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Abstract
Background: Horizontal gene transfer (HGT), the non-genealogical transfer of genetic material
between different organisms, is considered a potentially important mechanism of genome evolution
in eukaryotes. Using phylogenomic analyses of expressed sequence tag (EST) data generated from
a clonal cell line of a free living dinoflagellate alga Karenia brevis, we investigated the impact of HGT
on genome evolution in unicellular chromalveolate protists.

Results: We identified 16 proteins that have originated in chromalveolates through ancient HGTs
before the divergence of the genera Karenia and Karlodinium and one protein that was derived
through a more recent HGT. Detailed analysis of the phylogeny and distribution of identified
proteins demonstrates that eight have resulted from independent HGTs in several eukaryotic
lineages.

Conclusion: Recurring intra- and interdomain gene exchange provides an important source of
genetic novelty not only in parasitic taxa as previously demonstrated but as we show here, also in
free-living protists. Investigating the tempo and mode of evolution of horizontally transferred genes
in protists will therefore advance our understanding of mechanisms of adaptation in eukaryotes.

Background
Horizontal gene transfer (HGT) is the movement of
genetic material between different species and is consid-
ered to be one of the major driving forces of prokaryotic
evolution [1-4]. Until recently, it was believed that this
phenomenon was largely restricted to the prokaryotic
domain. In eukaryotes, gene duplication has classically
been viewed as the major source of genetic novelty [5,6];
this paradigm of eukaryotic evolution is based on genome
studies of model organisms such as multicellular plants,
animals, and fungi. In the last decade, rapid accumulation
of genome data from unicellular eukaryotes, protists, has
allowed researchers to reassess the role of HGT in eukary-
otic evolution. The results of comparative analyses of

genomes of anaerobic parasitic protists provided a major
breakthrough in our understanding of the impact of inter-
domain HGT in eukaryotes. For example, 96 potential
cases of prokaryote-to-eukaryote HGT were identified in
the genome of an intestinal parasite of humans and ani-
mals Entamoeba histolytica [7], 84 in the fish parasite Spiro-
nucleus salmonicida [8], 152 in a sexually transmitted
human pathogen Trichomonas vaginalis [9], 24 in Crypt-
osporidium parvum [10], and 148 in anaerobic rumen cili-
ates [11]. These numbers comprise up to 4% of genes in
the extremely reduced genomes of these anaerobic pro-
tists. It is believed that the acquisition of bacterial genes
by these eukaryotes accelerated their adaptation to anaer-
obic environments and the transition to a parasitic life
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style. Several recent reports indicate that HGT also plays a
role in the genome evolution of free-living protists. Anal-
ysis of the complete genome sequence of the soil amoeba
Dictyostelium discoideum led to the identification of 18
genes derived from prokaryotes [12]. Several cases of HGT
have been reported for dinoflagellate and chlorarachnio-
phyte algae [13-16]. The fact that complete genome
sequences are available now for a limited number of free
living protists explains a significant disproportion in the
study of HGT in different groups of protists. However,
public databases also contain Expressed Sequence Tag
(EST) libraries for over 50 species of free living unicellular
eukaryotes [17,18] that can also be used to assess the
impact of HGT on genome evolution in protists.

Here we analyze EST and complete genome data to study
HGT in chromalveolate protists. Chromalveolates com-
prise the six eukaryotic lineages, cryptophytes, hapto-
phytes, stramenopiles, ciliates, apicomplexans, and
dinoflagellates and have adapted to a wide variety of envi-
ronments. They are characterized by a tremendous diver-
sity of forms and modes of nutrition including
heterotrophy, parasitism, phototrophy, and mixotrophy.
According to the chromalveolate hypothesis, the common
ancestor of the six constituent lineages was a free living
photosynthetic organism that derived its plastid via a red
algal secondary endosymbiosis [19]. Within-chromalveo-
late taxon relationships and the monophyly of this group
are controversial [20]. Nuclear gene phylogenies support
the monophyly of stramenopiles, ciliates, apicomplexans,
and dinoflagellates and monophyly of cryptophytes and
haptophytes [21,22]. However, relationships between the
two clades still remain unresolved.

Gene movement from the endosymbiont to the host
nucleus is a specific instance of HGT that is referred to as
endosymbiotic gene transfer (EGT). The impact of EGT on
the evolution of chromalveolate genomes has been inten-
sively studied in the last decade [23-27] and will not be
considered here. We limited our research to gene transfers
from non-organellar sources. To identify genes acquired
by chromalveolates through HGT at different time points
in their evolutionary history, we performed a broad scale
phylogenetic analysis of the EST data generated for a free
living phototrophic dinoflagellate alga Karenia brevis that
is renowned as an agent of toxic algal blooms that annu-
ally cause massive fish and marine mammal mortality in
the Gulf of Mexico [28]. Detailed analyses of the identi-
fied genes presented in this paper suggest that recurring
inter- and intradomain gene movement should be consid-
ered as an important source of genetic novelty in chroma-
lveolates.

Results
In this study, we used a combination of four different
approaches to identify genes acquired by chromalveolates
through HGT (see Methods). The major goal of this study
was to discover genes uniquely present in chromalveo-
lates and bacteria. This study is based on the assumption
that HGT is the most plausible explanation for the occur-
rence of bacterial genes in a single eukaryotic lineage. An
alternative explanation is that these bacterial genes were
derived via intracellular transfer from the mitochondrial
progenitor by the ancestral eukaryote and subsequently
lost from most taxa. Apart from invoking independent
gene losses from potentially many eukaryotic lineages, the
latter scenario implies (improbably) that the genome size
of the eukaryotic ancestor was far larger than in extant
taxa.

Our data screening approach was designed to retrieve rel-
atively ancient cases of HGT that occurred before the
divergence of two closely related genera of dinoflagellate
algae, Karenia and Karlodinium. Using a sequence similar-
ity search (BLAST; e-value ≤ 10-10) we identified 3,341
genes shared by K. brevis and at least 1/5 dinoflagellate
species for which EST data are available [18]. To identify
genes acquired by chromalveolates through interdomain
HGT, we analyzed the restricted set of K. brevis genes using
a combination of a standard "Best Hit" approach and high
throughput automated and manual phylogenomic analy-
ses (see Methods). These analyses yielded 80 unique genes
encoding proteins from 45 different families putatively
derived from prokaryotes at different time points of chro-
malveolate evolution. Throughout the text, we will use the
term "protein" to unite members of one protein family
encoded by distinct genes. Three proteins represented by
five unigenes resulted from an additional analysis aimed
at detecting K. brevis homologs of bacterial proteins
involved in cell wall biogenesis (see Methods). Detailed
phylogenetic analyses of the identified proteins provide
strong support for the origin through HGT of 16 proteins
represented by 36 unique genes (Table 1). Six of these pro-
teins are uniquely shared by dinoflagellates and prokary-
otes (BLAST; e-value ≤ 10-20); two proteins, malate-
quinone oxidoreductase and monomeric NADPH-
dependent isocitrate dehydrogenase, are present only in
several chromalveolate lineages and prokaryotes.
Homologs of eight proteins (e-value ≤ 10-20) are present
in prokaryotes, chromalveolates, and at least one other
eukaryotic lineage. Phylogenies of the remaining 32 pro-
teins represented by 49 K. brevis EST contigs could not be
clarified due to the presence of multiple, highly divergent
sequences in different protist lineages that might have
resulted either from independent gene transfers or from
ancient gene duplications.
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Below we provide a detailed description of the most inter-
esting cases of prokaryote-to-eukaryote HGTs. The direc-
tion of interdomain HGTs was inferred based on the
relative distribution of the gene among bacteria and
eukaryotes. Genes widespread among prokaryotes and
rare among eukaryotes were considered to be derived
from a prokaryotic donor. The identified proteins are clas-
sified in various functional groups based on known func-
tions of their bacterial homologs including plasma
membrane biogenesis and biosynthesis of secondary
metabolites, energy and amino acid metabolism, sub-
strate transport, regulation of gene expression and DNA
repair. In addition, we present results of phylogenetic
analyses of translation elongation factor EF2 that repre-
sents the only identified case of a recent transfer that
occurred after the Karenia and Karlodinium divergence and
the only example of HGT involving a gene of eukaryotic
origin.

