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Small ubiquitin-related protein modifiers (SUMO) modification is an important mechanism for posttranslational regulation of
protein function. However, it is largely unknown how the sumoylation pathway is regulated. Here, we report that nitric oxide
(NO) causes global hyposumoylation in mammalian cells. Both SUMO E2 conjugating enzyme Ubc9 and E3 ligase protein
inhibitor of activated STAT3 (Pias3) were targets for S-nitrosation. S-nitrosation did not interfere with the SUMO conjugating
activity of Ubc9, but promoted Pias3 degradation by facilitating its interaction with tripartite motif-containing 32 (Trim32),
a ubiquitin E3 ligase. On the one hand, NO promoted Trim32-mediated Pias3 ubiquitination. On the other hand, NO enhanced
the stimulatory effect of Pias3 on Trim32 autoubiquitination. The residue Cys459 of Pias3 was identified as a target site for S-
nitrosation. Mutation of Cys459 abolished the stimulatory effect of NO on the Pias3-Trim32 interaction, indicating
a requirement of S-nitrosation at Cys459 for positive regulation of the Pias3-Trim32 interplay. This study reveals a novel
crosstalk between S-nitrosation, ubiquitination, and sumoylation, which may be crucial for NO-related physiological and
pathological processes.
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INTRODUCTION
SUMO modification is an important mechanism for posttransla-

tional regulation of protein function including transcription,

intracellular transport, DNA repair, replication, and cell signaling

[1]. Three SUMO isoforms (SUMO1, 2, 3) exist. The enzymatic

reactions of SUMO modification are similar to those in ubiquitin

modification and involve the E1-activating enzyme consisting of an

Aos1/Uba2 heterodimer, the E2-conjugating enzyme Ubc9, and

the E3 ligase that promotes the transfer of SUMO from the E2

enzyme to substrate proteins. The protein inhibitors of activated

STAT (Pias) [2], nuclear pore component RanBP2 [3], and

polycomb protein Pc2 [4] have been identified as SUMO E3

ligases. Mammalian cells contain four members of the Pias family

(Pias1, 3, x, and y) that share a similar domain structure. These

ligases bring the reaction partners in close proximity and this leads

to an increased rate of isopeptide bond formation. The conjugation

of proteins with SUMO can be reversed by isopeptidases, allowing

for dynamic regulation of SUMO-dependent processes [1]. Little is

known about the regulation of the sumoylation pathway itself. One

example of such regulation is that the viral protein Gam-1 can

inhibit sumoylation by targeting E1 and E2 for degradation [5]. In

addition, reactive oxygen species (ROS) have been shown to cause

repression of sumoylation by crosslinking E1 subunit Uba2 to the

E2 subunit Ubc9 [6]. To date, how SUMO E3 ligases are subjected

to signal-directed regulation is largely unknown.

Nitric oxide (NO) plays important roles in cell signaling, acting

mainly through S-nitrosation of protein cysteine residues [7]. S-

nitrosation can link NO signaling to other cellular events through

crosstalk with various other post-translational modifications, such

as phosphorylation and ubiquitination [7]. However, the connec-

tion between S-nitrosation and sumoylation modifications has not

been established. We noted that several SUMO-related enzymes

contain conserved cysteines, raising the possibility that NO species

might influence the biological function of these proteins through

direct post-translational modification. In this report, we show that

both SUMO E2 (Ubc9) and E3 (Pias) enzymes are targets for

S-nitrosation. Importantly, S-nitrosation of Pias3 regulates its

stability and thereby counteracts the sumoylation pathway. Our

study reveals a novel molecular mechanism through which

sumoylation is regulated, which provides new insight into the

function of S-nitrosation in human health and disease.

RESULTS

Nitric oxide causes global hyposumoylation by

a different mechanism than H2O2

To investigate whether nitric oxide (NO) can regulate the

formation of SUMO-conjugated species, HEK293 cells were

transfected with the expression vector encoding the HA-tagged

SUMO1, SUMO2, or SUMO3, and then treated with or without

500 mM GSNO (a widly-used NO donor and S-nitrosating agent)

for 4 h [7,8]. The cells were lysed directly in Laemmli buffer and

immunoblotted with HA antibody. We observed a marked

reduction in the levels of both SUMO1 and SUMO2 conjugates,

but only a slight reduction in SUMO3 conjugates (Fig 1A).

Simultaneous accumulation of free SUMO1 and SUMO2 was

also observed in GSNO-challenged cells (Fig 1A), suggesting that
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overall hyposumoylation was attributed to altered utilization

rather than reduced expression of SUMO1/2 modifier. Most

SUMO1 conjugates disappeared within 4 h, comparable to the

effect of 1 h H2O2 treatment (Fig 1B). Notably, several sumoylated

substrates, including SP3 and PML, were deconjugated upon

GSNO or H2O2 stimulation (Fig S1). The analysis of endogenous

SUMO1 conjugates in HeLa cells revealed a dose-dependent

repression of overall sumoylation in response to less than 1 mM of

GSNO (Fig 1C). Correspondingly, global ubiquitination was also

downregulated in a dose-dependent manner under GSNO

treatment, in sharp contrast to its insensitivity to H2O2 [6]. It

should be pointed out that much higher concentrations (2–8 mM)

of GSNO induced a significant increase in overall sumoylation (Fig

S2), a phenomenon that has recently been reported for high

concentrations of H2O2 [6]. To know whether the decrease in

SUMO1 conjugates could occur under conditions of physiological

NO production, we employed the RAW264.7 macrophage, which

generates NO upon LPS stimulation [9]. Fig 1D demonstrates that

LPS treatment for 24 h discernibly decreased overall SUMO1

conjugates, accompanied by induction of inducible nitric oxide

synthase (iNOS). This effect was prevented by cotreatment with

the iNOS inhibitor SMT, indicating that the decrease in SUMO1

conjugates arises from the specific effect of NO.

