h 
to mark lysosomes. Next, heat-killed, Texas red–labeled yeast were mixed 
5:1 with D. discoideum in shaking suspension at 160 rpm for 1 h. Cells 
were then placed in a 4-well chamber for 20 min and allowed to adhere. 
The uningested yeast were washed away and cells were incubated for an 
additional hour. Phagosome–lysosome fusion was evaluated by confocal 
microscopy as a colocalization of yeast and FITC-dextran and was quanti-
fi ed by determining the percentage of phagosomes to phagolysosomes by 
randomly counting 100 yeast-containing D. discoideum cells.

Topology determination of VSK3
The membrane topology of VSK3 was determined as previously described 
(Lorenz et al., 2006) with some modifi cation. Cells expressing VSK3-YFP 
were incubated with TRITC dextran for 3 h in shaking suspension at 160 
rpm in D3-T medium to label lysosomes. Cells were placed in an 8-well 
Lab-Tek chamber and were imaged by confocal microscopy. A fi nal con-
centration of 10 μM digitonin, to selectively permeabilize the plasma mem-
brane, and 4 mM trypsin, to digest cytosolic-facing moieties of internal 
vesicle membrane proteins, were added to the chamber. Changes in the 
YFP and TRITC signal were recorded over time.

Immunoprecipitation and protein Tyr and Ser/Thr kinase activity assays
For immunoprecipitation of YFP-tagged proteins, 100 μl of Protein G beads 
were prepared (Invitrogen) by washing four times with ice-cold PBS and once 
with ice-cold lysis buffer (1% NP-40, 50 mM Tris, pH 7.5, 150 mM NaCl, 
protease inhibitors, and 1 mM Na3VO4). The beads were resuspended in 
1 ml ice-cold lysis buffer and coupled to anti-GFP antibody (CLONTECH Labo-
ratories, Inc.) for 2 h at 4°C and then washed four more times with lysis buffer. 
To carry out immunoprecipitation, 108 log-phase cells were washed twice 
with ice-cold PBS containing protease inhibitors and 1 mM Na3VO4. The cells 
were resuspended in 5 ml of lysis buffer and vortexed briefl y every 5 min for 
20 min. Insoluble matter was removed from the lysate by centrifugation 
(20,000 g) for 15 min. The supernatant was precleared by incubation with 
100 μl of Protein G beads (no antibody coupling) for 1 h. The beads were 
removed by centrifugation and the supernatant was incubated with 100 μl 
anti-GFP-coupled beads for 3 h at 4°C. The supernatant was removed by 
centrifugation and the beads were washed four times with ice-cold lysis buffer. 
Proteins were removed from a 10-μl bed volume of beads and for Western 
blot analysis. The remaining beads were used to for a tyrosine kinase activity 
assay. The tyrosine kinase activity assay was conducted by using the Signa-
TECT Protein Tyrosine Kinase Assay System (Promega) according to the manu-
facturer’s instructions. Ser/Thr kinase activity assay was conducted by using 
the KinEASE FP Fluorescein Green Assay (Upstate Cell Signaling Solutions) 
according to the manufacturer’s instructions.

Confocal studies
Confocal fl uorescent observations were made using a laser-scanning 
microscope (LSM 510 META; Carl Zeiss MicroImaging, Inc.). Either a 
40×/1.3 NA or 63×/1.4 NA oil immersion objective lens was used to 
image cells (Xu et al., 2005). An argon 488-nm laser was used to excite 
GFP, YFP, and FITC fl uorescence and a HeNe 543-nm laser was used for 
neutral red and TRITC excitation.

EM studies
Vegetative wild-type cells, wild-type cells expressing VSK3∆K-YFP, and 
vsk3− cells expressing VSK3∆K-YFP were washed from growth media and 
shaken at 100 rpm for 30 min in PBS (pH 7.4). Cells were plated at a 
density of 75 × 105 cells/cm2 in PBS on to a circular plastic coverslip 
(Thermanox) placed in a well of a 24-well plate and allowed to adhere for 
10 min. Cells were fi xed with 1% formaldehyde, 0.1% glutaraldehyde, 0.01% 
digitonin, in Pipes/EGTA buffer (15 mM Pipes, pH 7.4, and 1 mM EGTA) 
for 15 min and were washed 2 × 2 min then 1 × 15 min in 1% formalde-
hyde in Pipes/EGTA. Next, cells were washed 3 × 5 min with Pipes/EGTA 
and then incubated in block solution (50 mM NH4Cl, 0.1% digitonin, and 
1% BSA in PBS) for 30 min. Cells were incubated overnight at 4°C with 
rabbit anti-GFP antibody (ABCAM 290) diluted to 1:500 or 1:1,000 in 
block solution on a gently gyrating platform. Cells were washed 6 × 2 min 
then 1 × 5 min in PBS and incubated with goat anti–rabbit Nanogold 
1.4-nm particle Fab fragment (Nanoprobes) diluted 1:50 in block solution 
for 3.5 h at 22°C on a gently gyrating platform. Cells were washed 6 × 2 min 
in PBS then 3 × 5 min in distilled water. Gold particle enhancer was pre-
pared per manufacturer’s protocol (Nanoprobes GEEM GoldEnhance kit) 
and incubated with cells for 8 min. The reaction was stopped by washing 
with distilled water 4 × 2 min. Cells were stored in 1% glutaraldehyde in 
PBS. For TEM analysis, the cells were washed 3× with 0.1 M cacodylate 
buffer and incubated in 0.5% OsO4, 0.8% K4Fe (CN)6 in 0.1m cacodylate 
buffer for 30 min. This was followed by 1 wash with 0.1 M cacodylate buf-
fer and 2 washes with distilled water. The cells were dehydrated in ethanol 
series of 50, 75, 95, and 100% for 10 min, respectively. The last ethanol 
concentration was repeated two more times after which the cells were infi l-
trated with 3:1 ethanol/Spurrs resin for 1 h, 1:1 ethanol/Spurrs for 2 h, 
and overnight in 1:3 ethanol/Spurrs. The next day the cells were infi ltrated 
with 100% Spurrs resin for 4 h and embedded in beam capsules at 
68°C for 24 h. Ultrathin sections were obtained using the MT-7000 ultra 
microtome and stained with UA. The images were obtained using Philips 
C10 TEM.

Online supplemental materials
Fig. S1 shows the mRNA levels of the cAR1 and Gβ genes during develop-
ment as detected by RT-PCR. Fig. S2. shows the cloning strategy and 
analysis of vsk3 disruptant mutants. Fig. S3 A shows that wild-type and 
vsk3 mutant strains have similar rates of pinocytosis. Fig. S3 (B and C) 
shows the results of phagocytosis assays of cells expressing VSK3 kinase-
dead mutants. Fig. S4 shows that the VSK3K518R-YFP point mutant does 
not have detectable kinase activity. Videos 1 and 2 show the dynamic 
formation of actin-dependent phagocytic cups in wild-type (WT) (Video 1) 
and vsk3− (Video 2) cells. Video 3 shows late endosomes/lysosomes 
containing VSΚ3∆K-YFP fusing with phagosomes containing newly in-
gested yeast. Online supplemental material is available at http://www
.jcb.org/cgi/content/full/jcb.200701023/DC1.
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