Plasma membrane biogenesis and biosynthesis of 
secondary metabolites
Dehydrogenase MVIM-sugar aminotransferase fusion protein
Screening of the K. brevis EST data resulted in the identifi-
cation of two related proteins, sugar aminotransferase
(WECE) and the fused dehydrogenase MVIM-sugar ami-
notransferase (MVIV-WECE) that showed high similarity
to bacterial proteins. Both proteins are encoded by multi-
ple gene copies each represented by multiple transcripts in
the K. brevis EST data. To simplify matters, we named
allMVIV-WECE-encoding genes mviM/wecE-14 and all
WECE-encoding genes wecE-17. The gene names were
derived from the names of the corresponding protein
domains followed by the number of the contigs encoding
the full-length cDNA sequence of these proteins. Bacterial
homologs of the wecE-17 encode a sugar aminotransferase
that is classified in the DegT/DnrJ/EryC1/StrS aminotrans-
ferase family in the Pfam database [29,30]. We identified

Table 1: Horizontal gene transfers from bacteria to chromalveolates

1 2 3 4 5 6
Domain (Pfam) Protein family [Function] Accession 

number
Number 
unigenes

Best 
Hit

Phylogeny

MVIM Predicted dehydrogenase EF540335 7 1e-57 Fig. 2
WECE Pyridoxal phosphate dependent aminotransferase [Cell 

envelope biogenesis, outer membrane]
EF540335
EF540337

12 2e-100 Fig. 2

Epimerase NAD dependent epimerase/dehydratase [Cell envelope 
biogenesis, outer membrane]

EF540339 2 1e-56 Fig. 3

CAS-like Clavaminic acid synthetase [Biosynthesis of clavulanic 
acid]

EF540323
EF540325

3 1e-53 Fig. 4

MQO Malate-quinone oxidoreductase [Energy metabolism] EF540331
EF540333

2 1e-98 Fig. 5

NADP-IDH Monomeric NADP(+)-dependent isocitrate 
dehydrogenase. [Energy metabolism]

EF540327
EF540328

2 1e-162 Fig. 6

Fe-ADH Iron-containing alcohol dehydrogenase [Energy 
metabolism]

EF540326 1 2e-97 Additional file 
1

PutA NAD-dependent aldehyde dehydrogenases [Energy 
metabolism]

EF540338 2 2e-120 Additional file 
1

PBPb Substrate-bound, membrane-associated, periplasmic 
binding protein [Substrate transport]

EF540334 1 2e-26 Additional file 
1

SIR2 Silent information regulator 2 [Gene silencing, DNA 
repair]

EF540336 2 5e-39 Additional file 
1

AslA Arylsulfatase A [Substrate transport] EF540322 1 1e-70 Additional file 
1*

COG3129 SAM-dependent methyltransferase EF540332 1 1e-23 Additional file 
1*

ATS1 Alpha-tubulin suppressor [Cell division and 
chromosome partitioning, cytoskeleton]

EF540324 5 8e-52 Additional file 
1*

PdxA Pyridoxal phosphate biosynthetic protein PdxA [Amino 
acid metabolism]

EF540340 1 4e-54 Additional file 
1*

COG3618 Metal-dependent hydrolase of the TIM-barrel fold EF540329 2 1e-55 Additional file 
1*

COG3022 Hypothetical [unknown] EF540330 1 4e-26 Additional file 
1*

1. The Pfam domain designation [29, 30]. 2. Confirmed or proposed function of the prokaryotic homologs is given. 3. GenBank accession number. 
4. Numbers of unigenes encoding particular protein identified in the Karenia brevis EST data are given. Only one copy of gene was submitted into 
the GenBank. All gene copies can be found at [111]. 5. E-values for the best bacterial hit from the GenBank nonredundant database. 6. 
Phylogenetic trees for all proteins present in dinoflagellates and at least one other eukaryotic lineage (BLASTp e-value ≤ 10-10).
*The protein was found only in dinoflagellates and prokaryotes.
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five genes of the wecE-17 type in the K. brevis genome. The
wecE-17 genes share 93–99% amino acid sequence iden-
tity over their protein coding regions and significant sim-
ilarity of the 3' UTR sequences. The total length of the
identified wecE-17 sequences is 442 aa including 367 aa of
the mature WECE protein and 74 aa of the incomplete N-
terminal extension (Fig. 1). The N-terminus is highly
hydrophobic and, according to the protein topology pre-
diction program TMHMM [31], contains a transmem-
brane motif (P = 0.87%).

The mviM/wecE-14 genes have a bipartite structure (Fig.
1). The N-terminal region of this sequence contains a
NAD-binding Rossmann fold domain typical for the
GFO/IDH/MocA oxidoreductase family and shows high
similarity to the dehydrogenase MVIM found in Bacteria
and Archaea (55% amino acid sequence identity). The C-
terminal domain of mviM/wecE-14 encodes WECE that
shares 81–84% amino acid sequence identity with protein
encoded by wecE-17 and about 67% amino acid sequence
identity with its bacterial homologs. Using analyses of
nucleotide differences in protein coding regions and
insertion-deletions in 5' and 3' UTR, we identified at least
seven MVIM-WECE-encoding genes in K. brevis. Because
these genes share 92–99% amino acid sequence identity
and retain significant sequence similarity of their 5' and 3'
UTRs their origin is likely through recent gene duplica-
tions. The K. brevis culture that was used for the EST data
collection was a vegetative haploid clonal cell line there-
fore all sequence variants were non-allelic gene copies.

The sequence structure is conserved between all mviM/
wecE-14 copies: they are composed of 361 aa of MVIM,
368 aa of WECE, and 10 aa of the spacer region separated
the two domains. MviM/wecE-14 genes do not have an N-
terminal extension and, presumably, encode cytosolic
proteins. The comparison of the wecE-14 and wecE-17

sequences shows that the two types of transcripts do not
result from alternative splicing, but are encoded by differ-
ent loci in the K. brevis genome. The number of amino
acid substitutions between the protein coding regions of
wecE-14 and wecE-17 is higher than the number of within
group substitutions. Furthermore, the N-terminus and 3'
UTRs are highly conserved between wecE-17 genes and
share no sequence similarity with mviM/wecE-14. Phylo-
genetic analyses provide strong support for wecE-14 and
wecE-17 monophyly (bootstrap proportions, maximum
likelihood, BPml = 100%; neighbor joining, BPnj = 100%;
Bayesian posterior probability, BPP = 1.0; Fig. 2A).

Homologs of the K. brevis MVIM and WECE are broadly
distributed among Bacteria and Archaea. Interestingly, the
two genes are located in one operon separated by 9–89 bp
spacer regions in several proteobacteria (Fig. 1). This
observation suggests that dinoflagellates might have
derived the mviM/wecE-14 fragment through a single
HGT. WecE-17 most likely resulted from a recombination
between MviM/wecE-14 and a DNA fragment that gave rise
to the hydrophobic N-terminus of wecE-17. This event
occurred after the Karenia divergence and was followed by
multiple duplications of wecE-17 and mviM/wecE-14.
Homologs of the bacterial MVIM and WECE proteins have
not previously been reported for eukaryotes. Using a
BLAST search against the GenBank dbEST database we
identified homologs of the K. brevis WECE proteins in free
living heterotrophic species of excavates: jakobids Secula-
monas ecuadoriensis and Jakoba bahamiensis and heterolo-
bosean amoebae Sawyeria marylandensis (see Additional
file 1). Homologs of the K. brevis MVIM have been identi-
fied in Karlodinium micrum and two species of excavates, J.
bahamiensis and S. marylandensis (see Additional file 1).
The MVIM and WECE distribution and phylogeny indi-
cate that these proteins have been acquired by excavates
before the divergence of jakobids and heteroloboseans