Since H2O2 results in repression of sumoylation by formation of

a disulfide bond between the E1 subunit Uba2 and the E2 Ubc9

[6], we firstly investigated whether NO might involve a similar

mechanism. HeLa cells were transfected with HA-Ubc9 and then

stimulated with H2O2 or GSNO. Immunoblotting showed a DTT-

sensitive crosslink between Ubc9 and Uba2 upon H2O2 treatment,

consistent with the previous report [6]. GSNO, however, could not

induce such a crosslink (Fig S3). Considering that Ubc9 contains

redox-sensitive cysteines [6], we next investigated whether NO

could give rise to Ubc9 thiol modification. HEK293 cells

transfected with HA-Ubc9 were treated with GSNO and the

lysates were subjected to the biotin-switch assay, in which the S-

nitrosation can be specifically identified as described previously

[10,11]. As shown in Fig 2A, HEK293-expressed Ubc9 was readily

S-nitrosated under GSNO treatment. Using site-directed muta-

genesis, we identified Cys75 of Ubc9 as the target for S-

nitrosation. Given that the SUMO transfer process involves

a trans-esterification reaction between Uba2 and Ubc9, we

examined whether S-nitrosation of Ubc9 could compromise its

ability to receive SUMO. As shown in Fig 2B, stimulation of cells

with GSNO did not impair the formation of the Ubc9-SUMO

thioester bond. In sharp contrast, the thioester intermediate

rapidly disappeared upon H2O2 treatment. Next, in order to know

whether S-nitrosation of Ubc9 affects its ability to conjugate

SUMO to substrate protein, the Ubc9 fusion-directed sumoylation

system, in which Ubc9 can direct sumoylation to fused p53 in

a manner independent of E3 ligase [12], was employed.

Immunoblotting revealed that the Ubc9-fused p53 was effectively

mono- and di-sumoylated in HEK293 cells expressing p53-Ubc9

(Fig 2C). The sumoylation of p53 was dependent on the catalytic

activity of fused Ubc9, because mutation of Ubc9 at Cys93

diminished such modification and the endogenous p53 was not

sumoylated even in the presence of overexpressed Ubc9 (Fig 2C),

consistent with the previous report [12]. Using this system, we

observed that unlike H2O2, which deconjugated the mono- and di-

sumoylated species efficiently, sumoylation of p53 was hardly

influenced by GSNO (Fig 2C). This experiment indicates that NO

does not interfere with the SUMO conjugating activity of Ubc9,

provided that Ubc9 and the protein substrate are ‘‘close’’ enough

Figure 1. Nitric oxide caused loss of sumo conjugates. (A) HEK293 cells transfected with HA-SUMO1, 2 or 3 were treated with 500 mM GSNO for 4 h,
lysed in Laemmli buffer, and immunoblotted with aHA or a actin. Asterisk: free SUMO1/2/3. (B) Time-dependent effect of GSNO on SUMO1 conjugates
in transfected HEK293 cells, treated as in (A). In a control experiment, cells were treated with H2O2 (1 mM) for 1h. (C) HeLa cells were treated with
increasing concentrations of GSNO for 4 h, lysed in Laemmli buffer, and immunoblotted with aSUMO1, aubiquitin or aactin. (D) RAW264.7 cells
pretreated with or without SMT were stimulated with LPS for 24 h, lysed in Laemmli buffer, and immunoblotted with aSUMO1, aiNOS or aactin.
doi:10.1371/journal.pone.0001085.g001
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to each other in vivo. To further support the above conclusion that

NO does not interfere with the SUMO conjugating function of

Ubc9, either Ubc9 (WT) or Ubc9 (C75S) was overexpressed in

HEK293 cells (Fig. S4). One may predict that, if S-nitrosation of

Ubc9 can result in repression of sumoylation, at least over-

expression of Ubc9 (C75S), the S-nitrosation-deficient Ubc9

mutant, could prevent GSNO-caused hyposumoylation. However,

the outcome was negative (Fig S4). Together, these results indicate

that NO results in overall hyposumoylation in a Ubc9-indepen-

dent manner.

Nitric oxide promotes the degradation of Pias3
Since mislocalization of SUMO conjugating or deconjugating

enzymes has been reported to result in disruption of the

sumoylation pathway [13,14], we examined the subcellular

localizations of SUMO conjugating enzymes (Uba2, Ubc9, and

Pias3) and deconjugating enzyme (Senp2), in the absence or

presence of GSNO. As shown in Fig S5, the intra-nuclear

localization of all these enzymes remained unchanged irrespective

of the presence of GSNO. Subsequently, we examined their

protein expression in HeLa cells. Immunoblotting revealed a dose-

dependent decline in the protein level of Pias3, but not Uba2,

Ubc9 and Senp2 under GSNO stimulation (Fig 3A). In a control

experiment, the expression of RanBP2 slightly increased under the

same conditions, thereby indicating a specific down-regulation of

Pias3 among the SUMO E3 ligases. Preincubation of cells with

proteasome inhibitor MG132 prevented the disappearance of

Pias3 caused by GSNO (Fig 3A), suggesting that NO might

regulate Pias3 degradation in a proteasome-dependent manner.