Structure of the mviM/wecE fragment in the dinoflagellate Karenia brevis and proteobacteriaFigure 1
Structure of the mviM/wecE fragment in the dinoflagellate Karenia brevis and proteobacteria. Each arrow-shaped 
box represents an open reading frame (ORF). Arrows indicate the direction of transcription. Solid black boxes represent 5' 
untranslated regions (UTR) and protein spacer regions. Black lines connecting two boxes represent intergenic regions.
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(Fig. 2). The observed monophyly of the K. brevis and K.
micrum MVIM sequences and the absence of MVIM and
WECE homologs in EST libraries from four species of
peridinin dinoflagellates that are ancestral to Karenia and
Karlodinium [32], suggests that the mviM/wecE-14 frag-
ment originated on the branch uniting Karenia and Kar-
lodinium. The result of the MVIM and WECE nucleotide
composition analysis also demonstrates that the acquisi-
tion of these genes by dinoflagellates and excavates was a
relatively ancient event(s). The nuclear gene nucleotide
composition varies significantly among different species
of excavates and dinoflagellates. However, the GC content
of the MVIM- and WECE-encoding sequences does not
deviate from the GC content range identified for protein-
coding regions in the host organisms (Table 2). Phyloge-
netic analyses of WECE and MVIM support the mono-
phyly of these sequences in eukaryotes (BPml = 96%; BPnj
= 85%; BPP = 1.0 for WECE and BPml = 76%; BPnj = 79%;
BPP = 0.97 for MVIM) (Fig. 2A, B). Although we cannot
exclude the possibility that dinoflagellates and excavates
independently derived MVIM- and WECE-encoding genes
from the same bacterial source, the most plausible inter-
pretation of the similar phylogenies for the two genes and
the co-occurrence of both sequences in two distantly
related groups of eukaryotes is that the bacterial mviM/
wecE DNA fragment was acquired by one of these eukary-
otic lineages and passed to the next via HGT, perhaps
through phagocytosis (Fig. 2C). The incongruence of the
prokaryotic MVIM and WECE phylogenies with the
respective species phylogenies and disagreement between
the MVIM and WECE tree topologies (Fig. 2A, B) do not
allow us to unambiguously identify the prokaryotic donor
of the mviM/wecE fragment. The disagreement between
phylogenies may result from frequent transfers among
bacteria that has abolished a specific sister group relation-
ship to the eukaryotic sequences (see Discussion for
details).

Study of HGT in bacteria demonstrates that genes encod-
ing physiologically coupled reactions are often co-trans-
ferred, frequently in operons [33]. The fact that MVIM-
and WECE-encoding genes are fused in K. brevis and
linked in several proteobacteria may indicate that proteins
encoded by these genes are functionally coupled. Func-
tions of the dehydrogenase MVIM are poorly character-
ized in bacteria. The bacterial homologs of WECE have
been intensively studied for their involvement in the bio-
synthesis of microlide antibiotics that belong to the large
family of secondary metabolites known as polyketides
[34-37], outer membrane liposaccharides [38-40], and
surface layer glycoproteins [41-43]. According to the
results of phylogenetic analyses, WECE proteinsidentified
in eukaryotes form a monophyletic clade with bacterial
proteins from two distinct groups (Fig. 2A). The first
group is represented by actinobacterial proteins involved

Origin of sugar aminotransferase WECE and dehydrogenase MVIM in eukaryotesFigure 2
Origin of sugar aminotransferase WECE and dehy-
drogenase MVIM in eukaryotes. A. ML tree of sugar ami-
notransferase WECE. B. ML tree of dehydrogenase MVIM. 
The numbers above and below the branches are the results 
of ML and NJ bootstrap analyses, respectively. Only boot-
strap values ≥ 60% are shown. The thick branches indicate ≥ 
0.95 posterior probability from a Bayesian inference. Branch 
lengths are proportional to the number of substitutions per 
site (see scale bars). Numbers in bold indicate bootstrap sup-
port for the monophyly of wecE-14 and wecE-17 sequences in 
Karenia brevis. CH indicates chromalveolates and EX indicates 
Excavata. Names of bacterial WECE-encoding genes that 
have been studied experimentally [34-36, 41, 43] are given in 
brackets. C. Origin and distribution of MVIM and WECE in 
eukaryotes through sequential HGTs.
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in the biosynthesis of microlide antibiotics such as narbo-
mycin, erythromycin, pikromycin, and neomethymycin
(Fig. 2A). These catalyze the biosynthesis of the deoxy
sugar D-desosamine, the addition of which to the actino-
bacterial polyketides is crucial for their antibiotic activity
[34]. The second group includes monofunctional sugar
aminotransferases involved in the glycosylation of the
surface layer proteins in firmicutes Aneurinibacillus ther-
moaerophilus (ftdB) and Thermoanaerobacterium thermosac-
charolyticum (qdtB). FtdB and qdtB encode a key enzyme of
the biosynthesis of thymidine diphosphate-activated 3-
acetamido-3,6-dideoxy- D- galactose (dTDP-D-Fuc
p3NAc), which serves as a precursor for the assembly of
structural polysaccharides in bacteria [41,43]. The pres-
ence of multiple WECE-encoding genes and a high expres-
sion level of these genes in K. brevis suggest that this
protein is involved in physiologically important processes
in this organism.

NAD dependent sugar nucleotide epimerase/dehydratase
BLAST searches using sequences of bacterial proteins
involved in outer membrane liposaccharide and S-layer
glycoprotein biosyntheses [43,44] allowed us to identify
two genes encoding NAD dependent sugar nucleotide epi-
merase in the K. brevis EST data. Protein coding regions of
the two genes share 98% amino acid sequence identity
and significant similarity of their 3'UTR regions. This sug-

gests they arose through a recent gene duplication. Both
genes are represented by multiple transcripts and have a
GC content typical for K. brevis nuclear encoded genes
(Table 2). The absence of an N-terminal extension indi-
cates that these sequences likely encode cytosolic proteins.
Phylogenetic analyses revealed three related isoforms of
NAD dependent sugar nucleotide epimerase that arose
through ancient gene duplication in prokaryotes (Fig.
3A). Prokaryotic and major eukaryotic lineages including
chromalveolates and Excavata possess epimerase-I. Epi-
merase-II is present in Bacteria, Archaea, several species of
diplomonads (Giardia lamblia and S. barkhanus), and stra-
menopiles (Phytophthora ramorum and Thalassiosira pseudo-
nana; see Additional file 1). Epimerase-III was found only
in K. brevis and Bacteria. Phylogenetic analyses provide
strong support for the monophyly of the K. brevis and bac-
terial epimerase-III sequences (BPml = 93%; BPnj = 83%;
BPP = 1.0; Fig. 3B). The tree topology suggests that bacte-
rial epimerase-III was acquired by dinoflagellates through
HGT. Epimerase-I, which is present in haptophytes and
stramenopiles has not been found in the EST libraries of
six dinoflagellate species including K. brevis. The distribu-
tion and nucleotide composition of the epimerase-III-
encoding genes (Table 2) do not allow us to infer the time
of this transfer event. The epimerase-II tree strongly sup-
ports the monophyly of the two distantly related lineages,
diplomonads (Excavata) and stramenopiles (chromalveo-

Table 2: Nucleotide composition of selected genes acquired by protists through HGT

Species GC content (%)
Genome Gene1

average range WECE MVIM Epimerase CAS-like MQO IDH EF2

Karenia brevis 50.86 45–56 51.84 50.59 53.09 54.44 53.92 53.27 65.16
Karlodinium micrum 49.50 44–54 - 49.30 - 51.50 49.35 49.60 51.94
Alexandrium tamarense 58.93 50–67 - - - 67.84 60.75 59.26 57.92
Amphidinium carterae 54.64 50–58 - - - - - 53.75 56.03
Heterocapsa triquetra 63.64 57–69 - - - - 63.64 63.90 62.93
Lingulodinium polyedrum 62.98 55–69 - - - - - 57.45 66.78
Phaeodactylum tricornutum 53.86 49–60 - - - - - 53.40 53.19
Phytophthora ramorum 61.15 54–67 - - 60.65 - - - 62.59
Thalassiosira pseudonana 49.67 45–54 - - 46.64 - - 49.91 50.78
Isochrysis galbana 61.38 54–67 - - - 67.41 - 58.51 64.31
Emiliania huxleyi 67.75 63–72 - - - 69.96 62.64 - -
Pavlova lutheri 64.36 59–66 - - - - - - 64.48
Giardia lamblia 52.11 44–63 - - 52.16 - - - 56.90
Spironucleus barkhanus 43.02 31–63 - - 52.88 - - - 42.72
Jakoba bahamiensis 60.70 56–62 61.39 60.54 - - - - 60.54
Seculamonas ecuadoriensis 61.63 56–64 61.66 - - - - - 62.53
Sawyeria marylandensis 32.00 22–41 30.51 24.36 - - - - 30.10
Euglena gracilis 56.53 45–68 - - - - - - 51.12
Leishmania major 60.95 55–64 - - - - - - 63.08
Trypanosoma brucei 54.53 42–59 - - - - - - 53.21

Nucleotide composition is given for six out of 16 bacteria-derived genes listed in Table 1. The GC content of all bacteria-derived genes identified in 
Karenia brevis does not deviate significantly from the average. The underlined numbers indicate a gene GC content that significantly deviates from 
the genome GC content. Dashes indicate that the gene have not been found for this species; numbers in italic indicate GC contents for the genes 
that have a phylogeny consistent with the species phylogeny.
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lates) (BPml = 100%; BPnj = 99%; BPP = 1.0) (Fig. 3B).
This tree topology is most easily explained by serial HGT
that involved ancient prokaryote-to-eukaryote and more
recent eukaryote-to-eukaryote gene transfers (Fig. 2C).
Similar to WECE and MVIM, the epimerase tree does not
allow us to identify the prokaryotic lineages that contrib-
uted these genes to eukaryotes.