To evaluate whether the reduced level of Pias3 could account for

global hyposumoylation, two different small interfering RNAs

(siRNA) specific to Pias3 were transfected into HeLa cells. As

shown in Fig 3B, knockdown of endogenous Pias3 substantially

reduced most SUMO1 conjugates, indicating that the degradation

of endogenous Pias3 was responsible for NO-elicited repression of

sumoylation, although other mechanisms may also be involved.

Figure 2. S-nitrosation of Ubc9 did not compromise its SUMO E2 enzyme activity. (A) S-nitrosation of HA-Ubc9 (wild-type or cysteine mutants) in
HEK293 cells stimulated with 500 mM GSNO determined by biotin-switch assay. (B) HeLa cells were incubated with 500 mM H2O2 for 30 min or
500 mM GSNO for the indicated time, lysed in Laemmli buffer with (lower blot) or without (upper blot) DTT, and immunoblotted with aUbc9. (C)
HEK293 cells were transfected with the indicated plasmids, treated with H2O2 (for 1h) or GSNO (for 4 h), lysed in Laemmli buffer, and immunoblotted
with ap53 or aactin.
doi:10.1371/journal.pone.0001085.g002

Figure 3. Effects of GSNO on the protein level of SUMO-related enzymes. (A) HeLa cells were treated with increasing concentrations of GSNO for
4 h, lysed in Laemmli buffer and immunoblotted with the indicated antibodies. (B) Immunoblotting analysis of endogenous Pias3 and SUMO1
conjugates in HeLa cells transfected with non-specific, mismatched or Pias3-specific siRNAs.
doi:10.1371/journal.pone.0001085.g003
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Nitric oxide promotes Pias3-Trim32 interplay and

enhances Pias3 ubiquitination
Proteins are usually ubiquitinated before proteasomal degradation

[15,16]. To find out whether NO promotes ubiquitination of Pias3,

HeLa cells were transfected with His-tagged ubiquitin, and the

ubiquitin-conjugated proteins were recovered with Ni2+ affinity

agrose and subjected to immunoblotting for Pias3. As shown in

Fig 4A, the ubiquitinated forms of Pias3 (especially the mono-

ubiquitinated one) obviously increased after cells were treated with

GSNO. This increase was specific, because the overall amount of

ubiquitin conjugates diminished under the same conditions.

The observation that NO selectively promoted Pias3 ubiquiti-

nation suggested a possibility that NO might enhance the specific

interaction between Pias3 and its ubiquitin E3 ligase. Trim32,

a RING-containing protein, has recently been reported to

promote ubiquitination of Piasy [15]. To assess the possibility

that Pias3 employs Trim32 as its ubiquitin E3 ligase, we firstly

utilized a GST pull-down assay to explore the potential association

between Pias3 and Trim32. The results demonstrated that the

recombinant GST-Pias3, but not GST alone, specifically associ-

ated with Trim32 (Fig 4B). Such association was also verified in

intact cells by co-immunoprecipitation (Co-IP) (Fig S6 and Fig S7).

Subsequently, it was investigated whether Pias3 and Trim32

colocalize in the cells. HEK293 cells were cotransfected with GFP-

Trim32 and Myc-Pias3 and then their subcellular localizations

were determined. As shown in Fig 4C, Trim32 mainly resided in

cytoplasmic small granules in Trim32-singly expressed cells.

Surprisingly, coexpression of Pias3 induced the appearance of

Trim32 in Pias3-localized nuclear dots. In addition, Trim32 was

found in large cytosolic aggregates upon Pias3 cotransfection

(Fig 4C and Movie S1), a phenomenon that may be explained by

the finding that Pias3 stimulated autoubiquitination of Trim32

(Fig 4E). To determine the mechanism by which Trim32 was

recruited to the Pias3-localized nuclear compartment, LMB,

a CRM1-targeting nuclear export inhibitor, was used. As shown in

Fig 4C, LMB prevented the colocalization of Trim32 and Pias3 in

the nucleus as well as preventing the stimulatory effect of Pias3 on

Trim32 cytosolic aggregation. Considering that Pias proteins bear

both a nuclear localization sequence and a nuclear export

sequence [15], we speculated that the import of Trim32 into the

nuclear dots might be mediated by the dynamic nucleocytosolic

shuttling of Pias3.

To investigate whether Trim32 controls ubiquitination of Pias3,

HeLa cells were transiently transfected with GFP-Trim32, and

then the endogenous Pias3 was immumoprecipitated from the

denatured cell lysates, followed by immunoblotting analysis for

ubiquitin. As shown in Fig 4D, both poly- and mono-ubiquitinated

Pias3 were elevated in the presence of overexpressed Trim32. It

should be pointed out that although mono-ubiquitination may not

necessarily be required for regulation of protein stability,

degradation of either actin or Piasy by Trim32 has been shown

to correlate with mono-ubiquitination [15,17]. Next, we explored

the possible effect of Pias3 on Trim32, including autoubiquitina-

tion and potential sumoylation of Trim32. It turned out that

Trim32 could not be sumoylated, even in the presence of

overexpressed Pias3 (data not shown). Interestingly, the auto-

ubiquitination of Trim32, an indicator of ubiquitin E3 ligase

activity [10,15], was enhanced by cotransfected Pias3 (Fig 4E),

indicating that association with Pias3 elevates the ligase activity of

Trim32. Finally, we examined the possible regulatory role of NO

on the Trim32-Pias3 interplay. It was observed in a GST

pulldown assay that addition of GSNO markedly strengthened

the Pias3-Trim32 association (Fig 4B). A Co-IP experiment

demonstrated that the affinity between Pias3 and Trim32 was

substantially increased in HEK293 cells ectopicly expressing iNOS

(Fig S7), indicating that the increased association occurs in cells

where endogenous NO is generated. As for the functional

interplay between Pias3 and Trim32, both Trim32-mediated

Pias3 ubiquitination and Pias3-stimulated autoubiquitination of

Trim32 were found to be substantially enhanced in the presence of

GSNO (Fig 4D, E). Together, these observations indicate that NO

promotes the association and bidirectional influence between

Trim32 and Pias3, which may facilitate Trim32-mediated Pias3

ubiquitination.

Figure 4. GSNO promotes Pias3-Trim32 interplay. (A) HeLa cells
expressing His-Ub were stimulated with or without GSNO for 4 h and
then subjected to His-Ub pull down. Both longer and shorter exposures
are shown. Bracket: poly-ubiquitinated Pias3; Arrow: mono-ubiquiti-
nated Pias3. (B) Effect of GSNO on Pias3-Trim32 interaction determined
by GST-pull down assay. GST-Pias3 fusion proteins, immobilized on
beads, were mixed with cell lysates with GFP-Trim32 expression in the
absence or presence of 500 mM GSNO. Pull-downed and input GFP-
Trim32 was analyzed by immunoblotting. (C) Confocal microscopic
analysis of subcellular localization of Myc-Pias3 and GFP-Trim32 in
cotransfected HEK293 cells. 4 h after transfection, cells were incubated
with or without LMB for 16 h. (D) HeLa cells transfected with or without
GFP-Trim32 were stimulated with or without GSNO for 4 h and then the
denatured lysates were immunoprecipitated with aPias3, followed by
detection for Ub. Bracket: poly-ubiquitinated Pias3; Arrow: mono-
ubiquitinated Pias3; Asterisk: unmodified Pias3. (E) HEK293 cells
transfected with the indicated plasmids were stimulated with or
without GSNO for 1 h and then subjected to His-Ub pull down. Bracket:
ubiquitinated GFP-Trim32. In panels (A), (C), (D) and (E), cells were
incubated with MG132 to prevent potential protein degradation.
doi:10.1371/journal.pone.0001085.g004
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S-nitrosation of Pias3 positively regulates Pias3-

Trim32 association
Since S-nitrosation has been reported to facilitate protein-protein

interactions [9], we speculated that NO-mediated specific

molecular modification of Pias3 (or Trim32) might regulate its

interaction with Trim32 (or Pias3). Using the biotin-switch

method, we verified that Pias3, as well as other members of the

Pias family, could be efficiently S-nitrosated (Fig 5A and Fig S8).

The absence of S-nitrosated Trim32 under GSNO treatment

revealed the specificity of the above modifications (Fig 5A).

Furthermore, Pias3 was found to be constitutively S-nitrosated in

HEK293 cells ectopicly expressing iNOS (Fig S9), indicating a role

of endogenously produced NO in modifying Pias3. To locate the

S-nitrosated cysteine residue(s) of Pias3, recombinant Pias3 protein

was exposed to GSNO, blocked with MMTS, and then subjected

to mass spectrometry analysis. As shown in Fig 5B and Fig S10, the

Cys459 of Pias3 was oxidized to sulphonic acid (-SO3H) only after

exposure to GSNO. Considering that S-nitrosation can facilitate

further oxidation of the same cysteine thiol [9,18], and Cys459 is

located within a hydrophobic pocket (Fig S9), a factor known to

govern S-nitrosation specificity [19], this result implies that Cys459

is a S-nitrosation site. To further confirm this, HEK293-expressed

Pias3 mutant (C459S), whose cysteine 459 was mutated to serine,

was subjected to the biotin-switch assay. As expected, mutation of

Pias3 at Cys459 substantially diminished its S-nitrosation (Fig S11).

Next, we investigated whether S-nitrosation of Pias3 regulated its

association with Trim32. It was demonstrated by GST-pull down

assay that although the Pias3 bearing a C459S mutation still

retained the ability to associate with Trim32 in the absence of

GSNO, the stimulatory effect of GSNO on Pias3(C459S)-Trim32

association disappeared (Fig 5C). In addition, the GSNO-

enhanced binding of wild-type Pias3 to Trim32 could be abolished

by dithiothreitol (DTT), a nitrosothiol-reducing reagent (data not

shown). Together, these results indicate that S-nitrosation of Pias3

at Cys459 is required for positive tuning of the Pias3-Trim32

association.

DISCUSSION
Post-translational protein modification is a crucial mechanism for

regulation of protein function in eukaryotic cells. S-nitrosation has

gained increasing recognition as a functionally important post-

translational modification, which exerts pleiotropic effects on its

target proteins ranging from altered protein stabilization to

changed activity or function [7]. Here we describe the S-

nitrosation of Pias3 and show that this modification enhances its

association with Trim32, a ubiquitin E3 ligase, which results in

Pias3 degradation and repression of sumoylation (Fig 6). This work

may have implications in three different conceptual areas. First, it

reveals a unique mechanism to counteract the sumoylation

pathway. Second, it provides new evidence that S-nitrosation

regulates protein-protein interactions. Third, it reveals an un-

expected crosstalk between S-nitrosation, sumoylation and ubiqui-

tination.