The functions of these enzymes have not been studied in
chromalveolates. In Bacteria, epimerase-I and III catalyze
the biosyntheses of dTDP-D-Fuc p3NAc and dTDP-L-ram-
nose, compounds that serve as precursors for the assembly
of outer membrane structural polysaccharides [41-43,45].
On the dTDP-D-Fuc p3NAc pathway, they function
upstream of the described earlier WECE proteins. We can-
not exclude that WECE and epimerase-III represent a func-
tionally coupled enzyme pair in K. brevis that might have
been acquired by dinoflagellates in one HGT event (Figs.
2, 3). Available experimental data suggest that epimerase-
I and II are also involved in cell wall polysaccharide bio-
synthesis in plants [46] and diplomonads [47]. Based on
these data we propose that epimerase-III performs similar
function(s) in K. brevis.

Clavaminic acid synthetase-like protein
Clavaminic acid synthetase (CAS) belongs to the large
family of iron and 2-oxoacid-dependent dioxygenases, an
important class of enzymes that mediates a variety of oxi-
dative reactions [48]. Most studies of CAS have been car-
ried out using the Streptomyces isozymes [49]. In
Streptomyces, CAS catalyzes three major steps of the clavu-
lanic acid biosynthesis. Clavulanic acid is a natural inhib-
itor of β-lactamases, enzymes that confer resistance to β-
lactam antibiotics in bacteria.

We identified homologs of the bacterial CAS proteins in
four eukaryotic lineages: Fungi (Opisthokonta), green
algae (Plantae), dinoflagellates, and haptophytes (chro-
malveolates; Fig. 4, see Additional file 1). Partial
sequences of three genes encoding CAS-like protein were
identified in the K. brevis EST data. To the best of our
knowledge, the functions of these proteins have not been
studied in eukaryotes. According to TargetP and MitoProt,
CAS-like proteins in K. brevis (P = 0.763 and P = 0.870
respectively), K. micrum (P = 0.742 and P = 0.951), and a
green alga Ostreococcus tauri (P = 0.748 and P = 0.706) are
mitochondrial targeted. CAS-like proteins in O. lucimari-
nus and Chlamydomonas reinhardtii do not have an N-ter-
minal extension. PSORT [50] predicts a peroxisomal

Phylogeny of NAD-dependent sugar nucleotide epimerase/dehydratase isoformsFigure 3
Phylogeny of NAD-dependent sugar nucleotide epimerase/dehydratase isoforms. A. ML tree of three isoforms of 
NAD dependent sugar nucleotide epimerase/dehydratase. Light brown color represents eukaryotic clades; blue color repre-
sents prokaryotic clades.B. A fragment of the ML tree from the Figure 3A representing the phylogeny of NAD dependent 
sugar nucleotide epimerase/dehydratase isoforms II (E-II) and III (E-III). The numbers above and below the branches are the 
results of ML and NJ bootstrap analyses, respectively. Only bootstrap values ≥ 60% are shown. The thick branches indicate ≥ 
0.95 posterior probability from a Bayesian inference. Branch lengths are proportional to the number of substitutions per site 
(see the scale bar). CH indicates chromalveolates and EX indicates Excavata. Names of the epimerase-encoding genes that have 
been studied experimentally [44, 45, 47] are given in brackets.
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localization for the fungal CAS-like proteins however,
with low probability (P-value range = 0.500 – 0.660).
Phylogenetic analyses of the CAS-like proteins (Fig. 4)
support the monophyly of the two chromalveolate line-
ages (BPml = 87%; BPnj = 87%; BPP = 0.99) and places
chromalveolates in one clade with a cyanobacterium Tri-
chodesmium erythraeum IMS101 (BPml = 100%; BPnj =
100%; BPP = 1.0). Most proteins of cyanobacterial origin
were derived by chromalveolates from red or green algal
progenitors of their plastids via secondary endosymbiosis
[25,26]. Absence of Plantae from the cyanobacterial-chro-
malveolate clade likely indicates that this cyanobacterial
protein was acquired by chromalveolates not through
endosymbiotic but rather through horizontal gene trans-
fer. Recently, Waller at al. [15] reported another case of
cyanobacterium-to-dinoflagellate HGT that involved a
DNA fragment encoding the plastid targeted shikimate-O-
methyltransferase junction protein. However, presence of
the CAS-like proteins in haptophytes suggests a different
scenario for the occurrence of this enzyme in dinoflagel-
lates, which might include an additional, haptophyte-to-

dinoflagellate HGT. Alternatively the CAS-like protein tree
topology could be explained by the gene transfer from
cyanobacteria before the divergence of chromalveolates
and its subsequent loss from stramenopiles, ciliates, and
apicomplexans.

Energy metabolism
Iron-containing alcohol dehydrogenase and NAD-dependent 
aldehyde dehydrogenase
Iron-containing alcohol dehydrogenase (Fe-ADH) and
NAD-dependent aldehyde dehydrogenase (PutA) are
probably the best-studied proteins from the perspective of
HGT in eukaryotes. Aldehyde-alcohol dehydrogenase pro-
tein (AdhE) has arisen through the fusion of two protein
domains, PutA and Fe-ADH and is considered to be a key
enzyme in energy metabolism in parasitic amitochondri-
ate protists [51]. Previous studies on parasitic protists
demonstrated that AdhE-encoding genes have been sub-
jects of multiple independent prokaryote-to-eukaryote
HGTs. For information about AdhE functions and phylog-
eny in parasitic protists we would direct readers to refer-

Origin of clavaminic acid synthetase (CAS) -like protein in ChromalveolataFigure 4
Origin of clavaminic acid synthetase (CAS) -like protein in Chromalveolata. ML tree of CAS and CAS-like proteins. 
The numbers above and below the branches are the results of ML and NJ bootstrap analyses, respectively. Only bootstrap val-
ues ≥ 60% are shown. The thick branches indicate ≥ 0.95 posterior probability from Bayesian inference. Branch lengths are 
proportional to the number of substitutions per site (see the scale bar). CH indicates chromalveolates. The name of the CAS 
protein-encoding gene that has been studied experimentally [49] is given in brackets. * The position of Alexandrium tamarense 
within the haptophytes clade was inferred from the analysis of a short C-terminal sequence.
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ences [51,52]. In addition to previous findings, we
identified Fe-ADH in free-living dinoflagellates and jako-
bids (see Additional file 1). These sequences share over
50% amino acid identity with bacterial homologs. Results
of phylogenetic analyses suggest that the two lineages
acquired Fe-ADH-encoding genes independently from
closely related prokaryotes. The Fe-ADH tree obtained in
this study is shown in Additional file 1. PutA has been
found in free living dinoflagellates, stramenopiles, and
jakobids (see Additional file 1). PutA sequences in these
three lineages show over 50% amino acid identity to cor-
responding bacterial proteins and according to the result
of phylogenetic analyses, originated through independent
interdomain transfers from distinct prokaryotic donors
(see Additional file 1). Phylogenetic analyses strongly
support the monophyly of dinoflagellate and bacterial
sequences (BPml = 100%; BPnj = 100%; BPP = 1.0) and
suggest that dinoflagellates acquired PutA before the
divergence of Karenia and Karlodinium.

Malate-quinone oxidoreductase
Malate-quinone oxidoreductase (MQO) is a functional
analog of the better-known NAD-dependent malate dehy-
drogenase (MDH) that catalyses the conversion of malate
to oxaloacetate in the tricarboxylic acid (TCA) cycle. In
contrast to MDH, bacterial MQO is a membrane-associ-
ated enzyme that utilizes flavin adenine dinucleotide
(FAD) as a cofactor and donates the electrons from malate
oxidation to quinones instead of NAD [53-55]. MQO is
protein common in bacteria. Among eukaryotes, this
enzyme has been previously reported only for apicompl-
exans [56]. Apicomplexans lack the mitochondrial form
of MDH. It has been shown that MQO compensates for
mitochondrial MDH in the TCA cycle in this lineage [57].

We found two MQO-encoding genes in the K. brevis EST
data. These share 60% amino acid sequence identity and
about 44% identity with their bacterial homologs. Both
have nucleotide compositions typical for K. brevis nuclear
encoded genes (Table 2). Using sequence similarity
searches, we identified homologs of the K. brevis MQO in
several species of dinoflagellates and haptophytes (see
Additional file 1). Phylogenetic analyses support the
monophyly of the two genes identified in K. brevis (BPml
= 87%; BPP = 1.0) suggesting that they originated via gene
duplication after the Karenia and Karlodinium divergence.
Phylogenetic analyses place haptophytes and dinoflagel-
lates within one clade (BPml = 84%; BPnj = 99%; Fig. 5A).
The most parsimonious explanation for the observed
MQO-DH tree topology is a haptophyte-to-dinoflagellate
HGT that occurred early in dinoflagellate evolution.

Surprisingly, comparison of the MQO sequences identi-
fied in dinoflagellates and haptophytes (MQO-DH) with
the apicomplexan MQO (MQO-A) show that these pro-

teins share significant similarity only at the short N-termi-
nal FAD-binding domains (22% overall amino acid
sequence identity). The analysis of the protein distribu-
tion and phylogeny showed that MQO-DH and MQO-A
have been acquired by chromalveolates from different
bacterial donors through independent transfer events
(Figs. 5A, 5B). The fact that MQO-A shows highest simi-
larity to homologs in epsilon proteobacteria (all BLAST
hits with e-value ≤ 10-20) suggests that apicomplexans
acquired MQO-A from this bacterial group. Homologs of
MQO-DH have been identified in multiple bacterial line-
ages including firmicutes, actinobacteria, and three pro-
teobacterial groups: alpha-, beta-, and gamma
proteobacteria. Although the tree topology (Fig. 5A) does
not allow us to identify the bacterial donor of the MQO-
DH in chromalveolates, the presence of N-terminal exten-
sion in both chromalveolate and proteobacterial MQO-
DH sequences suggests a proteobacterial origin of this
protein. Highly hydrophobic N-terminal extensions of the
proteobacterial MQO sequences are likely responsible for
the protein interaction with bacterial membrane. The cor-
responding regions of the dinoflagellate MQO sequences
have a low hydrophobicity and according to the results of
analyses with protein topology prediction programs do
not encode mitochondrial-, plastid-, peroxisomal-target-
ing or signal peptides (results not shown). Most likely,
MQO-DH represents a cytosolic enzyme. To verify this
hypothesis we assessed the presence/absence of MDH iso-
forms in haptophytes and dinoflagellates. We found a
mitochondrial-targeted MDH in both lineages and a
cytosolic MDH in haptophytes (see Additional file 1). The
cytosolic isoform is absent from EST libraries of six dino-
flagellate species that have been analyzed. This observa-
tion suggests that cytosolic MDH was replaced by MQO in
dinoflagellates, because haptophytes retain both cytosolic
enzymes. Analogous cases have been observed in prokary-
otes. For example, Escherichia coli and Corynebacterium
glutamicum contain both MQO and MDH [54,55], and
Helicobacter pylori has only MQO [53]. The study of bacte-
rial MQO shows that reactions catalyzed by this enzyme
have a very favorable standard free energy difference
(ΔG°) in comparison with reactions catalyzed by MDH
[53]. In addition, MQO uses carbon and energy sources
different from MDH. Therefore this enzyme may be bene-
ficial for the cell under the conditions unfavorable for
MDH activity.

Monomeric NADP-dependent isocitrate dehydrogenase
NADP-dependent isocitrate dehydrogenase (NADP-IDH)
is an important enzyme of the intermediary metabolism
that controls the carbon flux within the TCA cycle and
supplies the cell with 2-oxoglutarate and NADPH for bio-
synthesis [58]. There are several NADP-IDH isoforms in
photosynthetic organisms including cytosolic, mitochon-
drial, plastid, and peroxisomal enzymes. These four
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NADP-IDH isoforms have arisen in eukaryotes from a sin-
gle progenitor enzyme [59]. Eukaryotic NADP-IDH pro-
teins form a dimeric structure composed of identical
subunits of 40–50 kDa and share about 40% identity to
the prokaryotic dimeric NADP-IDH (NADP-IDH-I)
[58,59].

Analyses of the K. brevis EST data allowed us to identify a
novel eukaryotic form of NADP-IDH similar to the mon-
omeric NADP-IDH (NADP-IDH-II) found in some bacte-
ria (60% amino acid sequence identity). Apart from
prokaryotes, we identified sequences homologous to the
K. brevis NADP-IDH-II in photosynthetic algae from three
chromalveolate lineages: dinoflagellates, stramenopiles,
and haptophytes (Fig. 6; see Additional file 1). The struc-
ture and distribution of chromalveolate NADP-IDH-II-
encoding genes suggest this protein is plastid targeted.
These proteins contain plastid targeting N-terminal exten-
sions composed of a 22–23 aa signal peptide (P > 0.9) and
a 48–65 aa plastid targeting peptide that are typical for
chromalveolates [60,61]. The inventory of IDH isoforms
in chromalveolates showed that plastid NADP-IDH-I is
absent from this lineage. Presumably, NADP-IDH-II was
acquired by the chromalveolate ancestor from an uniden-
tified bacterial donor at the time of plastid establishment

and consequently lost from several chromalveolate line-
ages including ciliates, apicomplexans, and non-photo-
synthetic stramenopiles. The gene losses correlate with the
loss of photosynthetic ability in these lineages, which sug-
gests the involvement of the enzyme in photosynthesis-
related processes. In bacteria, NADP-IDH-II performs the
same functions as NADP-IDH-I. Most extant bacteria have
only one of these enzymes. Experimental study of IDH
activity in the marine bacterium, Colwellia maris, which
uniquely possesses both IDHs, showed that NADP-IDH-II
contributes a molecular basis for cold adaptation in this
species [62]. NADP-IDH-II demonstrated maximum bio-
chemical activity at 4°C and was completely inactivated
above 20°C. Furthermore, this enzyme has been shown to
enable E. coli mutants to grow at low temperature.

Substrate-bound periplasmic binding protein
Bacterial substrate-bound periplasmic binding proteins
(PBPb) are components of membrane-associated com-
plexes that transport a wide variety of substrates, such as,
amino acids, peptides, sugars, vitamins, and inorganic
ions [63]. We found homologs of a bacterial PBPb in three
lineages of photosynthetic chromalveolates and a photo-
synthetic excavate Euglena gracilis (see Additional file 1).
Although PBPb has a restricted distribution similar to

Origins of two malate/quinone oxidoreductase (MQO) isoforms in ChromalveolataFigure 5
Origins of two malate/quinone oxidoreductase (MQO) isoforms in Chromalveolata. A. ML tree of MQO isoform 
DH. B. ML tree of MQO isoform A. The numbers above and below the branches are the results of ML and NJ bootstrap anal-
yses, respectively. Only bootstrap values ≥ 60% are shown. The thick branches indicate ≥ 0.95 posterior probability from a 
Bayesian inference. Branch lengths are proportional to the number of substitutions per site (see scale bars). CH indicates chro-
malveolates. Only bacterial sequences that have a BLAST e-value ≤ 10-20 to homologs in eukaryotes are included in these trees. 
Names of the MQO-encoding genes that have been studied experimentally [54, 55, 57] are given in brackets.
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NADP-IDH-II in photosynthetic eukaryotes, analyses with
protein topology prediction programs do not support a
plastid localization of PBPb. Phylogenetic analyses sup-
port the monophyly of chromalveolate and E. gracilis
PBPb sequences (see Additional file 1) suggesting that,
like MVIM-WECE and epimerase-II, this protein spread
among eukaryotes through intradomain HGT.