Figure 5. S-nitrosation of Pias3 and its effects on Pias3-Trim32
association. (A) S-nitrosation of GFP-Pias3 in HEK293 cells stimulated
with 500 mM GSNO determined by biotin-switch assay. (B) Recombinant
Pias3 was exposed to 100 mM GSNO and blocked with MMTS. In-gel
digested Pias3 was subjected to Nano-LC-MS/MS analysis. (C) Effect of
GSNO on Pias3(C459S)-Trim32 interaction determined by GST-pull
down assay.
doi:10.1371/journal.pone.0001085.g005

Figure 6. Model demonstrating that oxidative and nitrosative stress
block the sumoylation pathway through different mechanisms. Top:
In a normal redox environment, Ubc9 conjugates SUMO to the
substrate with the help of E3 ligase. Middle: Oxidative stress leads to
formation of a disulfide bond between the E1 subunit Uba2 and the E2
subunit Ubc9, resulting in inactivation of both E1 and E2 enzymes.
Below: Under nitrosative stress, both Ubc9 and Pias3 are S-nitrosated.
Whereas S-nitrosation of Ubc9 cannot interfere with its catalytic activity,
S-nitrosation of Pias3 facilitates its degradation by promoting its
interplay with Ub E3 ligase Trim32, thereby resulting in decrease of
SUMO conjugating efficiency. Su, SUMO; S, substrate protein.
doi:10.1371/journal.pone.0001085.g006
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Firstly, we demonstrated a novel biological phenomenon,

namely that NO led to desumoylation of most SUMO targets,

which was due to at least in part, destabilization of SUMO E3

ligase Pias3. Unlike the effects of low concentrations of H2O2 or

the virus protein Gam1, both of which target SUMO E1 and E2

enzymes, NO failed to interfere with Ubc9-mediated transfer of

SUMO from Uba2 to the target protein, although it could S-

nitrosate Ubc9 at a non-catalytic cysteine. Despite targeting E3,

the efficiency of NO in the repression of global sumoylation is

high. The effect obtained with 500 mM GSNO was comparable to

that of 1 mM H2O2, a much stronger oxidant. Moreover, the

endogenous NO produced in LPS-stimulated macrophages

demonstrated a slight inhibitory effect on overall sumoylation,

an effect that is however more significant than that obtained with

endogenous H2O2 from activated NADPH oxidase [6]. It should

be pointed out that, although S-nitrosation-dependent degradation

of Pias3 contributes to loss of SUMO conjugates (Fig.3B), global

sumoylation profile may be controlled by the net effect of NO on

multiple protein targets. For example, Pias family members

including Pias3, Piasxa, Piasxb and Piasy were all found as S-

nitrosated targets (Fig S8). In addition, most of SUMO

isopeptidases (such as Senp) contain redox-sensitive cysteine(s). If

these isopeptidases can be inhibited by higher concentrations of

NO, one may understand why high concentration of GSNO

showed a stimulatory effect on overall sumoylation [6]. In fact, it is

not contradictory that various SUMO-related enzymes coordi-

nately respond to certain signal and control sumoylation. This is

indeed evidenced by a recent report that the cAMP pathway

repressed global sumoylation in human endometrial stromal cells

by differentially affecting the protein contents of various SUMO

E3 ligases and isopeptidases [20].

Concerning the molecular mechanism by which NO promotes

Pias3 degradation, we observed the S-nitrosation-stimulated

recruitment of ubiquitin E3 ligase to Pias3. This biological

phenomenon reflects S-nitrosation-tuned protein-protein interac-

tions. In our study, S-nitrosation of a single cysteine C459 was

found to be sufficient to mediate regulation of association of Pias3

and Trim32. However, C459 is not located in the N-terminal

region of Pias3 that harbors the Trim32-binding site (data not

shown), suggesting that S-nitrosation probably regulates Pias3-

Trim32 interaction by inducing a conformational change in Pias3.

At this point, our finding seems similar to a report that S-

nitrosation of GAPDH at a single cysteine stimulates its association

with Siah1, a ubiquitin E3 ligase [9]. In the present study, NO

enhanced Pias3-Trim32 affinity but did not affect the intranuclear

localization of Pias3, suggesting that ubiquitination of Pias3 might

occur in the nucleus. During preparation of this manuscript,

Depaux et al reported an intranuclear degradation of Pias proteins

by Siah2, another ubiquitin E3 ligase [16]. In cells coexpressing

Pias1 and Siah2, Siah2 was translocated from the cytosol to the

nucleus where it colocalized with Pias1, and was distributed into

cytosolic aggregates [16]. This report is highly consistent with our

finding, and suggests a possibility that NO may also stimulate the

interplay of Pias3 with other ubiquitin E3 ligases. Unraveling the

effect of NO in the regulation of the Siah2-Pias pathway would be

an interesting topic for future study.

Although SUMO and ubiquitin pathways are highly similar,

little is known about signal-directed coupling of the two systems.