Translation elongation factor 2
Translation elongation factor 2 (EF2) is a Ca2+/calmodu-
lin-dependent protein kinase III involved in protein syn-
thesis in eukaryotes [64]. EF2 is responsible for the
translocation of the peptidyl-tRNA from the acceptor site
to the peptidyl-tRNA site of the ribosome, thereby freeing
the A-site for the binding of the next aminoacyl-tRNA.
Highly conserved among eukaryotes, EF2 is considered to
be a robust phylogenetic marker. This protein has been
successfully used for phylogenetic analyses of Plantae and
Opistokonta [65-67]. However, our attempt at using EF2
for inferring protist phylogeny demonstrated that the gene
encoding this protein has been subject to HGT in several
chromalveolate lineages (Fig. 7). Our phylogenetic analy-
sis provides strong support (BPml = 100%; BPnj = 100%;
BPP = 1.0) for the position of the K. brevis EF2 within
Euglenozoa (Excavata). The chromalveolate type of EF2
identified in six species of dinoflagellates including K.
micrum is absent from the K. brevis EST data. The tree

topology and protein distribution suggest that the
euglenozoa-derived EF2 replaced the chromalveolate
homolog of this protein after the Karenia and Karlodinium
divergence. Analyses of the nucleotide composition of
EF2-encoding genes support the phylogenetic inferences
(Table 2). The GC content of the K. brevis EF2 gene is sig-
nificantly higher than for typical nuclear genes in this
taxon. The nucleotide composition of EF2-encoding genes
in K. micrum and other chromalveolates does not deviate
from the GC content range identified for these species.
This observation suggests that EF2 was recently acquired
by Karenia from a GC-rich excavate donor. Haptophyte
algae represent another chromalveolate lineage that pos-
sesses a non-chromalveolate form of this protein. Under
chromalveolate monophyly [68], the position of hapto-
phytes as a sister group of Plantae (BPml = 98%; BPnj =
86%; BPP = 1.0) in the EF2 tree should be interpreted as
evidence that this protein was acquired by haptophytes
through HGT (Fig. 7). However, due to the fact that the
phylogenetic position of the haptophyte-cryptophyte
clade relative to other chromalveolate lineages remains
unresolved [21,22], this leaves uncertain the origin of this
protein in haptophytes.

Phylogeny of translation elongation factor 2 (EF2) in eukaryo-tesFigure 7
Phylogeny of translation elongation factor 2 (EF2) in 
eukaryotes. ML tree of EF2. The numbers above and below 
the branches are the results of ML and NJ bootstrap analyses, 
respectively. Only bootstrap values ≥ 60% are shown. The 
thick branches indicate ≥ 0.95 posterior probability from a 
Bayesian inference. Branch lengths are proportional to the 
number of substitutions per site (see the scale bar). CH indi-
cates chromalveolates and EX indicates Excavata.
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Origins of NADP-dependent isocitrate dehydrogenase (IDH) in chromalveolatesFigure 6
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veolate-bacterial IDH. The numbers above and below the 
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respectively. Only bootstrap values ≥ 60% are shown. The 
thick branches indicate ≥ 0.95 posterior probability from a 
Bayesian inference. Branch lengths are proportional to the 
number of substitutions per site (see the scale bar). CH indi-
cates chromalveolates.
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Phylogenetic trees and sequence information for the
remaining seven proteins putatively acquired by chroma-
lveolates via HGT (see Table 1) are provided in Additional
file 1.

Discussion
Recurrent HGT in protists
The results of our study demonstrate that the recurrent
non-genealogical influx of genetic material from various
prokaryotic and eukaryotic donors is an important con-
tributor to genome evolution in chromalveolates.
Although our data screening approach was aimed at
detecting only chromalveolate-specific HGTs, detailed
analyses of the identified proteins revealed that many of
them are present in several eukaryotic lineages. A co-
occurrence of bacteria-derived genes encoding the same
enzyme in a limited number of species from distantly
related eukaryotic lineages has been reported previously
[8,13-15,51,69-72] (Table 3).

Two features typical for phylogenetic trees resulting from
the analysis of these proteins are: (1) the presence of sev-
eral prokaryotic-eukaryotic clades within one tree (Fig. 3,
Additional file 1) and (2) the presence of several species
from distantly related eukaryotic lineages within one
clade (Figs. 2, 3, 4, 5, 7, Additional file 1). These tree
topologies may be explained by multiple independent
inter- and intradomain transfers of genes encoding the
same enzyme. The study of HGT in bacteria and parasitic
protists demonstrates that adaptation to specific environ-
ments is the major force driving HGT [33,72]. Genes ben-
eficial under certain environmental conditions can
independently be acquired by different eukaryotic line-
ages that occupy different niches. Reconstructing the phy-
logeny of proteins involved in anaerobic glycolysis in

parasitic protists provides an illustration of this scenario
[69]. Here, the gene encoding fructose-bisphosphate aldo-
lase class II, type B was acquired independently by Paraba-
salida and the common ancestor of Oxymonadida and
Diplomonadida. Three prokaryote-to-eukaryote transfers
explain the occurrence of pyruvate phosphate dikinase in
Parabasalida, parasitic Euglenozoa, and Oxymonadida-
Diplomonadida lineage. The aerobe-to-anaerobe transi-
tion occurred several times in the evolution of excavates.
During this transition, different lineages of excavates inde-
pendently acquired genes associated with anaerobic glyc-
olysis from prokaryotes that had already inhabited
corresponding niches.

The results of our study show that this scenario is applica-
ble as well to free-living eukaryotes. Two isoforms of sugar
epimerase, epimerase-II and epimerase-III that originated
via an ancient gene duplication event in prokaryotes were
independently acquired by dinoflagellates and strameno-
piles (Fig. 3). Two independent interdomain HGTs
explain the occurrence of structurally distinct isoforms of
bacterial MQO in free living haptophytes and dinoflagel-
lates and parasitic apicomplexans. The second feature of
phylogenetic trees resulted from the analysis of trans-
ferred genes, the monophyly of distantly related eukaryo-
tes, may be explained either by intradomain (eukaryote-
to-eukaryote) gene transfer or by several interdomain
transfers from the same prokaryotic donor. This type of
phylogeny is more likely to reflect specific relationships
between microorganisms that occupy (or occupied in
their evolutionary past) one ecological niche. Sequential
HGTs that involved a prokaryote and two distantly related
anaerobic protists have been previously proposed as an
explanation for the patchy distribution of alcohol dehy-
drogenase, alanyl-tRNA synthetase, and fructose-bisphos-

Table 3: Gene distribution by multiple independent HGTs in eukaryotes

Protein Multiple Independent HGTs Reference
mode eukaryotic lineages involved

Fructose-bisphosphate aldolase class II, type B p-eu, eu-eu Excavata, Amoebozoa [69]
Pyruvate phosphate dikinase p-eu Excavata [69]
Translation elongation factor-1 alpha-like protein eu-eu Excavata, Chromalveolata, Opisthokonta, Plantae [13]
Shikimate biosynthetic enzyme AroB p-eu Chromalveolata, Opisthokonta (Fungi) [15]
Hybrid-cluster protein p-eu, eu-eu Excavata, Chromalveolata, Amoebozoa, Plantae (Green algae) [51]
A-type flavoprotein p-eu, eu-eu Excavata, Amoebozoa [51]
Glucosamine-6-phosphate isomerase p-eu, eu-eu Excavata, Chromalveolata, Amoebozoa, Opisthokonta (Fungi) [51]
Alcohol dehydrogenase p-eu, eu-eu Excavata, Chromalveolata, Amoebozoa, Plantae (Green algae), 

Opisthokonta (Fungi)
[51]

Glutamate dehydrogenase p-eu Excavata, Chromalveolata [70]
Glyceraldehyde-3-phosphate p-eu, eu-eu Excavata, Chromalveolata [14]
Alanyl-tRNA synthetase p-eu, eu-eu Excavata, Chromalveolata, Amoebozoa [71]
Arginine deiminase p-eu, eu-eu Excavata, Amoebozoa [8]
Rubrerythrin p-eu Excavata, Amoebozoa [8]
Hypothetical protein p-eu, eu-eu Excavata, Amoebozoa [72]

The "p-eu" indicates interdomain prokaryote-to-eukaryote HGT. The "eu-eu" indicates intradomain eukaryote-to-eukaryote HGT.
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phate aldolase class II, type B protein among eukaryotes
[51,69,71] (Table 3). The bacteria-derived isoform of glyc-
eraldehyde-3-phosphate that functions as a cytosolic pro-
tein in free living dinoflagellates and Euglena and as a
glycosomal protein in parasitic Euglenozoa provides
another example of a protein derived by eukaryotes
through sequencial HGTs [14] (Table 3). Gene acquisition
through sequential HGTs is the most plausible scenario
for the distribution of MVIM-WECE, epimerase-II, PBPb,
and, possibly, MQO-DH and CAS-like protein presented
in this paper. It is believed that HGT is more likely to
occur between closely related lineages [73]. Such transfers
are hard to identify unless transferred genes have a limited
distribution within the studied taxonomic group. CAS-
like protein and MQO-CH identified in this study are
present in two chromalveolate lineages, haptophytes and
dinoflagellates (Figs. 4, 5). Possible interpretations of a
patchy gene distribution between closely related lineages
include differential gene loss and gene transfer. The gene
loss scenario would assume an independent gene loss
from three chromalveolate lineages: stramenopiles, cili-
ates, and apicomplexans. However, the fact that hapto-
phytes provide not only a food source but also a unique
pool of temporary plastids (kleptoplastids) for several
species of extant dinoflagellates [74,75] and have contrib-
uted the plastid to the common ancestor of Karenia and
Karlodinium [32,76] demonstrates that these two relatively
distantly related algal lineages have been involved in spe-
cific predator-prey interactions over millions of years. This
fact makes sequential HGTs a more plausible scenario for
the occurrence of MQO-CH and CAS-like protein in dino-
flagellates.

Genes encoding MVIM, WECE, epimerase-II, and PBPb
proteins are shared by bacteria and several lineages of
chromalveolates and excavates. According to the results of
our phylogenetic analyses, genes encoding these proteins
were acquired by one eukaryotic lineage through an
ancient interdomain HGT and transferred to another via
intradomain HGT. Phagotrophy is widespread in chroma-
lveolates and excavates therefore this feeding mode may
explain an increased rate of HGT in these taxa
[11,52,72,77]; i.e., many extant species of excavates and
chromalveolates feed on bacterial and eukaryotic micro-
organisms [78-82]. This dynamic process has made it
impossible to identify donors and recipients in these
eukaryote-to-eukaryote HGTs. An inconsistency between
the gene phylogeny and species phylogeny observed in
the prokaryotic region of the MVIM, WECE, and epime-
rase trees suggests that genes encoding these proteins are
subjects of frequent HGTs in bacteria. Structural analyses
of bacterial gene clusters that include close homologs of
the K. brevis WECE (ftdB and qdtB) and epimerase-III
(gepiA and wxoA) support this scenario [41,45]. FtdB and
qdtB belong to the large cluster of genes involved in the

biosynthesis of surface layer glycoproteins (SLG) in firmi-
cutes. It has been shown that the GC content of the SLG
clusters deviates significantly in many bacteria from the
GC content of genome as a whole [41]. This observation
together with the fact that SLG clusters are typically
flanked by several transposases or remnants thereof indi-
cate that the entire SLG region may be a subject of HGT in
bacteria. A similar conclusion resulted from the analysis
of the bacterial lipopolysaccharide biosynthetic loci that
includes gepiA and wxoA [45]. This observation completes
the proposed scenario of gene distribution by sequential
HGTs with an additional feature that is prokaryote-to-
prokaryote HGT.

Measuring the contribution of HGT to eukaryotic genomes
Several attempts to numerically estimate the contribution
of HGT to eukaryotic genomes suggest a substantial inter-
taxon variation in the number of horizontally derived
genes [7,12,52,83,84]. Existing studies show that
although extremely rare in Plantae and multicellular
Opisthokonta, HGT is a common phenomenon in Amoe-
bozoa, Excavata, and chromalveolates. However, the vari-
ation in the numbers of HGTs reported for different
species within the phagotrophic lineages (see Back-
ground) reflects a difference in analytical approaches. Dif-
ferences in stringency of data screening parameters, the
taxonomic composition of databases used for the compar-
ative analysis, and methods of phylogenetic analyses can
significantly affect the outcome of the study. Standardiza-
tion of methods for estimating the contribution of HGT in
eukaryotic genomes should be based on the knowledge of
tempo and mode of evolution of horizontally transferred
genes. To our knowledge, these issues have never been
exhaustively studied in eukaryotes.

Studies of prokaryotic genome evolution demonstrate
that many recently transferred genes have very large KA/KS
ratio that suggests directional selection [73]. In addition,
the rate of duplications among genes derived through
HGTs is significantly higher than among indigenous ones
in bacteria [85]. The proposed scenario for the fate of
transferred genes in bacteria based on these observations
includes their uptake, duplication, rapid diversification of
gene copies by mutations, and consequent fixation of the
"best" copies and elimination of other duplicates. Is this
scenario applicable for eukaryotes?

Analyses of proteins presented in these study show that
nine of them are encoded by at least 2–12 genes in the K.
brevis genome (Table 1). Following the standard approach
of phylogenomics, we excluded from the analysis all pro-
teins represented by multiple paralogs in several eukaryo-
tic lineages. Therefore we investigated only those paralogs
that arose from relatively recent duplications. The fact that
several dinoflagellate species contain multiple highly
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divergent (< 50% amino acid identity) paralogs of ATS1
(Additional file 1) suggests that duplication of genes
encoding this protein occurred before the divergence of
dinoflagellate lineages. Phylogenetic analyses of ATS1
support this statement (see Additional file 1). The amino
acid sequence identity of paralogs resulting from duplica-
tions that, according to phylogenetic analyses, occurred
after the Karenia and Karlodinium divergence varies from
60% (MQO) to 99% (WECE). The comparison of genes
encoding WECE protein shows that the amino acid
sequence identity of different copies varies from 81 to
99%. Assuming that divergence between two paralogs is
proportional to the time elapsed since gene duplication,
the observed variation suggests that duplication of WECE
genes is a continuous process in K. brevis.

To summarize, the results of this analysis demonstrate
that the impact of HGT on genome evolution in dinoflag-
ellates is reinforced by continuous duplications of the
transferred genes and consequent diversification of the
resulting paralogs. Additional studies are required to esti-
mate relative duplication rates of foreign and indigenous
genes, rates of mutations, and paralog silencing in this
group of organisms.

Conclusion
Taking into consideration that genomic data are available
for only a minuscule fraction of bacteria and protists pop-
ulating our planet and that we were able to identify mul-
tiple cases of HGT of genes encoding the same proteins
leads us to one simple conclusion. Horizontal gene trans-
fer contributes significantly to protist genomes. We
believe that in niches where parasitism and phagotrophy
are common, beneficial genes may spread rapidly from
prokaryotes to eukaryotes and provide a molecular basis
for niche-specific adaptations in the latter group. It is clear
however, that all genes are not transferred with equal fre-
quency in eukaryotes with the majority of HGT candidates
being involved in metabolic processes. However, given
that foreign DNA fragments from eukaryotes frequently
integrate in protist chromosomes, it should not be sur-
prising that occasionally genes encoding proteins of a
more universally conserved function such as EF2 and
potentially EF-1 alpha-like [13] may also be co-trans-
ferred. Apart from the exciting ramifications for post-HGT
gene evolution in eukaryotes that includes gene family
evolution and selection for novel functions, our work also
underlines the great care that needs to be taken when gen-
erating eukaryote-wide trees of life that include many
phagotrophic or parasitic taxa.

Methods
Karenia brevis EST library
In this study, we used EST data generated from clonal K
brevis Wilson cells grown under five different culture con-

ditions: 1) under nitrate depletion, 2) under phosphate
depletion, 3) in log phase under replete conditions, har-
vested during the light phase, 4) in the presence of oxida-
tive metals, and 5) undergoing heat stress. For complete
information about generation, sequencing, and process-
ing of the K. brevis EST library see reference [25]. Cluster-
ing and assembly of the EST was done using default
settings of the TGICL computer program [86,87]. The
assembly resulted in 9,786 EST contigs; each representing
a unique gene.

Identification of proteins acquired by chromalveolates 
through ancient HGTs
To identify ancient HGTs in chromalveolates, we analyzed
a subset of genes present in the K. brevis EST data and in
the EST data of at least one other species of dinoflagellate.
This approach allowed us to exclude from the analysis
possible bacterial contaminants of the EST library. Genes
shared by dinoflagellates have been detected using K.
brevis ESTs as an input for the sequence similarity search
(BLAST; e-value ≤ 10-10) against a local database that
included available data from the GenBank dbEST data-
base [18] for five dinoflagellate species: Alexandrium tam-
arense, Amphidinium carterae, Heterocapsa triquetra,
Lingulodinium polyedrum, and K. micrum. This analysis
yielded 3,341 EST contigs. To detect potential HGTs, we
used the defined subset of K. brevis DNA sequences as an
input for the sequence similarity search (BLASTx; e-value
≤ 10-20) against the GenBank non-redundant database
(nr). Sequences that showed highest similarity to prokary-
otic proteins (three top hits) or chromalveolate and
prokaryotic proteins have been selected for further analy-
ses. Using this approach, we identified 95 K. brevis uni-
genes encoding proteins from 55 protein families
putatively derived from prokaryotes at different time
points of chromalveolate evolution.