We show here that NO links ubiquitination to sumoylation by

promoting the binding of ubiquitin and SUMO E3 ligases,

a process intergrating three kinds of post-translational modifica-

tions: S-nitrosation, sumoylation and ubiquitination. Recently,

a crosstalk between S-nitrosation and ubiquitination has been

reported [10]. NO was shown to inhibit the ubiquitin E3 ligase

activity of Parkin through S-nitrosation [10]. By such mechanism,

NO might cause disappearance of the bulk of ubiquitin conjugates,

as observed in Fig 1C. In fact, based on a similar idea, we have

investigated the possible influence of S-nitrosation on the SUMO

E3 ligase activity of Pias3; however, the result was negative (data

not shown). The insensitivity of Pias3 activity to NO is consistent

with the fact that the C459 of Pias3 that is S-nitrosated does not

reside in the catalytic RING domain. Therefore, we speculate that

S-nitrosation probably serves mainly as a negative regulatory

mechanism to control the stability of Pias3 and thereby tune the

sumoylation pathway. However, it should not be ignored that

Pias3 protein itself is a negative regulator of pro-inflammatory

gene transcription [21,22]. Thus, Pias3 may also serve as an

intranuclear NO sensor, whose degradation represents a step to

turn on inflammatory gene expression under nitrosative stress.

In summary, we report here that NO regulates sumoylation

through S-nitrosation-dependent degradation of Pias3. Since

SUMO modification participates in the regulation of multiple

protein functions, repression of sumoylation may mediate

a number of NO-related cellular events and pathological pro-

cesses. For instance, desumoylation of PML and SP3 may be

involved in NO-elicited transcriptional regulation. In addition,

NO has been shown to desumoylate DJ-1 in neural cells, whose

sumoylation is required for the full protective functions of DJ-1

(unpublished observation). Therefore, identifying proteins whose

SUMO modification is reduced under nitrosative stress and

unraveling the related functional consequences presents an

exciting and important challenge for future research.

MATERIALS AND METHODS

Reagents, plasmids and antibodies
Lipopolysaccharide (LPS), S-methyl thiocarbamate (SMT), N-

ethylmaleimide (NEM), iodoacetamide, and MG132 were pur-

chased from Sigma. Methyl methanethionsulphonate (MMTS) and

N-[6-(biotinamido)hexyl]-39-(29-pyridyldithio) propionamide (Biotin-

HPDP) were purchased from Pierce. Other reagents have previously

been described [8]. The following expression plasmids were

described in previous investigations: HA-SUMO1(GG), SU-

MO2(GG), and SUMO3(GG) [23], HA-Ubc9 [24], p53-Ubc9

[12], Flag-Uba2 [6], GFP-SENP2 [13], GFP-Pias3 [25], YFP-Ubc9

[4], Myc-Pias3 [26], GFP-Trim32 [17], iNOS [27], HA-Pias3, and

GST-Pias3 [28]. Mutants of Ubc9 and Pias3 were engineered by

site-directed mutagenesis (Stratagene). Myc, HA, Flag, His, Ub, p53,

Pias3, SUMO1, GFP monoclonal antibodies and Ubc9, Pias3,

RanBP2, Senp2, Trim32, GFP, actin polyclonal antibodies were

purchased from Santa Cruz. SUMO1 and Uba2 monoclonal

antibodies were purchased from Zymed and BD Pharmingin,

respectively. iNOS polyclonal antibody was from BD Pharmingin.

Cell transfection and immunoblotting
HeLa and HEK293 cells were respectively transfected with

lipofectamine 2000 (Invitrogen) and JetPei (Polyplus) according

to the manufacturer’s protocol. For sumoylation analysis, cells

were lysed directly in Laemmli buffer supplemented with 20 mM

NEM and iodoacetamide. Extracts were boiled for 30 min prior to

loading on SDS-polyacrylamide gels. Immunoblotting analysis was

performed as previously described [29].

Ubiquitination analysis
Cells were transfected with His-Ub together with other expression

plasmids. 36 h after transfection, cells were incubated with

MG132 and then lysed in 1 ml of lysis buffer (6 M guanidinium

HCl, 0.1 M Na2HPO4/NaH2PO4, and 10 mM Tris-HCl, pH
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8.0). After sonication and centrifugation, 90% of the lysate was

incubated with 25 ml of Ni2+ Sepharose beads (Amersham) for 3 h.

The beads were washed twice with lysis buffer, followed by

washing three times with washing buffer (8 M urea, 0.1 M

Na2HPO4/NaH2PO4, pH 6.4). After a final wash with phosphate-

buffered saline, the beads were treated in SDS sample buffer for

SDS-PAGE. 1/10th of the cells were lysed in RIPA and the lysates

were used as input controls.

RNA interference
The non-targeting siRNA (siControl) we used was UUCUCC-

GAACGUGUCACGUTT. Two different siRNAs targeting

human Pias3 were UUGGUCAUCUGAGUUCGGAdTdT (si-

Pias3-1) [28] and GGAGCCAAAUGUGAUUAUAdTdT (si-

Pias3-2) [30]. To evaluate the specificity of the above siRNA,

the mismatched siRNAs (M-siRNA) with only a three-base

difference were employed. M-siRNAs for siPIAS3(1) and

siPIAS3(2) were UUGGUCAUAGUAGUUCGGAdTdT and

GGAGCCAACGUUGAUUAUAdTdT respectively. The siR-

NAs were transfected into HeLa cells using Lipofectamine 2000

according to the manufacturer’s protocol. After 36 h, the cells

were transfected again for another 36 h. The protein level of Pias3

was then monitored by immunoblotting.

Immunofluorescence analysis
HEK293 cells were transfected with Myc-Pias3 and GFP-Trim32

expression vectors. 4 h later, cells were incubated with or without

LMB for 16 h. Immunofluorescence analysis was performed with

aMyc primary antibody and Texas Red-conjugated secondary

antibody, as previously described [8]. Pictures of cells mounted in

ProLong Antifade (Molecular Probes) were taken with a laser-

scanning confocal microscope (Olympus FV500, Tokyo, Japan),

60x PlanApo lens (aperture 1.4, oil), using FLUOVIEW software.

Immunoprecipitations
Cells were lysed in ice-cold lysis buffer (20 mM Tris-HCl (pH 7.5),

150 mM NaCl, 10 mM NaF, 1 mM EDTA, 10% glycerol, 0.1%

NP-40, 10 mM MG132, and the protease inhibitor cocktail). For

immunoprecipitation using harsh denaturing conditions (Ub

assay), the final concentration of sodium dodecyl sulphate (SDS)

in the lysis buffer was increased to 2% and after boiling for 5 min,

lysates were diluted into lysis buffer lacking SDS to give a final

concentration of 0.1% SDS. Corresponding agarose bead-

conjugated antibodies were incubated with 500 mg cell lysate,

and the immunoprecipitates were analyzed by immunoblotting

with appropriate antibodies.

GST pull-down assay
GFP-Trim32 protein, obtained from the whole cell lysate of

transfected HEK293 cells, was mixed with GST or GST-Pias3

bound to Sepharose beads in 1ml of binding buffer (20 mM Tris-

HCl (pH 7.5), 150 mM NaCl, 1 mM EDTA, 10% glycerol, 0.1%

NP-40, 10 mM MG132, and the protease inhibitor cocktail).

500 mM GSNO was then added to the mixture and incubated

with rotation for 2 h at room temperature in dark. The beads were

washed three times with 1 ml binding buffer, separated by SDS–

PAGE and analyzed by immunoblotting.

Biotin-switch assay
Cell lysates were prepared in lysis buffers (50 mM Tris (pH 7.5),

150 mM NaCl, 0.5% deoxycholic acid, 0.1% SDS, 1% NP-40,

0.1 mM neocuproine, and the protease inhibitor cocktail). The

supernatant of cell lysis was analyzed for protein concentration by

the BCA method and then adjusted to the appropriate

concentration. Blocking buffer (2.5% SDS, 20 mM MMTS in

HEN buffer) was mixed with the samples and incubated for

30 min at 50uC to block free thiol groups. After removing excess

MMTS by acetone precipitation, nitrosothiols were then reduced

to thiols and biotinylated by reducing buffer (1% SDS, 10 mM

ascorbate, 4 mM Biotin-HPDP). The biotinylated proteins were

then pulled down by streptavidin-agarose beads, eluted by SDS

sample buffer and subjected to immunoblotting.

Pias3 site identification by (nano) Liquid

Chromatography-Mass Spectrometry
Mass spectra were acquired after in-gel tryptic digestion of

recombinant Pias3 on a Thermo LTQ linear trap instrument

equipped with a Thermo nano electrospray source and a Thermo

Surveyor pump and autosampler (Thermo Electron Corporation,

San Jose, CA) according to a previously described method with

minor modifications [9,18]. Briefly, recombinant Pias3 was

exposed to 100 mM of GSNO in vitro for 30 min at 37uC.

Remaining free thiols in Pias3 were blocked with 20 mM methyl

methanethiosulphonate (MMTS) in blocking buffer (25 mM

Hepes, pH 7.7, 1 mM EDTA, 0.1 mM neocuproine, 2.5% SDS)

at 50uC for 30 min with frequent vortexing followed by separation

by non-reducing SDS-PAGE in the dark. The gel was stained with

Commassie bright blue, cut and subjected to in-gel tryptic

digestion. LC-MS/MS analyses were performed on a fused silica

capillary (75 mm i.d.612 cm) packed with Synergi Hydro-RP

silica (reverse-phase, 4 m, 80 Å, Phenomenex). Mobile phase A

consisted of 5% acetonitrile/ 0.1% formic acid and mobile phase

B was 80% acetonitrile/ 0.1% formic acid. Peptides were eluted

initially with 100% A for 1 min, then 90% A for 5 min, then

a linear gradient to 55% A by 60 min, then to 0% A at 70 min

and held to 80 min, then to 100% A at 80.01 min and held until

90 min. MS/MS spectra were acquired by using a full scan

followed by five MS/MS scans in a data-dependent mode.

Precursors that were detected twice within 15 s were put on

a dynamic exclusion list for a period of 60 s. MS/MS data were

processed with in-house Bioworks (version 3.2, Thermo Electron

Corporation, San Jose, CA) as described below: MS/MS spectra

were extracted from the raw files by using SEQUEST with the

following parameters; MW range: 250–4,000; threshold, 1,000;

precursor mass tolerance: 2; group scan tolerance, 2; minimum

group count, 1; precursor charge state, auto; MSn level, auto. Raw

data were searched against NCBI human Refseq protein database

(version: 2006.9.18) and filtered with the following criteria:

Xcorr.1.9 for singly charged, .2.5 for doubly charged and

.3.75 for triply charged ions; Delta Cn.0.1; RSp,5; and

preliminary score (Sp).500. Cysteines either modified by MMTS

(+46), nitrosation (+29), sulphination (+32) or sulphonation (+48) and

methionine oxidation (+16) were all specified as differential

modifications. MS/MS spectra were manually validated by the

following criteria: (i) a continuous b or y-ion series of at least five

residues and (ii) the top three most intense fragment peaks assigned

to either an a, b, y-ion, to an a, b, y-ion resulting from a neutral loss

of water or ammonia, or to a multiply protonated fragment ion. All

acquired data were further validated by Trans-Proteomics Pipeline

(TPP, Institute of System Biology, Seattle) with PeptidePro-

phetH(Keller et al., 2002) .0.99 and ProteinProphetH = 1.0 as

a threshold for peptides and protein validation, respectively (data not

shown). The above results represent three independent experiments.