In parallel, we performed a high throughput automated
analysis of the subset of sequences shared by dinoflagel-
lates. The 3,341 sequences were translated into the six
open reading frames using the Transeq program in the
Emboss package [88] and used as input for the analysis
with the PhyloGenie package of computer programs [89].
PhyloGenie serves as an automated pipeline in which the
following analyses can be implemented: BLAST search
against a local database, extraction of homologous
sequences from the BLAST results, generation of align-
ments, phylogenetic tree reconstruction, and calculation
of bootstrap support values for individual phylogenies.
We created a local protein database for the PhyloGenie
BLAST search by retrieving completed genome sequences
and EST data from the National Center for Biotechnology
Information (NCBI) [90] genomic projects web site and
dbEST [18], DOE Joint Genome Institute (JGI) [91], Cya-
nidioschyzon merolae genome project [92], and The Galdie-
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ria sulphuraria genome project [93] for species listed
below. EST sequences have been translated into six open
reading frames and combined with protein sequences.
The final fasta file that included all of the data was format-
ted using the formatdb program in the BLAST package
[94]. Our local database included complete genome and
EST data for following species: Oryza sativa, Drosophila
melanogaster, Saccharomyces cerevisiae, the green alga
Chlamydomonas reinhardtii, red algae C. merolae and G. sul-
phuraria; chromalveolates Guillardia theta, Emiliania hux-
leyi, Thalassiosira pseudonana, Plasmodium falciparum,
Toxoplasma gondii, A. tamarense, A. carterae, H. triquetra, L.
polyedrum, and K. micrum, excavates G. lamblia and
Trypanosoma brucei, archaea Halobacterium sp. NRC-1,
Methanothermobacter thermautotrophicus, and Sulfolobus
tokodaii, and eubacteria Clostridium acetobutylicum
ATCC824, Escherichia coli 536, Geobacter sulfurreducens,
Oceanobacillus iheyensis, Synechococcus elongatus PCC 7942,
Trichodesmium erythraeum, and Nostoc sp. PCC 7120.

PhyloGenie was run using default settings except that the
minimum expect "e-value" for the BLAST search of the
data was set at 10. The hidden Markov model (hmm)
alignments were built using all hits with an e-value below
0.01. The program TreeView [95] was used to visualize the
resulting trees. We selected sequences represented by trees
that contained only chromalveolates and bacteria and
trees that contained well-defined chromalveolate-bacte-
rial clades (at least 50% bootstrap support). Using this cri-
terion for the gene selection, we excluded from the
analyses genes of eukaryotic and mitochondrial origin
that are shared by most eukaryotic organisms. In addition,
this approach allowed us to exclude from the analyses
genes of red algal and green algal origin acquired by chro-
malveolates from the genomes of plastid progenitors via
EGT (see [25,26] for detailed analyses of EGT in chromal-
veolates). This analysis yielded 37 unigenes encoding pro-
teins from 23 different protein families; 22 of them
represented a subset of proteins identified using the "Best
hit" approach. The necessity of using a combination of
two described above methods for detecting putative HGTs
resulted from the fact that neither the non-redundant (nr)
nor our local database included all taxa of interest. The
local database for the PhyloGenie BLAST search comple-
mented nr with complete genome and EST data for free
living protists. In addition to the gene discovery, the Phy-
loGenie output was used to verify the phylogeny of pro-
teins identified using the "Best hit" approach. Based on
the results of PhyloGenie, eight proteins represented by
12 unigenes have been excluded from the analysis as
derived from the genome of plastid progenitor through
EGT. Three proteins represented by five unigenes were
rejected as shared by multiple eukaryotic lineages. The
remaining set of 45 proteins represented by 80 unigenes

in the K. brevis EST data were subjects for detailed analy-
ses.

Identification of bacteria-derived proteins in K. brevis 
involved in cell wall biogenesis
In bacteria, genes encoding physiologically coupled reac-
tions are often transferred together, frequently in an
operon [33]. To test whether this scenario is applicable for
interdomain prokaryote-to-eukaryote transfers, we
screened the K. brevis EST data for the presence of
homologs of bacterial proteins involved in cell envelope
biogenesis. This category of proteins was chosen to iden-
tify genes that potentially may be co-transferred with
genes encoding MVIM-WECE. The latter represents a rare
case of gene fusion in interdomain HGT. Gene clusters
involved in the surface layer protein biosynthesis in A.
thermoaerophilus [43] and glycopeptidolipid biosynthesis
in Mycobacterium avium [44] were retrieved from GenBank
and used as an input in sequence similarity search
(BLAST; e-value ≤ 10-20) against the non-redundant gene
set generated from the K. brevis EST data. This analysis
allowed us to identify three additional proteins repre-
sented by five unigenes in the K. brevis EST data.

Identification of eukaryotic proteins acquired by 
chromalveolates through intradomain HGT
Genes derived through intradomain eukaryote-to-eukary-
ote HGT were extremely hard to identify using high
throughput phylogenomic analyses due to the limited
number of taxa included in our local database. The only
candidate for the transfer of a bona fide eukaryotic gene
among taxa is EF2 that was identified in the course of
another study of potential markers for reconstructing the
eukaryotic tree of life. The detailed description of methods
used for the EF2 analysis can be found in reference [21].

To assess the possibility that the EF2 sequence found in
the K. brevis data resulted from contamination of the EST
library with kinetoplastid DNA, we used the complete K.
brevis EST data set as an input for a sequence similarity
search (BLASTx; e-value ≤ 10-10) against the GenBank
non-redundant database (nr). Sequences that showed the
highest similarity to kinetoplastid genes were subjected to
detailed analyses. This work did not provide any support
for the kinetoplastid origin of identified sequences in K.
brevis with the exception of EF2 (results not shown).

Building the final alignments
To build the final alignments, we identified homologs of
the candidate K. brevis sequences using BLAST searches (e-
value ≤ 10-10) against GenBank nr, dbEST, and public pro-
tist databases including the JGI database [91], the French
National Sequencing Center, Genoscope [96], the Protist
EST Program database [17], C. merolae [92,97] and G. sul-
phuraria [93,98] databases. The DNA sequences were
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translated, and the amino acid data for each protein were
manually aligned with the identified bacterial and eukary-
otic homologs using BioEdit [99]. Only regions that were
unambiguously aligned were retained for phylogenetic
analysis.

Analysis of sequence structure and phylogeny
The eukaryotic structure of the identified K. brevis tran-
scripts has been verified by translating and aligning the
resulting amino acid sequences with their bacterial
homologous. The subcellular localization of the studied
proteins was predicted using online analyses with protein
topology prediction programs SignalP [100,101], TargetP
[102,103], MITOPROT [104], PSORT [50], and TMHMM
[31]. Percent of amino acid sequence identity between
gene copies was inferred using an online tool for pair wise
sequence alignment bl2seq [105]. GC content of nucle-
otide sequences was identified using BioEdit. The average
and range of nucleotide composition of protist genomes
was inferred from the analysis of coding regions of 50
sequences from each species.

We used the maximum likelihood (ML) method to recon-
struct the gene phylogenies. The ML analysis was done in
PHYML V2.4.3 [106,107] using the WAG + Γ + I evolu-
tionary model and tree optimization. The alpha values for
the gamma distribution were calculated using eight rate
categories. To test the stability of monophyletic groups in
the ML trees, we calculated PHYML bootstrap (100 repli-
cates) support values [108]. In addition, we calculated
bootstrap values (500 replications) using the neighbor
joining (NJ) method with JTT+Γ distance matrices using
PHYLIP V3.63 [109]. The NJ analysis was done with rand-
omized taxon addition. Bayesian posterior probabilities
for nodes in the ML tree were calculated using MrBayes
V3.0b4 [110] and the WAG + Γ model. The Metropolis-
coupled Markov chain Monte Carlo from a random start-
ing tree was run for 1,000,000 generations with trees sam-
pled each 1,000 cycles. The initial 20,000 cycles (200
trees) were discarded as the "burn in." A consensus tree
was made with the remaining 800 phylogenies to deter-
mine the posterior probabilities at the different nodes.

The names of the K. brevis proteins are derived from the
names of corresponding protein domains according to the
Pfam [29,30] nomenclature. The K. brevis sequences listed
in the Table 1 have been deposited in GenBank under
accession numbers EF540322–EF540340.
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