Materials used: MMTS (Pierce), sequencing-grade trypsin

(Promega), formic acid and acetonitrile were HPLC-grade from
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J.T. Baker Chemicals. Synergi Hydro-RP silica (4 m, 80 Å) was

from Phenomenex.

SUPPORTING INFORMATION

Figure S1 HEK293 cells transfected with GFP-PML (left) or

HA-SP3 (right) were treated with H2O2 (1 mM) for 1h or with

GSNO (0.5 mM) for indicated time, lysed in Laemmli buffer and

immunoblotted with anti-GFP or anti-HA.

Found at: doi:10.1371/journal.pone.0001085.s001 (0.29 MB TIF)

Figure S2 HeLa cells were treated with increasing concentra-

tions of GSNO for 4 h, lysed in Laemmli buffer, and

immunoblotted with anti-SUMO1 or anti-actin.

Found at: doi:10.1371/journal.pone.0001085.s002 (0.09 MB TIF)

Figure S3 HeLa cells transfected with HA-Ubc9 were incubated

with 0.5 mM H2O2 for 30 min or with 0.5 mM GSNO for the

indicated time, lysed in Laemmli Buffer with (lanes 3 and 10) or

without (other lanes) DTT and immunoblotted with either anti-

HA (left) or anti-Uba2 (right). Asterisk: unspecific crossreacting

band.

Found at: doi:10.1371/journal.pone.0001085.s003 (0.21 MB TIF)

Figure S4 HeLa cells were cotransfected with His-SUMO1 and

increasing amounts (from 30 to 300ng) of HA-Ubc9(WT) or HA-

Ubc9(C75S), treated with 0.5 mM GSNO for 4 h, lysed in

Laemmli buffer, and immunoblotted with anti-His.

Found at: doi:10.1371/journal.pone.0001085.s004 (0.39 MB TIF)

Figure S5 HEK293 cells were transfected with the indicated

plasmids and subjected to immunofluorescent (for Flag-Uba2) or

fluorescent protein imaging.

Found at: doi:10.1371/journal.pone.0001085.s005 (0.26 MB TIF)

Figure S6 Co-IP analysis of the Pias3-Trim32 interaction in

MG132-treated HeLa cells using anti-Trim32 (or control IgG) as

the IP antibody. No coimmunoprecipitation was found between

Trim32 and RanBP2, indicating a specific interaction between

Trim32 and Pias3.

Found at: doi:10.1371/journal.pone.0001085.s006 (0.07 MB TIF)

Figure S7 Co-IP analysis of Pias3-Trim32 interaction in

transfected HEK293 cells. HEK293 cells were cotransfected with

the indicated plasmids. 36h later, cells were treated with MG132

for 4h. The lysates were subjected to CO-IP assay using anti-Myc

as the IP antibody. The expression of Myc-Pias3, GFP-Trim32

and/or iNOS in immunoprecipitates and cell lysates were

monitored with the indicated antibodies.

Found at: doi:10.1371/journal.pone.0001085.s007 (0.11 MB TIF)

Figure S8 S-nitrosation of various Flag-tagged Pias subtypes

expressed in HEK293 cells in the presence of 0.5 mM GSNO was

determined by biotin-switch assay.

Found at: doi:10.1371/journal.pone.0001085.s008 (0.13 MB TIF)

Figure S9 S-Nitrosation of HA-Pias3 in iNOS-overexpressed

HEK293 cells.

Found at: doi:10.1371/journal.pone.0001085.s009 (0.05 MB TIF)

Figure S10 Nano-LC-MS/MS analysis of Pias3 before and after

0.1 mM GSNO treatment indicating cysteine-459 (C459) on

peptide 458HCSVTSAAIPALPGSK473 was the modified site of

S-nitrosation. The m/z 795.22+ precursor ion corresponds to the

Pias3 peptide 458HCSVTSAAIPALPGSK473 with cysteine

sulphonation in the GSNO-treated sample. Cysteine sulphonation

was only observed after exposure to the NO donor GSNO.

Analysis of the informative fragment ions y14+, y15+ confirmed

the presence of the sulphonated cysteine. Kyte-Doolittle hydro-

pathic index plot from the region flanking the identified S-

nitrosocysteine residue (arrow) also showed that Cys459 was

located within a hydrophobic pocket. The hydropathy plot was

constructed by using a window of 13 amino acids.

Found at: doi:10.1371/journal.pone.0001085.s001 (1.73 MB TIF)

Figure S11 S-nitrosation of HA-Ubc9 or its C459S expressed in

HEK293 cells in the presence of 0.5 mM GSNO was determined

by biotin-switch assay.

Found at: doi:10.1371/journal.pone.0001085.s001 (0.11 MB TIF)

Movie S1 3D presentation of Trim32-Pias3 colocalization in the

nucleus

Found at: doi:10.1371/journal.pone.0001085.s012 (10.30 MB

AVI)
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